Introduction to Sequence Alignment

Chris Overall

Department of Bioinformatics and Genomics

University of North Carolina – Charlotte

Sequence alignment algorithms

An <u>algorithm</u> is a step-by-step procedure for solving a problem or accomplishing something

Examples

Finding prime numbers

Sorting numbers from lowest to highest

Calculating shortest delivery routes

A cooking recipe

A lab protocol

The term algorithm usually refers to solving a problem (often mathematical) using a computer

Bubble sort is a classic algorithm for sorting numbers

Sequence alignment algorithms are ways to arrange two or more "words" to find out how similar they are to each other

Let's look at a simple example using words from the English alphabet (size = 26)

Consider these four words: hat, bat, hatter, batter

How similar are bat and hat? Why?

Which word is more similar batter

Which pair of words is more similar to each other? Why?

One way to figure out how similar two words (sequences) are is to find the <u>longest common</u> <u>subsequence</u>

What's the algorithm to do this?

<u>Step 1</u>: Left-align the two sequences

<u>Step 2</u>: Score the alignment

<u>Step 3</u>: Shift the shorter alignment to the right by one character and repeat steps 1-2 until you reach the end of the longer sequence Here's a simple example of finding the longest common subsequence

We'll evaluate the subalignments using this scoring scheme

$$\begin{array}{c}
 \end{array} \begin{cases}
 Match = 1 point \\
 Mismatch = 0 point
 \end{array}$$

Now we can score the alignments between our four words: hat, hatter, bat, batter

<u>Alignment 1</u>
BAT
HAT
011
Score = 2
<u>Alignment 4</u>
<u>Alignment 4</u> BAT
<u>Alignment 4</u> BAT
<u>Alignment 4</u> BAT BATTER
Alignment 4 BAT BATTER 111000

Score = 3

Alignment 2 HAT ||| BATTER 011

Score = 2

Alignment 3 BAT | | | HATTER 011 Score = 2

Alignment 5 HAT | | | HATTER 111000 Score = 3 Alignment 6 BATTER | | | | | | HATTER 011111 Score = 5 Just when you thought you understood alignments, it gets a bit more complicated

Consider these three phrases

THE CATS IN THE HAT THE CAT IN THE HAT THE CAT IS A HAT

Which two phrases are the most similar?

What algorithm did you use to figure that out?

Will our previous alignment method work? Why or why not? The current algorithm can't finding LCSs with additional or missing characters (insertions and deletions)

We'll use the same scoring scheme as before

THECATINTHEHAT |||||||||||| THECATSINTHEHAT 111110000000

6 points

8 points

How can we fix the algorithm?

We can improve the algorithm by allowing gaps in the longest common subsequence

We'll use a modified scoring scheme

Match = 1 Mismatch = 0 Gap open = -1 Gap extension = 0

Better!

You might be asking yourselves, why do we need the gap penalty?

Which of these two alignments is better? Why?

THECATINTHEHAT

THECAT-INTHEHAT

Without a gap penalty, both alignments have the same score (14)

We need gap penalties to reflect the intuition that, all things being equal, ungapped alignments are better than gapped alignments Now we can score the alignments between our three phrases (sequences)

Alignment 1

THECAT-INTHEHAT |||||||||||| THECATSINTHEHAT 11111-111111

Score = 13

Alignment 2

THECAT---ISAHAT ||||||| THECATSINTHEHAT 111111-00000111 Score = 8

Alignment 3

THECATI--SAHAT ||||||| THECATINTHEHAT 111111-000111

Score = 9

Alternative alignments for 2

Alignment 2a

THECAT---ISAHAT ||||||| THECATSINTHEHAT 111111-00000111 Score = 8 <u>Alignment 2b</u>

THECAT-I--SAHAT |||||||||| THECATSINTHEHAT 111111-1-000111 Score = 8 **Biological sequence alignments**

<u>Biological sequence alignment algorithms</u> are ways of arranging two or more molecular sequences to identify regions of similarity between them

We align biological sequences in the same way as we did with English words and phrases

Example \rightarrow aligning two DNA sequences

ACTG vs. ACGTG

Match = 1, mismatch = 0, gap open = -1, gap extension = 0

Why are biological sequence alignments important?

