Introduction to Sequence Alignment

Chris Overall

Department of Bioinformatics and Genomics

University of North Carolina

- Charlotte

Sequence alignment algorithms

An algorithm is a step-by-step procedure for

 solving a problem or accomplishing somethingFinding prime numbers
Sorting numbers from lowest to highest
Calculating shortest delivery routes
A cooking recipe
A lab protocol

The term algorithm usually refers to solving a problem (often mathematical) using a computer

Bubble sort is a classic algorithm for sorting numbers

Input: $1,4,3,2 \quad$ Bubble sort \quad Output: 1,2,3,4

Sequence alignment algorithms are ways to arrange two or more "words" to find out how similar they are to each other

Let's look at a simple example using words from

 the English alphabet (size = 26)Consider these four words: hat, bat, hatter, batter

How similar are bat and hat? Why?

Which word is more similar to bat? Why?

Which pair of words is more similar to each other? Why?

One way to figure out how similar two words (sequences) are is to find the longest common subsequence

What's the algorithm to do this?

Step 1: Left-align the two sequences

Step 2: Score the alignment

Step 3: Shift the shorter alignment to the right by one character and repeat steps 1-2 until you reach the end of the longer sequence

Here's a simple example of finding the longest common subsequence

We'll evaluate the subalignments using this scoring scheme

1 point
BAT
|||
BATTER

000000 \quad| BAT |
| ---: |
| BATTER |
| 000000 |

Now we can score the alignments between

 our four words: hat, hatter, bat, batterAlignment 1
BAT
$||\mid$
HAT
011

Score = 2

Alignment 4

Alignment 2

Score = 2

Alignment 5

```
    |||
HATTER
111000
Score = 3
```

Alignment 3

```
BAT
    |||
HATTER
011
Score = 2
```

Alignment 6
BATTER

HATTER
011111
Score $=5$

Just when you thought you understood

 alignments, it gets a bit more complicatedConsider these three phrases

Which two phrases are the most similar?
What algorithm did you use to figure that out?
Will our previous alignment method work? Why or why not?

The current algorithm can't finding LCSs with additional or missing characters (insertions and deletions)

> We'll use the same scoring scheme as before

THECATINTHEHAT
||||||||||||| THECATSINTHEHAT
11111100000000

6 points

THECATINTHEHAT

8 points

How can we fix the algorithm?

We can improve the algorithm by allowing gaps in the longest common subsequence

Match $=1$ Mismatch $=0$
Gap open $=-1$
Gap extension $=0$
We'll use a modified scoring scheme
\(\left\{\begin{array}{l}Match=1
Mismatch=0
Gap open=-1
Gap extension=0\end{array}\right.\)

Better!

You might be asking yourselves, why do we need the gap penalty?

Which of these two alignments is better? Why?

Without a gap penalty, both alignments have the same score (14)

We need gap penalties to reflect the intuition that, all things being equal, ungapped alignments are better than gapped alignments

Alternative alignments for 2

Alignment 2a
THECAT---ISAHAT
|||||| ||||||
THECATSINTHEHAT
111111-00000111
Score = 8

Alignment 2b

THECAT-I--SAHAT

THECATS INTHEHAT
111111-1-000111
Score = 8

Biological sequence alignments

Biological sequence alignment algorithms are ways of arranging two or more molecular sequences to identify regions of similarity between them

Types of molecules

We'll focus on DNA, which consists of four nucleotides (alphabet size $=4$)

We align biological sequences in the same way as we did with English words and phrases

Example \rightarrow aligning two DNA sequences

ACTG vs. ACGTG

Match $=1$, mismatch $=0$, gap open $=-1$, gap extension $=0$

Why are biological sequence alignments important?

The more similar two molecular sequences are, the more likely that the molecules are also similar in:

Deletion?

Point mutation

Insertion?

We need computers and algorithms to find biological sequence alignments

Why not find all biological sequence alignments manually?

How many times can you find the query sequence ATCGGCCATTAC in the following target sequence? Is it there at all? If so, is it unique?

