
Designing and Implementing an Embedded
Linux for Limited Resource Devices

Hannu Lyytinen, Keijo Haataja, Pekka Toivanen
Department of Computer Science

University of Kuopio
P.O.Box 1627, FIN-70211 Kuopio, Finland

E-mail: hannu.lyytinen@cs.uku.fi, {keijo.haataja, pekka.toivanen}@uku.fi

Abstract—In this paper, the implementation details of an
embedded Linux for limited resource devices are provided. Due
to lack of an actual hardware to test the implemented embedded
Linux, a simulator for development work had to be built. Thus,
the implementation details of the simulator as well as an analysis
of simulation results are described. Moreover, some new ideas
that will be used in our future research work are proposed.

Index Terms—Embedded Linux, Embedded System, Limited
Resource Devices, Simulator, uClinux.

I. INTRODUCTION

At first electronics found its way to mechanical devices.
Many mechanically performed functions were easier to im-
plement using their electronic counterparts. On the other
hand, electronic circuits inherited also the disadvantages of
mechanical devices: it was not straightforward to rewire the
device in case a design flaw manifested itself. Moreover, it
was difficult to add new features for devices.

The history of embedded systems spawned in 1960s from an
idea to control the logics using a program stored in a memory.
For example, telephone switchboard operators were replaced
with the hardware that was controlled by a stored program [1].
Later on, when the history of microprocessors began, programs
were the vital part of devices.

Embedded systems are widely used all over the world.
For instance, they help pilots to keep airplanes in the air
[2]. Moreover, the functions of entertainment electronics are
controlled by microprocessors [3]. These examples are easy to
perceive as embedded systems. On the other hand, Personal
Digital Assistants (PDAs) obscure the thin line between em-
bedded systems and traditional computers. Therefore, it is very
difficult to give an exact definition of an embedded system.

According to Williams [1], embedded systems can be dif-
ferentiated from traditional computers based on their purpose
of use. On the other hand, embedded systems perform certain
narrow tasks, while typical PCs are general purpose devices.
Embedded systems can be seen as a way to build devices
more easily. Moreover, embedded systems work in terms of
their environment, while PCs are guiding the actions of their
users. [2]

There does not exist any comprehensive or clear literature,
i.e. books, web pages or research articles, on how to build your
own embedded Linux operating system for limited resource
devices. Therefore, the purpose of this paper is to introduce

and clarify the designing process and implementation details
of such a system.

The results of this paper: In this paper, the implementation
details of both an embedded Linux for limited resource devices
and a simulator for testing the operating system are provided.
A simulation of the implemented operating system is also
described as well as an analysis of the simulation results.
Moreover, some new ideas that will be used in our future
research work are proposed.

The rest of the paper is organized as follows. Section II
explains the basics of embedded Linux operating systems
and their software development processes. The implementation
details of both the embedded Linux and the simulator are pro-
vided in Sect. III. A simulation on the implemented operating
system as well as the analysis of the simulation results are
provided in Sect. IV. Finally, Sect. V proposes some new ideas
that will be used in our future research work and concludes
the paper.

II. AN OVERVIEW OF EMBEDDED SYSTEMS

Embedded systems can be thought of as special purpose
computers. Typically they offer limited functionality compared
to their counterpart, the general purpose desktop computer.
Additionally, their environment imposes several requirements
for the hardware. Some of these requirements are cost ef-
fectiveness and robustness against extreme temperatures, hu-
midity, vibration and sometimes even radiation. On the other
hand, the device itself shall not interfere with its environment,
so electromagnetic compatibility must be addressed as well.
Moreover, the embedded device might be required to run on
battery power only. [2]

The ordinary desktop computers utilize operating systems
to abstract the underlying hardware under standard interfaces.
On embedded systems, the application software can comprise
of a simple assembly language program. However, as the size
and features of the embedded software grows, an operating
system is often used to reduce the programmer’s workload.

Many special purpose embedded operating systems exist.
They try to address the difficulties presented by the embedded
devices, namely limited processor and memory resources as
well as the need of robustness and real-time applications.
Sometimes the hardware lacks vital resources in which the
lack of Memory Management Unit (MMU) is perhaps the most

2009 Eighth International Conference on Networks

978-0-7695-3552-4/09 $25.00 © 2009 IEEE

DOI 10.1109/ICN.2009.27

18

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on January 14, 2010 at 23:36 from IEEE Xplore. Restrictions apply.

important. The common desktop operating systems utilize
MMU in order to implement virtual memory.

The application development on these special purpose em-
bedded operating systems is hindered by unfamiliar develop-
ment conventions. These include application programming in-
terfaces and development toolchain. On the other hand, general
purpose operating systems lend themselves to easy application
development due to well established development framework.
Therefore, it is desirable to use as general purpose operating
system as possible. This requires addressing of the problems
introduced by the aforementioned special requirements for the
embedded usage.