The more similar two molecular sequences are, the more likely that the molecules are also similar in: Structure Function Evolutionary history

ACCTG
IIIII
ACGTG
Point mutation

Deletion?

We need computers and algorithms to find biological sequence alignments

Why not find all biological sequence alignments manually?

How many times can you find the <u>query sequence</u> ATCGGCCATTAC in the following <u>target sequence</u>? Is it there at all? If so, is it unique?

ATCACTGTAGTAGTAGCTGGAAAGAGAAATCTGTGACTCCAATTAGCCAGTTCCTGCAGACCTTGTGAGGACTAG AGGAAGAATGCTCCTGGCTGTTTTGTACTGCCTGCTGTGGAGTTTCCAGACCTCCGCTGGCCATTTCCCTAGAGC CTGTGTCTCCTCTAAGAACCTGATGGAGAAGGAATGCTGTCCACCGTGGAGCGGGGACAGGAGTCCCTGTGGCCA GCTTTCAGGCAGAGGTTCCTGTCAGAATATCCTTCTGTCCAATGCACCACTTGGGCCTCAATTTCCCTTCACAGG GGTGGATGACCGGGAGTCGTGGCCTTCCGTCTTTTATAATAGGACCTGCCAGTGCTCTGGCAACTTCATGGGATT CAACTGTGGAAACTGCAAGTTTGGCTTTTGGGGACCAAACTGCACAGAGAGACGACTCTTGGTGAGAAGAAACAT CTTCGATTTGAGTGCCCCAGAGAAGGACAAATTTTTTGCCTACCTCACTTTAGCAAAGCATACCATCAGCTCAGA CTATGTCATCCCCATAGGGACCATTGGCCAAATGAAAAATGGATCAACACCCATGTTTAACGACATCAATATTTA TGACCTCTTTGTCTGGATGCATTATTATGTGTCCAATGGATGCACTGCTTGGGGGGATCTGAAATCTGGAGAGACAT TGATTTTGCCCATGAAGCACCAGCTTTTCTGCCTTGGCCATAGACTCTTCTTGTTGCGGTGGGAACAAGAAATCCA GAAGCTGACAGGAGAAGAACTTCACTATTCCATATTGGGACTGGCGGGATGCAGAAAAGTGTGACATTTGCAC AGATGAGTACATGGG

<u>Basic Local Alignment Search Tool</u> (BLAST)

There are two types of sequence alignment: local and global

<u>Global alignment</u> \rightarrow find the single best alignment across the entire length of both sequences

<u>Local alignment</u> \rightarrow find one or more highly similar local regions between both sequences

Target databases are extremely large; millions of sequences

There are six types of BLAST, depending on the type of query and target sequences

Nucleotide BLAST (blastn)

Protein BLAST (blastp)

blastx

tblastn

tblastx

Search a nucleotide database using a nucleotide query

Search a protein database using a protein query

Search a protein database using a translated nucleotide query

Search a translated nucleotide database using a protein query

Search translated nucleotide database using a translated nucleotide query Many animals use the Earth's magnetic field for orientation and navigation esp. during migration

Some examples: sea turtles, swallows, monarch butterflies and fruit flies (Drosophila melanogaster)

Cryptochome is a key protein for geomagnetic sensing; it seems to be a quantum compass

Humans produce cryptochrome in the retina, but we don't seem to have this geomagnetic perception

Human cryptochrome, when it replaces fruit fly cryptochrome, works the same way

Researchers created cryptochrome-deficient flies, and they lost their ability to navigate

They then created transgenic flies with human cryptochrome instead of their normal version

The flies with the human cryptochrome could navigate just as well as the flies with the normal version

How similar are the protein sequences of human cryptochrome and fly cryptochrome?

