Skeleton Based As-Rigid-As-Possible Volume Modeling

Shaoting Zhang, Andrew Nealen and Dimitris Metaxas

Computer Science Department, Rutgers University
As-rigid-as-possible (ARAP) shape modeling is a popular technique to obtain natural deformations. There have been many excellent methods. However, we do not want to break the manifoldness of ARAP surface modeling or sacrificing the speed. We do it by leveraging the skeleton information.

Olga Sorkine, et al.: Laplacian Surface Editing. SGP2004
As-rigid-as-possible (ARAP) shape modeling is a popular technique to obtain natural deformations. There have been many excellent methods.

Olga Sorkine, et al.: Laplacian Surface Editing. SGP2004
Olga Sorkine and Marc Alexa: As-Rigid-As-Possible Surface Modeling. Eurographics SGP2007

Kun Zhou, et al.: Large mesh deformation using the volumetric graph Laplacian. SIGGRAPH 2005

Shaoting Zhang, Andrew Nealen and Dimitris Metaxas: Skeleton Based As-Rigid-As-Possible Volume Modeling
As-rigid-as-possible (ARAP) shape modeling is a popular technique to obtain natural deformations. There have been many excellent methods.

We are interested in the volume preservation.

- Olga Sorkine, et al.: Laplacian Surface Editing. SGP2004
- Olga Sorkine and Marc Alexa: As-Rigid-As-Possible Surface Modeling. Eurographics SGP2007
Introduction

- As-rigid-as-possible (ARAP) shape modeling is a popular technique to obtain natural deformations. There have been many excellent methods.
- We are interested in the volume preservation.
- VGL is a good approach. However, we do not want to break the manifoldness of ARAP surface modeling or sacrificing the speed.

Olga Sorkine, et al.: Laplacian Surface Editing. SGP2004
Olga Sorkine and Marc Alexa: As-Rigid-As-Possible Surface Modeling. Eurographics SGP2007
Kun Zhou, et al.: Large mesh deformation using the volumetric graph Laplacian, SIGGRAPH 2005

Shaoting Zhang, Andrew Nealen and Dimitris Metaxas

Skeleton Based As-Rigid-As-Possible Volume Modeling
As-rigid-as-possible (ARAP) shape modeling is a popular technique to obtain natural deformations. There have been many excellent methods.

We are interested in the volume preservation.

VGL is a good approach. However, we do not want to break the manifoldness of ARAP surface modeling or sacrificing the speed.

We do it by leveraging the skeleton information.

- Olga Sorkine, et al.: Laplacian Surface Editing. SGP2004
- Olga Sorkine and Marc Alexa: As-Rigid-As-Possible Surface Modeling. Eurographics SGP2007
- Kun Zhou, et al.: Large mesh deformation using the volumetric graph Laplacian. SIGGRAPH 2005
Laplacian coordinates represent each point as the weighted difference between such point and its neighborhoods.
Laplacian coordinates represent each point as the weighted difference between such point and its neighborhoods.

Given original coordinates V, the connectivity, and m control points, the reconstructed object V' can be obtained by minimizing:

$$\|LV' - \delta\|_2^2 + \sum_{i=1}^{m} \|v_{c_i}' - v_{c_i}\|_2^2$$
Laplacian coordinates represent each point as the weighted difference between such point and its neighborhoods.

Given original coordinates V, the connectivity, and m control points, the reconstructed object V' can be obtained by minimizing:

$$\|LV' - \delta\|_2^2 + \sum_{i=1}^m \|v'_c - v_c\|_2^2$$

$$\begin{bmatrix}
L \\
l_c
\end{bmatrix}V' =
\begin{bmatrix}
\delta \\
v_c
\end{bmatrix}$$

Shaoting Zhang, Andrew Nealen and Dimitris Metaxas
Skeleton Based As-Rigid-As-Possible Volume Modeling
Laplacian coordinates represent each point as the weighted difference between such point and its neighborhoods.

Given original coordinates V, the connectivity, and m control points, the reconstructed object V' can be obtained by minimizing:

$$\|LV' - \delta\|^2 + \sum_{i=1}^{m} \|v'_{ci} - v_{ci}\|^2$$

$$\begin{bmatrix} L & I_c \end{bmatrix} V' = \begin{bmatrix} \delta \\ V_c \end{bmatrix}$$

When rotations are large, the deformation may not be natural.
Laplacian coordinates represent each point as the weighted difference between such point and its neighborhoods.

Given original coordinates V, the connectivity, and m control points, the reconstructed object V' can be obtained by minimizing:

$$
\|LV' - \delta\|_2^2 + \sum_{i=1}^{m} \|v'_{c_i} - v_{c_i}\|_2^2
$$

$$
\begin{bmatrix}
L \\
L_c
\end{bmatrix}
\begin{bmatrix}
V' \\
\delta
\end{bmatrix}
\begin{bmatrix}
V_c
\end{bmatrix}
$$

When rotations are large, the deformation may not be natural.
Iterate two steps to recover rotations:

- Step 1: Initial guess from solving naive LSE.
- Step 2: Find optimal rotations, then update the linear system (edge length preserving).

Robustness, simplicity, efficiency. However, there is no volume preserving constraint.

Olga Sorkine and Marc Alexa: As-Rigid-As-Possible Surface Modeling. Eurographics SGP2007
Olga Sorkine: Least-Squares Rigid Motion Using SVD

Shaoting Zhang, Andrew Nealen and Dimitris Metaxas: Skeleton Based As-Rigid-As-Possible Volume Modeling
Iteration two steps to recover rotations:

Step 1: Initial guess from solving naive LSE.