Abstract

ATCACTGTAGTAGTAGCTGGAAAGAGAAATCTGTGACTCCAATTAGCCAGTTCCTGCAGACCTTGTGAGGACTAG AGGAAGAATGCTCCTGGCTGTTTTGTACTGCCTGCTGTGGAGTTTCCAGACCTCCGCTGGCCATTTCCCTAGAGC CTGTGTCTCCTCTAAGAACCTGATGGAGAAGGAATGCTGTCCACCGTGGAGCGGGGACAGGAGTCCCTGTGGCCA GCTTTCAGGCAGAGGTTCCTGTCAGAATATCCTTCTGTCCAATGCACCACTTGGGCCTCAATTTCCCTTCACAGG GGTGGATGACCGGGAGTCGTGGCCTTCCGTCTTTTATAATAGGACCTGCCAGTGCTCTGGCAACTTCATGGGATT CAACTGTGGAAACTGCAAGTTTGGCTTTTGGGGACCAAACTGCACAGAGAGACGACTCTTGGTGAGAAGAAACAT CTTCGATTTGAGTGCCCCAGAGAAGGACAAATTTTTTGCCTACCTCACTTTAGCAAAGCATACCATCAGCTCAGA CTATGTCATCCCCATAGGGACCATTGGCCAAATGAAAAATGGATCAACACCCATGTTTAACGACATCAATATTTA TGACCTCTTTGTCTGGATGCATTATTATGTGTCAATGGATGCACTGCTTGGGGGATCTGAAATCTGGAGAGACAT TGATTTTGCCCATGAAGCACCAGCTTTTCTGCCTTGGCATAGACTCTTCTTGTTGCGGTGGGAACAAGAAATCCA GAAGCTGACAGGAGATGAAAACTTCACTATTCCATATTGGGACTGGCGGGATGCAGAAAAGTGTGACATTTGCAC AGATGAGTACATGGG

Basic Local Alignment Search Iool (BLAST)

There are two types of sequence alignment: local and global

Global alignment \rightarrow find the single best alignment across the entire length of both sequences

Local alignment \rightarrow find one or more highly similar local regions between both sequences

BLAST is a very fast tool for finding local regions

 of similarity between biological sequences
Basic Local Alignment Search Iool

Internet search or local search

BLAST your sequence: search target database for local alignments
nt = non-redundant nucleotide sequence database
$\mathrm{nr}=$ non-redundant protein sequence database

Target databases are extremely large; millions of sequences

There are six types of BLAST, depending on the type of query and target sequences

Nucleotide BLAST (blastn)

Protein BLAST (blastp)
blastx
tblastn
tblastx

Search a nucleotide database using a nucleotide query

Search a protein database using a protein query

Search a protein database using a translated nucleotide query

Search a translated nucleotide database using a protein query

Search translated nucleotide database using a translated nucleotide query

Many animals use the Earth's magnetic field for orientation and navigation esp. during migration

Some examples: sea turtles, swallows, monarch butterflies and fruit flies (Drosophila melanogaster)

Cryptochome is a key protein for geomagnetic sensing; it seems to be a quantum compass

Humans produce cryptochrome in the retina, but we don't seem to have this geomagnetic perception

Researchers created cryptochrome-deficient flies, and they lost their ability to navigate

They then created transgenic flies with human cryptochrome instead of their normal version

The flies with the human cryptochrome could navigate just as well as the flies with the normal version

How similar are the protein sequences of human cryptochrome and fly cryptochrome?

We can use BLAST to find protein sequences in humans that are similar to fly cryptochrome

Descriptions

Accession	Description	Max score	Total score	Query coverage	\triangle Evalue	Links	
BAA31633.1	KIAA0658 protein [Homo sapiens]	375	375	94\%	3e-103	GM	
O49ANO. 2	RecName: Full=Cryptochrome-2 >gb\|AAH41814.1	Cryptochrome 2 (photolya	375	375	94\%	3e-103	G
BAF83949.1	unnamed protein product [Homo sapiens]	374	374	94\%	$4 \mathrm{e}-103$	GM	
NP 004066.1	cryptochrome-1 [Homo sapiens] >sp\|Q16526.1	CRY1_HUMAN RecName: Full	374	374	94\%	$4 \mathrm{e}-103$	UGM
NP 066940.2	cryptochrome-2 isoform 1 [Homo sapiens] >dbj\|BAG64048.1	unnamed prote	374	374	94\%	$4 \mathrm{e}-103$	UGM
NP 001120929.1	cryptochrome-2 isoform 2 [Homo sapiens]	332	332	85\%	$2 \mathrm{e}-90$	UGM	
BAG57993.1	unnamed protein product [Homo sapiens]	289	289	72\%	2e-77	GM	
AAH35161.1	CRY2 protein [Homo sapiens]	287	287	72\%	6e-77	GM	
EAW97796.1	cryptochrome 1 (photolyase-like), isoform CRA_b [Homo sapiens]	259	259	59\%	2e-68	G	
BAG58504.1	unnamed protein product [Homo sapiens]	241	241	47\%	$5 \mathrm{e}-63$	GM	
BAC05354.1	unnamed protein product [Homo sapiens]	65.9	65.9	14\%	3e-10	GM	
BAC86686.1	unnamed protein product [Homo sapiens]	31.2	31.2	14\%	8.6	GM	
NP 001091970.1	sickle tail protein homolog isoform 2 [Homo sapiens] >emb\|CAI12212.1] KIA	31.2	31.2	9\%	9.4	UGM	