We can use BLAST to find protein sequences in humans that are similar to fly cryptochrome

We get a list – and visual overview – of alignments of the query sequence to target sequences

We can view the alignment between query and target sequences for each match

- Query coverage = 94%
- Score = 374 bits (960)
- Expect = 4e-103
- Identities = 214/521 (41%)
- Positives = 298/521 (57%)
- Gaps = 41/521 (8%)

dbj B Length	AG640 =614	48.11 GM unnamed protein product [Homo sapiens]	
GENE (Over	ID: 1 10 Pu	408 CRY2 cryptochrome 2 (photolyase-like) [Homo sapiens] abMed links)	
Score Ident	= 3 ities	74 bits (960), Expect = 4e-103, Method: Compositional matrix a = 214/521 (41%), Positives = 298/521 (57%), Gaps = 41/521 (8%	adjust)
Query	5	GANVIWFRHGLRLHDNPALLAALADKDOGIALIP-VFIFDGESAGTKNVGYNRMRFLLDS ++V WFR GLRLHDNPALLAA+ +G + V+I D A + +VG NR RFLL S	63
Sbjct	43	ASSVHWFRKGLRLHDNPALLAAVRGARCVRCVYILDPWFAASSSVGINRWRFLLQS	98
Query	64	LQDIDDQLQAATDGRGRLLVFEGEPAYIFRRLHEQVRLHRICIEQDCEPIWNERDESIRS L+D+D L+ RL V G+PA +F RL ++ + R+ E D EP ERD +I	123
Sbjct	99	LEDLDTSLRKLNSRLFVVRGQPADVFPRLFKEWGVTRLTFEYDSEPFGKERDAAIMK	155
Query	124	LCRELNIDFVEKVSHTLWDPQLVIETNGGIPPLTYQMFLHTVQIIGLPPRPTADARLEDA + +E ++ V + SHTL+D +IE NG PPLTY+ F + + LP +P +	183
Sbjct	156	MAKEAGVEVV ENSHTLYDLDRIIELNGQKPPLTYKRFQAIISRMELPKKPVGLVTSQQM	215
Query	184	TFVELDPEFCRSLKLFEQLPTPEHFNVYGDNMGFLAKINWRGGETQALLLLD E CR+ ++ E H YG + +GF L W+GGET+AL LD	235
Sbjct	216	ESCRA-EIQENHDETYGVPSLEELGFPTEGLGPAVWQGGETEALARLD	262
Query	236	ERLKVEQHAFERGFYLPNQALPNIHDSPKSMSAHLRFGCLSVRRFYMSVHDLFKNVQLRA + L E+ A+ + P ++ SP +S +LRFGCLS B FY+ + DL+K V+ +	295
Sbjct	263	KHLERKAWVANYERPRMNANSLLASPTGLSPYLRFGCLSCRLFYYRLWDLYKKVKRNS	320
Query	296	CVRGVQMTGGAHITGQLIWREYFYTMSVNNPNYDRMEGNDICLSIPWAKPNENLLQSWRL T + GOL+WRE+FYT + NNP +DRMEGN IC+ IPW + N L W	355
Sbjct	321	TPPLSLFGQLLWREFFYTAATNNPRFDRMEGNPICIQIPWDR-NPEALAKWAE	372
Query	356	GQTGFPLIDGAMRQLLAEGWLHHTLRNTVATFLTRGGLWQSWEHGLQHFLKYLLDADWSV G+TGFP ID M OL EGW+HH R+ VA FLTRG LW SWE G++ F + LLDAD+SV	415
Sbjct	373	GKTGFPWIDAIMTQLRQEGWIHHLARHAVACFLTRGDLWVSWESGVRVFDELLLDADFSV	432
Query	416	CAGNWMWVSSSAFERLLDSSLVTCPVALAKRLDPDGTYIKQYVPELMNVPKEFVHEPWRM AG+WMW+S SAF + CPV +R DP G YI++Y+P+L P +++EPW	475
Sbjct	433	NAGSWMWLSCSAFFQQFFHCYCPVGFGRRTDPSGDYIRRYLPKLKAFPSRYIYEPWNA	490
Query	476	SAEQQEQYECLIGVHYPERIIDLSMAVKRNMLAMKSLRNSL 516	
Sbjct	491	PESIQKAAKCIIGVDYPRPIVNHAETSRLNIERMKQIYQQL 531	
>	<u> NP_0</u>	01120929.11 UGM cryptochrome-2 isoform 2 [Homo sapiens]	
being th	552		
GENE (Over	ID: 1 10 Pu	<u>408 CRY2</u> cryptochrome 2 (photolyase-like) [Homo sapiens]	

