Introduction to 'Omnics and Bioinformatics

Chris Overall

Department of Bioinformatics and Genomics

University of North Carolina - Charlotte

Acquire → Store → Analyze → Visualize
Bioinformatics makes many current biological and biomedical studies possible.
Cells are the fundamental units of life, with many common abilities:

- Reproduce
- Grow
- Process information
- Respond to stimuli (adaptation)
- Carry out chemical reactions

All cells share certain structural features and carry out complicated processes in basically the same way.
Despite the similarity of all cells, they vary greatly in size, shape and function.

What makes them different?
There are two basic types of cells: prokaryotes and eukaryotes.

Eukaryote
- Size: 10-100 μm
- Nucleus: Membrane-bound organelle
- Membrane-bound organelles
- Multicellular or unicellular

Prokaryote
- Size: 1–2 μm
- Nucleoid
- No membrane-bound organelles
- Mostly unicellular
Humans start as a single eukaryotic cell and end up with 100 trillion cells

\[100 \text{ trillion} = 100 \times 10^{12} = 100,000,000,000,000 \]

If you lined up all of your cells in a row, they would stretch across the continental U.S. **over 1 million times**
All cells use the same four types of macromolecules

We will focus on proteins and nucleic acids

Proteins

Lipids

Nucleic acids

Carbohydrates
Proteins give a cell structure and perform most cellular tasks.
A protein is a linear sequence of amino acids, which uniquely defines it.

Amino acid sequence:

```
LGLCLAAKPKSVRWCTISPAEAACAKKFKQRNMMKVRGFSVSCIRKTSSFECIQAIANKADAV
TLDDLGLVYEAGLYKLPVAAEYQTRKGFPQTRYYAVAVVKTGSGFQLNQLQGVSCHTG
GLGRSAAGWNPPTGLRPLNYNTGPPFPLQKAANFFSASCFCADGKQYFPNLCRLCA
GETADKCACSCSQEYFGYSQGAFKCLENGAGDLVAVFDSTVFENLPDEADRXKYEELLCPD
NKRPLLFDGLSALGFLRPIPQ1DSGLYLGANYLTATQNLRETTAEEVAAARERVVWC
AVGPEERKCKQWDSYNKVARCADSTTTECAALVKGEADALNLDDGFIVYAGKCGLVP
LAENQASQNSNAPDCVHRPEYGLAVAVVNRKSDADDLTMNSLSEQKKSCHTGVGR
TAAWNIPMGLLFNTQGSCKDFKFSQSCPAGDPOSSLQACLGVNNENNKCMNSEEY
GYTGAFCRLAERKHDVAFKDVQTNQDNSKEPWAKDLKQEDFELLCLDGTRK
FVAEASCHLARAPNHAVVSSQSDRAQHLKVKFLLQQDFQAAGNGPGDCPGKF
CRYFSETKNLFDNTECLAELQGKTTYEQYLGSHEYVTSITNLRRCSSSPLLLEAC
AFLRA
```

Folding:

3D structure = function

- All organisms use basically the same 20 letter alphabet.
- Typical length: 100 – 1,000 amino acids.

Folded protein
An organism's **proteome** is the entire set of proteins that it can produce.

\[
\text{proteome} = + + + \ldots N
\]

What is the estimated size of the human proteome?

Phrased differently, how many unique proteins can the human body create?

Answer: 2 million
The genes encoded in DNA determine which proteins can be created by a cell.

DNA alphabet = \{A, C, T, G\}

<table>
<thead>
<tr>
<th>DNA sequence</th>
<th>Gene sequence</th>
<th>Protein sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGGGTCCCCCGCACCTCGCTGTTGGGGGC</td>
<td>GGACGT</td>
<td>GSPTSLWGLLFLSAALSLWPTS</td>
</tr>
<tr>
<td>TCCTGTTTTCTCTCCGCAGCCCTGCTGTTCC</td>
<td>CGTTTACG</td>
<td>GESEYVPAARGHCGNFSSEGLR</td>
</tr>
<tr>
<td>CTCCTGGCAGAGAGTTGGAGAATGAA</td>
<td>GCAGCGACAGCACCCTGGGCCGCACC</td>
<td>PVCETRVATVAAVGPPGSGAAG</td>
</tr>
<tr>
<td>GCAGTGAGGAGGCAGGCAGCAGCCGCCGGCC</td>
<td>CGAGCAGACCACCATGGGGCTGACCGG</td>
<td>QRHPGPHVSAAGADRAV</td>
</tr>
<tr>
<td>CGCGCGGGGTCGAGTTGCCCTCGAG</td>
<td>CGTTACG</td>
<td>GSGQPPGPRGASCPRGRC</td>
</tr>
<tr>
<td>GCCGCGTCGGCAGCTGGCGAGAGGCCC</td>
<td>CGAAGCCCCAGGACACGTCTCCAAGC</td>
<td>PAERPSPRTALQPVAAS</td>
</tr>
<tr>
<td>GCCCGTCGCTGCCTCCCGTCGCCCAA</td>
<td>GCCCGTCGCTGCCTCCCGTCGCCCAA</td>
<td></td>
</tr>
</tbody>
</table>

DNA → RNA → Protein

Change this slide!!! DNA → RNA → Protein
An organism's **genome** is the entirety of its hereditary (genetic) information.

$$\text{Genome} = \text{genes} + \text{non-coding regions}$$

How many genes do humans have?

Answer: approximately 20,000

The genome of every cell in the human body is basically identical: they have the same genes.
You have 10 times more bacterial cells than human cells in your body

You have 1 quadrillion bacterial cells

Approximately 3 pounds of your weight is bacteria

Most of them won't make you sick

The beneficial bacteria is mostly in your gut

You need them to digest food

E. coli is the most common one

Your metagenome is the entirety of the hereditary (genetic) information of the bacteria in your body
Questions

(1) What is a genome?

