Measuring Small Amounts

Part 1: Using pipets and micropipets

Purpose: to use pipets accurately

 to measure liquids1. To compare accuracy of measurements when using graduated cylinders and pipets.
2. To learn techniques of using pipets of various sizes.
3. To practice using pipets to become accurate.

Measuring using the metric system

- What unit are used? What equipment?
- Liquid
- Mass

Units in the Metric System:

Base	1	10°	1
Deci- d	$1 / 10$	$10-1$	0.1
Centi- c	$1 / 100$	$10-{ }^{2}$	0.01
Milli- m	$1 / 1000$	$10-3$	0.001
Micro- μ	$1 / 1,000,000$	$10-6$	0.000001

Graduated Cylinder

Pipets - Serological

Pipets

- What does it measure? Units?
- What sizes are available?
- What range of amounts can each pipet size be used to measure?
- Practice measuring:
$\square 1.0 \mathrm{~mL}$
2.6 mL
8.4 mL
5.0 mL
$\square 7.2 \mathrm{~mL}$ 10.0 mL

Measuring very small volumes: Micropipet, measuring $\mu \mathrm{L}$

Lab practice- Micropipet

- a. Dial the micropipet to the listed amount in microliters ($\mu \mathrm{L}$).
- b. Place 1 drop of each amount on a piece of Parafilm. Check to determine if the size of the drops are the same. Repeat if needed.
- c. Determine the mass of the drop using the digital balance. Record your data.
Volume to pipet: $3 \mu \mathrm{~L}$ $90 \mu \mathrm{~L} \quad 125 \mu \mathrm{~L} \quad 170 \mu \mathrm{~L}$