Query 53 GYNRMRFLLDSLQDIDDQLQAATDGRGRLLVFEGEPAYIFRRLHEQVRLHRICIEQDCEP 112 G FLL SL+D+D L+ RL V G+PA +F RL ++ R+ E D EP

We can also view a detailed record for each matching target sequence

cryptochrome-2 isoform 1 [Homo sapiens]

NCBI Reference Sequence: NP_066940

FASTA Graphics

<u>Go to:</u> 🖂

LOCUS DEFINITION ACCESSION	NP_066940 614 aa linear PRI 15-MAY-2011 cryptochrome-2 isoform 1 [Homo sapiens]. NP_066940
VERSION DBSOURCE KEYWORDS	NP_066940.2 GI:188536100 REFSEQ: accession <u>NM_021117.3</u>
SOURCE	Homo sapiens (human)
ORGANISM	Homo sapiens
	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
	Mammalia; Eutheria; Euarchontoglires; Primates; Haplorrhini;
DEFEDENCE	Catarrhini; Hominidae; Homo.
AUTHODS	I (residues I to 614) Dai H. Zhang I. Cao M. Song F. Zheng H. Zhu V. Wei O.
AUTHORS	Zhang W and Chen K
TITLE	The role of polymorphisms in circadian pathway genes in breast
	tumorigenesis
JOURNAL	Breast Cancer Res. Treat. 127 (2), 531-540 (2011)
PUBMED	<u>20978934</u>
REMARK	GeneRIF: Observational study of gene-disease association, gene-gene
	interaction, and gene-environment interaction. (HuGE Navigator)
REFERENCE	2 (residues 1 to 614)
AUTHORS	Balley, S.D., Xie, C., Do, K., Montpetit, A., Diaz, K., Monan, V.,
CONSDUM	DPEAM investigators
TITLE	Variation at the NFATC2 locus increases the risk of
	thiazolidinedione-induced edema in the Diabetes REduction
	Assessment with ramipril and rosiglitazone Medication (DREAM) study
JOURNAL	Diabetes Care 33 (10), 2250-2253 (2010)
PUBMED	<u>20628086</u>
REMARK	GeneRIF: Observational study of gene-disease association,
	gene-environment interaction, and pharmacogenomic / toxicogenomic.
DEFERRINGE	(HuGE Navigator)
NUTHODS	3 (residues 1 to 614)
AUTHORS	Hallmans G. Barroso I. and Franks P.W.
CONSRTM	MAGIC
TITLE	Evaluating the discriminative power of multi-trait genetic risk
	scores for type 2 diabetes in a northern Swedish population

BLAST Tutorial

http://www.digitalworldbiology.com/BLAST/slide1. html

BLAST	Basic Local Alignment Search Tool	My NCBI
Home Recent Res	sults Saved Strategies Help	[Sign In]
NCBI/BLAST/blastn suite: Reset cace	BLASTN programs search nucleotide databases using a nucleotide query. m Bookmark	1078
Enter Query S	Sequence	
Enter accession n	number, gi, or FASTA sequence 😡 Clear	Query subrange
GAATCGGAG ATTCCAAGA GAAGTTGTT GTTCCTGCA	GAGTGTTGGTCACTTAGCGCGGGGAACATCGAGCA ATGACCATTTTGCACGACAAGCAGGTTCAGGCACT TCGAGAAGCTCAGCGTAGCCGCCACTGGTGAGCCA AGACCAGATCGACGAAAGGCTTAGAAACATCACAA	From To
Or, upload file Job Title	Choose File no file selected	
Choose Searc	rch Set	
Database Entrez Query Optional	OHuman genomic + transcript OMouse genomic + transcript Other Nucleotide collection (nr/nt) Enter an Entrez query to limit search @	rs (nr etc.):
Program Sele	action	
Optimize for	 Highly similar sequences (megablast) More dissimilar sequences (discontiguous megablast) 	
	Choose a BLAST algorithm @ Choose a BLAST algorithm @ 1. Change the data	vities: abase to "Others"
BLAST	Search database Test/gpipe/9606/allcontig Show results in a new window 2. Select "nucleotic the pull-down r 3. Change the pro- optimize for mo	de collection" from menu. gram selection to pre dissimilar
	sequences.	