Olga Sorkine and Marc Alexa: As-Rigid-As-Possible Surface Modeling. Eurographics SGP2007
Olga Sorkine: Least-Squares Rigid Motion Using SVD
Iterate two steps to recover rotations:

Step1: Initial guess from solving naive LSE.

Step2: Find optimal rotations, then update the linear system (edge length preserving).

Olga Sorkine and Marc Alexa: As-Rigid-As-Possible Surface Modeling. Eurographics SGP2007
Olga Sorkine: Least-Squares Rigid Motion Using SVD
Rotation and edge length constraints

- Iterate two steps to recover rotations:
 - Step1: Initial guess from solving naive LSE.
 - Step2: Find optimal rotations, then update the linear system (edge length preserving).
- Robustness, simplicity, efficiency.

Olga Sorkine and Marc Alexa: As-Rigid-As-Possible Surface Modeling. Eurographics SGP2007
Olga Sorkine: Least-Squares Rigid Motion Using SVD

Shaoting Zhang, Andrew Nealen and Dimitris Metaxas: Skeleton Based As-Rigid-As-Possible Volume Modeling
Rotation and edge length constraints

- Iterate two steps to recover rotations:
 - Step1: Initial guess from solving naive LSE.
 - Step2: Find optimal rotations, then update the linear system (edge length preserving).
- Robustness, simplicity, efficiency.
- However, there is no volume preserving constraint.

Olga Sorkine and Marc Alexa: As-Rigid-As-Possible Surface Modeling. Eurographics SGP2007
Olga Sorkine: Least-Squares Rigid Motion Using SVD

Shaoting Zhang, Andrew Nealen and Dimitris Metaxas: Skeleton Based As-Rigid-As-Possible Volume Modeling
Skeleton and volume constraints

- Use volumetric mesh? Manifoldness, computational complexity, etc.
Use volumetric mesh? Manifoldness, computational complexity, etc.

Use both the skeleton and edge length constraint to roughly preserve the volume, without breaking the manifoldness of ARAP or increasing the computation complexity.
Skeleton and volume constraints

- Use volumetric mesh? Manifoldness, computational complexity, etc.
- Use both the skeleton and edge length constraint to roughly preserve the volume, without breaking the manifoldness of ARAP or increasing the computation complexity.

\[
\begin{bmatrix}
L & 0 \\
I_c & 0 \\
L_s & 0
\end{bmatrix}
\begin{bmatrix}
V' \\
V_s'
\end{bmatrix}
=
\begin{bmatrix}
\delta \\
V_c \\
\delta_s
\end{bmatrix}
\]
Use volumetric mesh? Manifoldness, computational complexity, etc.

Use both the skeleton and edge length constraint to roughly preserve the volume, without breaking the manifoldness of ARAP or increasing the computation complexity.

\[
\begin{bmatrix}
L & 0 \\
I_c & 0 \\
L_s & \\
\end{bmatrix}
\begin{bmatrix}
V' \\
V'_s \\
\end{bmatrix}
=
\begin{bmatrix}
\delta \\
V_c \\
\delta_s \\
\end{bmatrix}
\]

One-way coupling property.
Mesh editing framework

- Manually define the skeleton.

[Image of mesh editing interface with options for defining and editing the skeleton]
Mesh editing framework

- Manually define the skeleton.

Evenly generate skeleton points, and connect them with surface vertices automatically.

Manually select anchor points (bottom) and control points (top).

Interactively deform the shape.
Mesh editing framework

- Manually define the skeleton.
- Evenly generate skeleton points, and connect them with surface vertices automatically.
Mesh editing framework

- Manually define the skeleton.
- Evenly generate skeleton points, and connect them with surface vertices automatically.
Mesh editing framework

- Manually define the skeleton.
- Evenly generate skeleton points, and connect them with surface vertices automatically.
- Manually select anchor points (bottom) and control points (top).
Mesh editing framework

- Manually define the skeleton.
- Evenly generate skeleton points, and connect them with surface vertices automatically.
- Manually select anchor points (bottom) and control points (top).
- Interactively deform the shape.
Experimental settings

- The C++ implementation was run on a Intel Core2 Quad 2.40GHz CPU with 8G RAM.
- We compare the linear LSE, ARAP surface modeling and our method.
- We tested on the cactus model (620 vertices, 1,236 polygons) and the horse model (2,482 vertices, 4,960 polygons).
- The relative root mean square errors of edge lengths and volume magnitudes are reported.
Shaoting Zhang, Andrew Nealen and Dimitris Metaxas

Skeleton Based As-Rigid-As-Possible Volume Modeling

<table>
<thead>
<tr>
<th>Model</th>
<th>RRMS-E</th>
<th>RE-V</th>
<th>Times</th>
</tr>
</thead>
<tbody>
<tr>
<td>(b)</td>
<td>0.126</td>
<td>0.453</td>
<td>0.017</td>
</tr>
<tr>
<td>(c)</td>
<td>0.074</td>
<td>0.131</td>
<td>0.024</td>
</tr>
<tr>
<td>(d)</td>
<td>0.075</td>
<td>0.056</td>
<td>0.025</td>
</tr>
</tbody>
</table>
Results

Model	RRMS-E	RE-V	Times
(b) | 0.068 | 0.356| 0.117|
(c) | 0.040 | 0.125| 0.121|
We proposed an approach to approximately preserve the volume without breaking the manifoldness of traditional ARAP or increasing the computational complexity.

Our method is easy-to-implement and may be useful to systems relying on ARAP techniques.

Limitations: Skeleton generation; complex skeletons; self intersection.
Thanks for listening.