We get a list - and visual overview - of alignments of the query sequence to target sequences

We can view the alignment between query and target sequences for each match

- Query coverage = 94\%
- Score $=374$ bits (960)
- Expect $=4 \mathrm{e}-103$
- Identities = 214/521 (41\%)
- Positives = 298/521 (57\%)
- Gaps = 41/521 (8\%)

We can also view a detailed record for each matching target sequence

```
cryptochrome-2 isoform 1 [Homo sapiens]
NCBI Reference Sequence: NP_066940
FASTA Graphics
Goto: (V)
LOCUS
DEFINITION
ACCESSION
VERSION
DBSOURCE
KEYWORDS
SOURCE
    ORGANISM
REFERENCE
    AUTHORS
    TITLE
    JOURNAL
    PUBMED
    REMARK
REFERENCE
    AUTHORS
    CONSRTM
    TITLE
    JOURNAL
    PUBMED
    REMARK
REFERENCE
    AUTHORS
    CONSRTM
    TITLE
```

linear

```

PRI 15-MAY-2011
NP-066940
cryptochrome-2 isoform 1 [Homo sapiens]. NP_066940
NP-066940.2 GI:188536100
REFSEQ: accession NM 021117.3
Homo sapiens (human)
Homo sapiens
Homo sapiens
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini; Catarrhini; Hominidae; Homo.
1 (residues 1 to 614)
Dai,H., Zhang,L., Cao,M., Song,F., Zheng,H., Zhu,X., Wei,Q., Zhang,W. and Chen, K.
The role of polymorphisms in circadian pathway genes in breast tumorigenesis
Breast Cancer Res. Treat. 127 (2), 531-540 (2011) 20978934
GeneRIF: Observational study of gene-disease association, gene-gene interaction, and gene-environment interaction. (HuGE Navigator) interaction, and gene-en
2 (residues 1 to 614 )
Bailey,S.D., Xie,C., Do,R., Montpetit,A., Diaz,R., Mohan,V., Keavney,B., Yusuf,S., Gerstein,H.C., Engert, J.C. and Anand, S. DREAM investigators
Variation at the NFATC2 locus increases the risk of
thiazolidinedione-induced edema in the Diabetes REduction
Assessment with ramipril and rosiglitazone Medication (DREAM) study Diabetes Care 33 (10), 2250-2253 (2010) 20628086
GeneRIF: Observational study of gene-disease association,
gene-environment interaction, and pharmacogenomic / toxicogenomic. (HuGE Navigator)
3 (residues 1 to 614)
Fontaine-Bisson,B., Renstrom, F., Rolandsson, O., Payne,F.,
Hallmans,G., Barroso, I. and Franks, P.W.
MAGIC
Evaluating the discriminative power of multi-trait genetic risk
```

NP_066940 614 aa

```
NP_066940 614 aa

\section*{BLAST Tutorial}
http://www.digitalworldbiology.com/BLAST/slide1. html

\section*{BLAST Tutorial \(\rightarrow\) Slide 1}


> Copyright © Digital World Biology, All rights reserved.

\section*{BLAST Tutorial \(\rightarrow\) Slide 2}
```

F, BLAST

* NCBU/ BLAST Home
BLAST finds regions of similarity between biological sequences. more..e
Leam more about how to use the new BLAST design
BLAST Assembled Genomes
Choose a species genome to search, or list all genomic BLAST databases.

- Human	- Oryza sativa	- Gallus gallus
- Mouse	- Bos taurus	- Pan troglodytes
- Rat	- Danio rerio	Microbes
- Arabidopsis thaliana	- Drosophila melanogaster	apis mellifera

Basic ${ }_{\square}$ AST	
Choose LAST p	LAST program to run.
nucleotide blast	Search a nucleotide database using a nucleotide query Algovithms: blastn, megablast, discontiguous megablast
protein blast	Search protein database using a protein query Algorithms: blastp, psi-blast, phi-blast
blastx	Search protein database using a translated nucleotide query
thlastn	Search translated nucleotide database using a protein query
tblastx	Search translated nucleotide database using a translated nucleotide query

