Shweta Gupte

Address: 9515 University Terrace Drive Apt J, Charlotte, NC 28262 | Email: shwgupte@gmail.com | Ph: (980)-253-0755

Profile

- One year experience of working in embedded system design, microcontroller programming and low level interface
- Academic experience in embedded systems, RTOS, motion planning, computer architecture and computer vision
- Experience of working in startups, in research and development and as part of a core team

Skills

Programming: C, Embedded C, C++, JAVA, Python, Assembly language, MATLAB

Microcontrollers: Renesas RX62, Renesas QSK, Arduino, x86, Atmel 8051, PIC, dsPIC

Software: IDEs - MATLAB, Eclipse, Keil, Xcode(iOS Developer), MPLAB, IAR workbench etc.;

PCB/Circuit design - Proteus, ExpressPCB, Multisim, CadSoft Eagle;

Robot Operating System (ROS/Stage); development on Linux

Education

Master of Science - Electrical Engineering

University of North Carolina at Charlotte, North Carolina GPA: 3.5/4.0

Bachelor of Engineering - Electronics & Telecommunications May 2009

University of Pune, India Grade: First Class

Relevant Courses

Advanced Microprocessors, Advanced Embedded Systems, Real time Operating Systems

Computer Architecture, Research Tools and Techniques, Intelligent Robotics

Computer Vision, Reconfigurable Computing, Electronic Product Design

Work Experience

Fennec Fox Technologies

Senior Engineer - R & D

Nov 2009 to Dec 2010

May 2013

- Designed an embedded system for motor control, odometry calculations, sensor interface and serial communication using dsPIC microcontrollers
- Programmed and tested individual modules like motor control, sensor circuit and power distribution system using embedded C, assembly language and MATLAB
- Conducted workshops and mentored undergraduate engineering students for projects in microcontroller programming, robotics and embedded systems

Coroware Technologies

Intern

Nov 2012 to April 2013

- Designed a wireless sensor network using Zigbee protocol for accurate localization using IAR embedded workbench
- Designed the interface of a customized print head assembly to the company's standard robot to add functionality of floor marking
- Performed power calculations, electrical schematics and electronic assembly

Publications

■ Gupte, S.; Mohandas, P.I.T.; Conrad, J.M.; "A Survey of Quadrotor Unmanned Aerial Vehicles", in proceedings of IEEE Southeastcon, pp 1 – 6, March 2012

Relevant Projects

Eskorta Robot - Control Design

Eskorta is a mobile robotic platform designed service industries. It features include autonomous indoor mapping, path planning and dynamic obstacle avoidance.

- Designed the layout and signal conditioning for controller board and interfaced front end sensors
- Programmed controller board for motor control, odometry and serial interface with ROS
- Performed power calculations and designed power distribution system

Remote System Monitoring and Data logging for Autonomous Vehicle

- Designed an embedded system that attaches to a vehicle's control system to sense causes of system failure such as IC overheating, irregular voltage fluctuations, sparking and faults in sealing
- Used RS-232 to Bluetooth protocol conversion and configured a wireless Bluetooth link with a remote computer
- Developed a remote data logging system and real-time interface for underwater applications

Controller for Obstacle Avoidance and Stability Maintenance of a Quadrotor

- Designed a system to maintain stable flight of a quadcopter (4 rotor aerial vehicle) using IMU data and online obstacle avoidance
- Interfaced IMU sensor with Arduino Mega microcontroller board for stability and IR sensor for obstacle avoidance
- Developed code for stable landing of quadrotor using height and orientation calculation

Complete Coverage Path Planner for Autonomous Robots

- Wrote an efficient algorithm to perform complete coverage path planning of a mobile robot using C
- Simulated the robot and environment using ROS/Stage on Linux
- Tested the algorithm on iRobot Create in a indoor environment with obstacle avoidance and analyzed results for area covered and efficiency of the algorithm

Visual Odometry using Stereo Vision

- Designed a stereo vision system with MATLAB using two webcams
- Implemented SIFT filtering for feature detection in a corridor
- Developed code for 3D visual odometry to aid an autonomous vehicle in determining its own position using SIFT filtering

Path Planner using Adaptive Evolutionary Planner/Navigator

- Implemented a path planning algorithm based on Adaptive Evolutionary Planner/Navigator using C++ for an autonomous vehicle
- Tested and simulated using ROS (Robot Operating System) and Stage on Linux