(2) What is a transcriptome?

(3) What is a proteome?

(4) What is a metagenome?
How do we get different types of human cells if their genomes are the same?
The genome also specifies how, when and where to produce each kind of protein.

Specialization
Different human cell types, such as those found in different organs, have different proteomes.

Adaptation
A cell responds to changes in the environment by slightly changing its proteome.

This is known as gene regulation.
End of Act 1: Questions

(1) What is a cell?

(2) What is a protein?

(3) What is a gene?

(4) How is a protein created from a gene?

(5) What is a genome?

(6) What is a proteome?

(7) What are the letters (nucleotides) in the DNA alphabet?

(8) How many letters (amino acids) are in the protein alphabet?
'Omics is large-scale, high-throughput molecular biology

*omics

Studies the entire set of a certain type of molecule in an organism

Studies when, where and how the molecule interacts, is created and is destroyed

Genomics

(1) Study of all the genes and non-coding regions in an organism

(2) Study of an organism's genome

Functional genomics

Study of what, when, where and how the genome produces proteins or other biological products
There are four core 'omics disciplines, and many other subdisciplines.

- Genome → Genomics
- Metagenome → Metagenomics
- Proteome → Proteomics
- Transcriptome → Transcriptomics
Since the year 2000, there has been an explosion of biological data

- Sequenced genomes = 5,062
- Base pairs = 99,116,431,942 = 396 GB
- Sequences = 98,868,465
- Known genes = 7,095,197
- Known proteins = 523,151

This is only a small portion of 'omics data that has been generated in the past 10 years
For even a single organism, there are thousands of protein interactions.
We need Bioinformatics to make sense of the bewildering amount of 'omics data.

Bioinformatics = Computers + 'Oomics

- **Acquire**: Experimental techniques for studying generating 'omics data
- **Store**: Computational techniques for storing, organizing and sharing 'omics data
- **Analyze**: Computational techniques for finding patterns in and making sense of 'omics data
- **Visualize**: Computational techniques for visualizing 'omics data; pictures are easier to understand than numbers
End of Act 2: Questions
The human genome is fairly large, but the mouse genome is even larger.

The human genome is stored in 23 pairs of chromosomes.

There are an estimated 20 – 25,000 protein-coding genes in our genome.

There are approximately 2 million proteins in our proteome.

3 billion base pairs in our DNA; 3 gigabytes of storage space.

It would take a person a 100 years to recite the human genome, saying one nucleotide per second, 24 hours a day.
Human Genome Project: sequence all of our DNA and identify all of our genes

Aside from answering basic biological questions, why is this important?

Answer: every disease has a genetic component

\[
\begin{align*}
\text{Inherited} & \\
\text{Response to environment} &
\end{align*}
\]

The draft sequence of the human genome was published in 2000; the complete sequence was published in 2003

Bioinformatics was, and continues to be, an essential part of the Human Genome Project. How did we do it?
Acquire: determine the sequence of the human genome

It wasn't possible to sequence the whole genome at one time

We had to break it up, sequence smaller pieces and then put it back together

Whole genome

BAC phase = 150,000 bp

Shotgun phase = 800 bp
Bioinformatics was necessary to assemble the genome sequence.

Bioinformatics challenge → paste together the small shotgun sequences to get the entire human genome sequence.

```
<table>
<thead>
<tr>
<th>ACCTTGGCCTAGGCT</th>
<th>GCTGGAAATCCAGTGCC</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAGGCTACTGGCTGGA</td>
<td>TAACTAGCTTTAATCCG</td>
</tr>
<tr>
<td></td>
<td>GTGCCCCGGGTTAACTA</td>
</tr>
</tbody>
</table>
```

Required the use of sophisticated assembly algorithms that ran on supercomputers.
Sequence assembly game
Store: organize and share the sequence of the human genome

Problem: we have too much data to store in a notebook and to search manually

Bioinformatics challenge

- Develop efficient methods to store, organize and access the 'omics data
- Develop easy ways for experimental biologists to access the data

Solution

- Created databases; The major data repositories are GenBank, EMBL and DDBJ
- Created web-based applications to access the data

A substantial portion of biological data is freely available to anyone with a web browser
Analyze: Search the genome sequence for biological features

<table>
<thead>
<tr>
<th>Bioinformatics challenge</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identify genes</td>
<td>Developed gene finding algorithms (i.e. spot the gene)</td>
</tr>
<tr>
<td>Identify genes that are similar to an unknown one</td>
<td>Developed sequence alignment algorithms, such as BLAST</td>
</tr>
<tr>
<td>Find regulatory sequences</td>
<td>Developed pattern identification algorithms to find out how those genes are regulated</td>
</tr>
<tr>
<td>Store, organize and share these feature annotations</td>
<td>Developed databases to store information about genes</td>
</tr>
</tbody>
</table>
Analyze: OK, we know the genes now. What do they make?

The draft sequence of the human genome was published in 2000; the complete sequence was published in 2003.
Analyze: When, how and where are the genes expressed?

The draft sequence of the human genome was published in 2000; the complete sequence was published in 2003.
Visualize: We need tools to visualize the information in our genome.
Network screening can uncover novel, context-dependent interactions.

Developed a method to score (rate) a subnetwork based upon gene differential expression.

Developed a method to find high-scoring subnetworks.

Identified active subnetworks in a subset of the yeast interaction network when GAL80 was deleted.

Identified active subnetworks in the full yeast interaction network when perturbed twenty different ways.

Questions?