BLAST Home Recent Results	B Saved Strategies Help	asic Local Alignment Search Tool			
CBI/ BLAST/ blastn/ Formatting Re	sults - 9AH2CB3901N	[Formatting options]			
b Title: Nucleotide sequence	e (2110 letters)				
Request ID		9AH2CB3901N			
Status		Searching			
Submitted at		Wed Jul 11 16:57:48 2007			
Current time		Wed Jul 11 16:57:50 2007			
Time since submission					
This page will be automatically u	updated in 15 seconds	Either wait patiently, or set up an account and come back later to view			

BLAST	Recent Results	Saved Strategies	Basic Local Alignmen	nt Sea
	/ blacto/ Formattin	Posulte - 9AH5C86C01	5 [Deformat these De	eultel
NOBI BLAST	i biasuv Formatung	g Results - SANSCOOCU I	5 [Reformat these Re-	suitsj
Job Title: N	ucleotide seque	nce (2110 letters)		_
BLASTN	2.2.17 (Jun-24-200	7)		->
RID: 9AH	SC86C015 The	number of sequences	s in the database.	
Database: GSS,envi:	All GerBank+EN conmental sample 5,453,285 sec	BL+DDBJ+PDB sequence s or phase 0, 1 or 2 quences; 21,092,363,2	es (but no EST, STS, 2 HTGS sequences) 288 total letters	
If you ha please re Taxonomy	ive any problems efer to the <u>BLAS</u> reports	s or question The nur	mber of letters in the datab	oase.
	This i	s the length of your qu	uery sequence.	

A description of the sequence			udes score ortions of t ch the que	es from the subject ery.	The Max % match to a highest per	ident corre subject se centage o	esponds to quence wit f identical b	the h the bases.
Legend for lini	ks to other resources;	UniGene 🖪 GBO 🖸 Gene	Structu	re 🖾 Map View	POT			
Accession	Desc	ription	Max score	Total score	Query coverage	E value	Max ident	Links
x15893.1 A)547807.1 A)547807.1 A)547809.1 A)307908.1 A)307908.1 A)3277492.1 The Accessio	Tarantula mRNA for hemocy Nephila inaurata madagasca Nephila inaurata madagasca Nephila inaurata madagasca Cupiennius salei mRNA for h Eurypelma californicum mRN	anin subunit a riensis mRNA for hemocyani riensis mRNA for hemocyani emocyanin subunit 5' (hc-5' i A for hemocyanin subunit g A score that indicat	4057 662 202 185 175 171	4057 662 319 241 298 278	100% 79% 43% 14% 19% 22%	0.0 0.0 Se-48 7e-43 6e-40 Be-39	100% 73% 89% 83% 84% 79%	s to
to the GenB	ank record.	the sequences mat sequences, this is a twice the length of The Max score is lin	ch. For nu pproxima the matcl	icleotide tely equal to hing region. Ita that show	the fraction matches a	n of the qu subject se	ery sequer quence.	ice tha
		where the sequence	es match.		Se m	e the next ore about	t page to le the E value	arn

The E value is equal to the number of sequences that you would expect to find in a database composed entirely of random sequences.

Two important parameters that influence the E value are:

- The number of sequences in the database (database size).
- The length of the query sequence.

There is a greater chance of finding a match in a larger database. And the chance of finding a match for a short sequence is greater than the chance of finding a match to a longer sequence.

0.0

3.4

3.4

BLAST Tutorial → Slide 9

Legend for links to other resources: 🛄 UniGene 🔲 GEO 🤇 Gene 😫 Structure 🖾 Map Viewer							
Sequences produ	cing significant alignments: to sort columns)						
Accession	Description	Max score	Total score	Query coverage	📥 E value	Max ident	Links
X16893.1	Tarantula mRNA for hemocyanin subunit a	4057	4057	100%	0.0	100%	
A3547807.1	Nephila inaurata madagascariensis mRNA for hemocyanii	952	662	79%	0.0	73%	
AJ547811.1	Nephila inaurata madagascariensis mRNA for hemocyanii	202	319	43%	Se-48	89%	
A3547809.1	Nephila inaurata madagascariensis mRNA for hemocyanii	185	241	14%	7e-43	83%	
A3307908.1	Cupiennius salei mRNA for hemocyanin subunit 5' (hc-5' -	175	298	19%	6e-40	84%	
A3277492.1	Eurypelma californicum mRNA for hemocyanin subunit g	171	278	22%	8e-39	79%	
The Max score is linked to data that show where the sequences match.							

