Aqueous solutions

What is a Solution?

A mixture that looks uniform

- Solutes (usually measured in g)
- Solvents (usually measured in mL)
- Mixed together until solute dissolves in solvent

Solutions are mixture

- Mixtures of 2 substances
 Solutions uniform mixtures
 - Special terms
 - See Discovery Education Biotech compounds/labs
 - As you watch the video, list the terms that you hear related to solutions

Solution Terms

- Solute
- Solvent
- Dilute
- Concentrated
- Aqueous solution

Remember $1mL = 1000 \mu L$

 $1mL = 10^{-3}L$ $1\mu L = 10^{-6}L$

- Described by the portion of solute to solution volume usually in one of 3 ways:
 - mass/volume
- •5 g/L protease
- •175 mg/mL rennin •25 µg/µL chymosin
- % mass/volume
- 2% glucose solution
 - 10% sodium hydroxide solution

- molarity
- 1*M* NaOH 50 mM TRIS
- $5 \mu M \text{ CaCl}_2$

4 mg/mL

2 mg/mL

Solvent Measurement

Volume of solvent is usually measured using one of 3 instruments. For each, ask:

- What is the total volume that can be measured?
- What is the value of each type of graduation?

Dilution using Stock Solutions

Stock solutions –

Usually a concentrated solution

Dilute to the needed amount

Dilution Factor

Original Solution to Diluted Solution 1: 10 = 1 to 10 dilution

- Combine 1 volume of original solution + 9 volumes of the solvent
- 1 + 9 = 10 dilution factor

Dilution Factor Example

- Prepare 400 ml of a disinfectant that requires 1:8 dilution from a concentrated stock solution with water.
- Divide the volume needed by the dilution factor (400 ml / 8 = 50 ml) to determine the unit volume.
- The dilution is then done as 50 ml concentrated disinfectant + 350 ml water.

http://abacus.bates.edu/~ganderso/biology/resources/dilutions.html

Serial Dilution

Final dilution factor (DF) = DF1 * DF2 * DF3

Serial Dilution Example

1:2 1:2 1:2 1:2 1:2 1:2

Final dilution factor: $2 \times 2 \times 2 \times 2 \times 2 \times 2 = ?$

Serial Dilution Example 2:

3 steps with each step at 1: 10 dilution

Dilutions

Available Stock Solution and Needed Solution $C_1V_1 = C_2V_2$

We need a certain volume and concentration for the lab work.

Therefore, we must calculate the volume of the stock solution to be poured out.

Calculate
$$V_1 = C_2 V_2$$

C₁