Aqueous solutions

What is a Solution?

A mixture that looks uniform

- Solutes (usually measured in g)
- Solvents (usually measured in mL)
- Mixed together until solute dissolves in solvent

Solutions are mixture

- Mixtures of 2 substances
\square Solutions - uniform mixtures
\square Special terms
- See Discovery Education - Biotech compounds/labs
\square As you watch the video, list the terms that you hear related to solutions

Solution Terms

- Solute
- Solvent
- Dilute
- Concentrated
- Aqueous solution

Remember $1 \mathrm{~mL}=1000 \mu \mathrm{~L}$
$1 \mathrm{~mL}=10-3 \mathrm{~L}$
$1 \mu \mathrm{~L}=10-{ }^{6} \mathrm{~L}$

Concentration $=\quad$ solute
 solution volume

$8 \mathrm{mg} / \mathrm{mL}$

$4 \mathrm{mg} / \mathrm{mL}$

$2 \mathrm{mg} / \mathrm{mL}$

- Described by the portion of solute to solution volume usually in one of 3 ways:
- mass/volume
-5 g/L protease
- $175 \mathrm{mg} / \mathrm{mL}$ rennin
- $25 \mu \mathrm{~g} / \mu \mathrm{L}$ chymosin
- \% mass/volume
- 2% glucose solution
- 10\% sodium hydroxide solution
- molarity
- 1 M NaOH
- 50 mM TRIS
- $5 \mu \mathrm{M} \mathrm{CaCl}_{2}$

Solvent Measurement

Volume of solvent is usually measured using one of 3 instruments. For each, ask:

- What is the total volume that can be measured?
- What is the value of each type of graduation?

graduated cylinder

pipet

Dilution using Stock Solutions

- Stock solutions -
\square Usually a concentrated solution
- Dilute to the needed amount

Dilution Factor

- Original Solution to Diluted Solution 1: $10=1$ to 10 dilution
- Combine 1 volume of original solution +9 volumes of the solvent
- $1+9=10$ dilution factor

Dilution Factor Example

- Prepare 400 ml of a disinfectant that requires 1:8 dilution from a concentrated stock solution with water.
- Divide the volume needed by the dilution factor $(400 \mathrm{ml} / 8=50 \mathrm{ml})$ to determine the unit volume.
- The dilution is then done as 50 ml concentrated disinfectant +350 ml water.
http://abacus.bates.edu/~ganderso/biology/resources/dilutions.html

Serial Dilution

Serial Dilution Example

Final Dilution
\rightleftarrows

Final dilution factor: $2 \times 2 \times 2 \times 2 \times 2 \times 2=$?

Serial Dilution Example 2:

- 3 steps with each step at 1: 10 dilution

1 mL of the original solution

Add 9 mL of water to make 10 mL of the diluted solution

Dilutions

Available Stock Solution and Needed Solution

$$
\mathrm{C}_{1} \mathrm{~V}_{1}=\mathrm{C}_{2} \mathrm{~V}_{2}
$$

We need a certain volume and concentration for the lab work.

Therefore, we must calculate the volume of the stock solution to be poured out.

Calculate $\mathrm{V}_{1}=\frac{\mathrm{C}_{2} \mathrm{~V}_{2}}{\mathrm{C}_{1}}$