>emb X16893.1 ECHEMSUA Tarantula mRN	A for hemocyanin subunit a
Length = 2110 Score = 4183 bits (2110), Expect = Identities = 2110/2110 (100%) Strand - Plus / Plus	^{0.0} This is the score assigned by BLAST. In general, the higher the score, the better the match between the query sequence and the sequence found in
Query: 1 gastcggagagtgttggtcactta	gcgc the database.
In this example, 100% of the nucleotides in a 2110 base stretch of	gcgcgggggaacatcgagcaattccaagatgaccatt 60
the query sequence are identical to a	ctgaagttgttcgagaagctcagcgtagccgccact 120
sequence obtained from GenBank.	ctgaagttgttcgagaagctcagcgtagccgccact 120
Query: 121 ggtgagccagttcctgcagaccag	, patogaogaaaggottagaaacatoacaacottaggt 180
Sbjct: 121 ggtgagccagttcctgcagaccag	atcgacgaaaggettagaaacatcacaacettaggt 180
Query: 181 cccaatgaattcttctcttgcttt	tacccagaccacttggaacaagccaagagagtctac 240
Sbjct: 181 cccaatgaattcttctcttgcttt	tacccagaccacttggaacaagccaagagagtctac 240;
Query: 241 gaagttttctgccatgctgctaac	<pre>>ttcgatgacttcgtcagcttggcaaagcaagcgcga 300</pre>
Sbjct: 241 gaagttttctgccatgctgctaac	ttcgatgacttcgtcagcttggcaaagcaagcgcga 300;
Query: 301 agcttcatgaactccactctgttt	gcottototgcagaagttgccotcottcatogggaa 360
Sbjct: 301 agetteatgaacteeactetgttt	geettetetgeagaagttgeeeteetteategggaa 360
Query: 361 gactgccgaggcgtcatcgtacct	cccgtccaagaagttttcgctgacagattcatcccc 420
Sbjct: 361 gactgeogaggegteategtaeet	cccgtccaagaagttttcgctgacagattcatcccc 420

Legend for link	s to other resources: 🛄 UniGene 🔲 GEO 🖸 Gene	Structu	re 🖾 Map Vie	WOE			
Sequences produ (Click headers	cing significant alignments: to sort columns)						
Accession	Description	Max score	Total score	Query coverage	E value	Max ident	Links
X16893.1	Tarantula mRNA for hemocyanin subunit a	4057	4057	100%	0.0	100%	
A35 807.1	Nephila inaurata madagascariensis mRNA for hemocyani	662	662	79%	0.0	73%	
21.1	Nephila inaurata madagascariensis mRNA for hemocyani	202	319	43%	5e-48	89%	
AJ 809.1	Nephila inaurata madagascariensis mRNA for hemocyani	185	241	14%	7e-43	83%	
308.1	Cupiennius salei mRNA for hemocyanin subunit 5' (hc-5' -	175	298	19%	6e-40	84%	
A3 192.1	Eurypelma californicum mRNA for hemocyanin subunit g	171	278	22%	8e-39	79%	

Look at the GenBank record.