Specialized BLAST

```

Copyright © Digital World Biology All rights reserved.

\section*{BLAST Tutorial \(\rightarrow\) Slide 3}


Copyright © Digital World Biology All rights reserved.

\section*{BLAST Tutorial \(\rightarrow\) Slide 4}


Copyright © Digital World Biology All rights reserved.

\section*{BLAST Tutorial \(\rightarrow\) Slide 5}


Copyright © Digital World Biology All rights reserved.

\section*{BLAST Tutorial \(\rightarrow\) Slide 6}


\section*{BLAST Tutorial \(\rightarrow\) Slide 7}


Copyright © Digital World Biology All rights reserved.

\section*{BLAST Tutorial \(\rightarrow\) Slide 8}

The \(E\) value is equal to the number of sequences that you would expect to find in a database composed entirely of random sequences.

Two important parameters that influence the E value are:
- The number of sequences in the database (database size).
- The length of the query sequence.

There is a greater chance of finding a match in a larger database. And the chance of finding a match for a short sequence is greater than the chance of finding a match to a longer sequence.

\section*{BLAST Tutorial \(\rightarrow\) Slide 9}


Copyright © Digital World Biology All rights reserved.

\section*{BLAST Tutorial \(\rightarrow\) Slide 10}


\section*{Copyright © Digital World BiologyAll rights reserved.}

\section*{BLAST Tutorial \(\rightarrow\) Slide 10a}


\section*{BLAST Tutorial \(\rightarrow\) Slide 10b}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Legend for Links to other resources: Uni \\
Sequences producing significant aliganents: (Click besders to sort oolums)
\end{tabular}}} & \multicolumn{6}{|c|}{W Map Viewer} \\
\hline & & & & & & & \\
\hline Acsession & Description & Max score & Tetal score & Query coverage & -Evalue & Max ident & Links \\
\hline \(\times 16893.1\) & Tarantula mRkA for hemocyarin subunit a & 4057 & 4057 & 100\% & 0.0 & 100\% & \\
\hline 2) 10.07 .1 & Nephila inaurata madagascariensis mRNA for hemocyani & 662 & 662 & 79\% & 0.0 & 73\% & \\
\hline \(3>1.1\) & Nephila inaurata madagascariensis mRNA for hemocyani & 202 & 319 & 43\% & \(5 \mathrm{e}-48\) & 88\% & \\
\hline A) 009.1 & Nephila insursto msdagascariensis mRNa for hemocyani & 185 & 241 & 14\% & \(7 \mathrm{e}-43\) & 83\% & \\
\hline A. pos. 1 & Cupiennivs salei mRNA for hemocyanin subunit 5' (he-5' & 175 & 298 & 19\% & 6e-40 & 84\% & \\
\hline A) 192.1 & Eurypelma californicum mRNA for hemocyarin subunt g & 171 & 278 & 22\% & Be-39 & 79\% & \\
\hline
\end{tabular}

Look at the GenBank record.

Copyright © Digital World Biology All rights reserved.

\section*{BLAST Tutorial \(\rightarrow\) Slide 11}


\section*{BLAST Tutorial \(\rightarrow\) Slide 12}


1 : J Biol Chem 1990 Nov 15;265(32):19447-52
Related Aticles, Books, Protein, Nucleotide
Arthropod hemocyanins. Molecular cloning and sequencing of cDNAs encoding the tarantula hemocyanin subunits a and e.

\section*{Voit R, Feldmaier-Fuchs G}

Zoologisches Institut, Universitat Munchen, Federal Republic of Germany
cDNA clones comprising the entire coding region of two out of the seven heterogeneous subunits of hemocyanin from the tarantula, Eurypelma californicum, were isolated from four cDNA libraries constructed from total RNA from the heart tissue of single spiders. Hybridization was first carried out using a tarantula hemocyanin subunit e partial cDNA, and several positive clones were isolated, including one containing a 2.2 -kilobase full-length cDNA (lambda M1). The cDNA comprises an open reading frame for 623 amino acids, 34 nucleotides of the 5'noncoding region, and 286 nucleotides of the \(3^{\prime}\)-noncoding region. To select for other hemocyanin suburits, two 17 -mer oligonucleotide mixtures, comesponding to the conserved regions in the copper A and copper B oxygen-binding site of chelicerate hemocyanins, were used as probes. Among the positive clones obtained, full-length cDNAs coding for subunit a were identified. The cDNA sequence determined from clone lambda \(K 1\) provides an open reading frame coding for 630 amino acids and includes the \(5^{\prime}\) - and 3'-noncoding regions. Northern blot analysis revealed single transcripts for subunits a and e, each 2.3 kilobases long. The cDNAs for subunits a and e were both found to lack any leader peptide sequence. This supports the idea that the mature protein accumulates in the cytoplasm and is released by cell rupture.

\section*{MeSH Terms:}
- Amino Acid Sequence

Back to the beginning

- Animal
- Base Sequence
o Binding Sites
- Cloning Molecular*
- Codon
- Copper/metabolism

Try a BLAST search

Copyright © Digital World Biology All rights reserved.

\section*{Hand-on BLAST Tutorial}
(1) Open the BLAST web application:
http://blast.ncbi.nIm.nih.gov/Blast.cgi
(2) In another tab, open this web page:
http://www.digitalworldbiology.com/BLAST/62000s equences.html
(3) Copy and paste the example sequence into the text box on the BLAST page

\section*{Questions?}

\section*{Questions?}```