NCBI
PubMed Nucleotide Protein Genome Structure
Search Nucleotide 🔶 for 🛛 🖓 🖓 Go 🖉 Clear
Limits Province/Index History Clinke and
Accession number
Display GenBank Save Text Add to Clipboard
1 X 16893 Tarantula mRNA for [oj:9266]
LOCUS ECHEMSUA 2110 bp mRNA INV 12-SEP-1993
DEFINITION Tarantula mRNA for ĥemocyanin subunit a.
ACCESSION X16893
VERSION X16893.1 GI:9266 KEVMODES beneavenin : beneavenin cubunit a
SOURCE Aphonopelma sp.
ORGANISM Aphonopelma sp.
Eukaryota; Metazoa; Arthropoda; Chelicerata; Arachnida; Araneae;
Mygalomorphae; Theraphosidae; Aphonopelma.
AITTHORS Voit R The source of the sequence
TITLE Direct Submission
JOURNAL Submitted (12-OCT-1989) Voit R., Zoologisches Institut,
Universitaet Muenchen, Luisenstrasse 14, D-8000 Muenchen 2, FRG
REFERENCE 2 (bases 1 to 2110) MUTHOPS Teit P and Foldmains Fuchs C
TITLE Arthropod hemocyaning. Molecular cloning and sequencing of cDNAs
encoding the tarantula hemocyanin subunits a and e
JOURNAL J. Biol. Chepyl <u>265 (</u> 32), 19447-19452 (1990)
MEDLINE 91060544
CONTERT Data kindly reviewed (26-MAR-1990) by Yolt K. FEATURES Location/Onalifiers
source 1210
/organism="Aphonopelma_sp."
/db_xref="taxon:29932"
/clone="lambda-Kl" /clone_lib="lembda_dt10"
CDS 521947
/note="hemocyanin subunit a (AA 1-631)" The amine and accurace for the
/codon_start=1
CDS is short for "coding in_id="CAA34771.1" predicted protein
sequence". The region of DNA ef="SWISS-PROT: P14750"
between nucleotides 52 and lation="MTILHDKQVQALKLFEKLSVAATGEPVPADQIDERLRNITTLGP
1947 is predicted to code for the
homocyanin subunit a protoin
nemocyanin subunit a protein.
Copyright © Digital World Biology All rights reserved.

Pub	National Library of Medicine
Nucleotide Protein Genoma	e Structure Pop Set
for	Go Clear
u ' □ Limita Braviaw/Inday History '	
	Cipotald
Display Citation 🗢 Save Text	Order Add to Clipboard
1 : J Biol Chem 1990 Nov 15;265(32):19447-52	Related Articles, Books, Protein, Nucleotide
Arthropod hemocyanins. Molecular cloning hemocyanin subunits a and e.	and sequencing of cDNAs encoding the tarantula
Voit R, Feldmaier-Fuchs G	
Zoologisches Institut, Universitat Munchen, Federal Rep	ublic of Germany.
cDNA clones comprising the entire coding region of two the tarantula, Eurypelma californicum, were isolated from heart tissue of single spiders. Hybridization was first car and several positive clones were isolated, including one c cDNA comprises an open reading frame for 623 amino a nucleotides of the 3'-noncoding region. To select for oth corresponding to the conserved regions in the copper A i were used as probes. Among the positive clones obtained cDNA sequence determined from clone lambda K 1 prov includes the 5'- and 3'-noncoding regions. Northern blot 2.3 kilobases long. The cDNAs for subunits a and e wer supports the idea that the mature protein accumulates in '	o out of the seven heterogeneous subunits of hemocyanin from a four cDNA libraries constructed from total RNA from the ried out using a tarantula hemocyanin subunit e partial cDNA, ontaining a 2.2-kilobase full-length cDNA (lambda M1). The acids, 34 nucleotides of the 5'noncoding region, and 286 er hemocyanin subunits, two 17-mer oligonucleotide mixtures, and copper B oxygen-binding site of chelicerate hemocyanins, d, full-length cDNAs coding for subunit a were identified. The rides an open reading frame coding for 630 amino acids and analysis revealed single transcripts for subunits a and e, each e both found to lack any leader peptide sequence. This the cytoplasm and is released by cell rupture.
MeSH Terms: o Amino Acid Sequence o Animal	Back to the beginning
o Base Sequence o Binding Sites o Cloning, Molecular* o Codon	<u>Try a BLAST search</u>

Hand-on BLAST Tutorial

(1) Open the BLAST web application:

http://blast.ncbi.nlm.nih.gov/Blast.cgi

(2) In another tab, open this web page:

http://www.digitalworldbiology.com/BLAST/62000s equences.html

(3) Copy and paste the example sequence into the text box on the BLAST page

Questions?

Questions?