III. DESIGNING AND IMPLEMENTING AN EMBEDDED
LINUX AND A SIMULATOR

After a thorough investigation, we decided that our em-
bedded Linux will use Hitachi (Renesas) H8S/2239 micro-
controller [4]. It contains 384 kB of Flash ROM, 32 kB of
RAM and four Serial Communication Interface (SCI) ports.
Due to lack of an actual hardware to test the implemented
embedded Linux, a GNU Debugger (GDB) [5] based simulator
for development work had to be built. Since the memory
capacity of H8S/2239 microprocessor is clearly too low for
an embedded Linux, we enlarged the memory capacity of our
simulated hardware: ROM was extended up to 2 MB and RAM
up to 8 MB.

Since the H8S/2239 microcontroller has no MMU, uClinux
[6] was the only possible choice for our embedded Linux.
Yoshinori Sato [7] has ported Linux into H8/300 architecture
[8] and community members have contributed support for
individual microcontroller models and platforms. However,
there is no support for H8S/2239 microcontroller. Technical
details of Sato’s work can be found in [7].

In what follows, we describe the implementation details of
our embedded Linux for limited resource devices.

We used GNU Compiler Collection (GCC) version 4.3.0
[9]. Moreover, we used GNU binutils [10] and uClibc library
[11] which both were dated as 20.6.2004. GNU binutils was
downloaded using Concurrent Versions System (CVS) [12],
while uClibc was downloaded using Subversion system [13].

The H8S port of uClinux does not currently support Exe-
cutable and Linking Format (ELF) binaries. An alternative to
ELF is the FLAT file format, which is a lightweight object file
format. GCC and binutils do not support this format directly,
since they produce object files in ELF format by default.
Therefore, we had to add elf2flt program [14] into toolchain
by replacing the linker with a wrapper, which processes the
resulting ELF executable with elf2flt. We used elf2flt program
that was dated as 20.6.2004. It can be downloaded from the
CVS server of uClinux project [14].

BusyBox version 1.10.2 [15] was used to provide de facto
UNIX tools. ROMfs version 0.52 [16] was used as a file
system that also requires genromfs program [16]. We built
our simulator on the top of the GDB debugger version 6.1.1
[17]. Linux kernel version 2.6.16 [18] with the corresponding
uClinux project patch file [19] was used in our embedded
Linux. Moreover, few other patch files and a control file for

the linker was required. We wrote a Bourne shell script that
can be used to download all required aforementioned files. The
script among the additional patch files can be downloaded at
[20].

Minor patches to the crosscompiling toolchain and the target
software are needed. The patches are publicly downloadable at
the project’s website [20]. In the following breakdown of the
patches we refer to the files at the website, unless otherwise
stated. The H8 port of GCC worked quite well, but certain
structures of the source code triggered an internal compiler
error. Earlier versions of GCC also have the same bug, but
instead of crashing they will produce erroneous object code.
The patch file gcc-4.3.0.patch contains a workaround for the
bug.

The Linux kernel contains general framework for the
H8/300 architecture, including the newer H8S. Several micro-
controllers in this architecture are supported quite extensively.
Unfortunately, our H8S/2239 is not among them. The closest
fit is H8S/2678, which strictly speaking is of the H8SX
architecture. The biggest difference between the architectures
are few additional instructions, but the Linux kernel does not
make use of these extended instructions. Nor does the GCC
compiler unless explicitly instructed to do so.

The majority of no-MMU code has been merged into the
mainstream Linux kernel branch already, but we still need
the uClinux patch. The vanilla Linux kernel has a bug in the
MTD device handling code, making the ROM chip mapping
impossible. This is serious, since our root filesystem will reside
on a ROM chip. The bug is fixed in the uClinux patch file
linux-2.6.16-uc0.patch.gz [19].

The only modification needed outside the H8-specific tree is
implementing the SCI port handling code in drivers/serial/sh-
sci.c and drivers/serial/sh-sci.h. Based on the H8S/2678-
specific code, the new code handles the H8S/2239, in which
the memorymapped I/O registers differ in width and location.
Additionally, the associated IRQ numbering is different. The
rest of this minor port consist of defining the memory mapped
I/O registers in a processor-specific header file, recognizing
and fixing different I/O register widths and fixing the hard-
coded timer IRQ number. These changes are incorporated in
the patch file linux-2.6.16-h8s2239.patch.

As mentioned before, the root file system will reside on a
ROM chip. Upon creating the filesystem image with genromfs
[16], the raw binary object is converted into a linkable ELF
object file using the toolchain linker. A special linker script
for this purpose is contained in the file ldscript.

The target userland code does not compile and link cleanly
on this target. The patch file uclibc.patch fixes two compile
time errors in uClibc, whereas BusyBox linking issues are fixed
in the patch busybox-1.10.2.patch. The BusyBox configuration
files are supplied in the file busybox-etc.tar. The whole system
is booted on a simulated hardware. The CPU simulation in the
GDB debugger is quite slow due to slow instruction decod-
ing algorithm. The patch in the file gdb-6.1.1-speedup.patch
contains a faster algorithm, which enhances simulation per-
formance dramatically. The I/O simulation, namely integrated
timers and SCI ports, is based on Yoshinori Sato’s early work
on the H8 hardware simulation. Along with the possibility of

19

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on January 14, 2010 at 23:36 from IEEE Xplore. Restrictions apply.

multiple SCI ports, a few fixes were required in order to get
simulation working. The I/O patch is included in the file gdb-
6.1.1-io.patch.

Compiling the toolchain is quite straightforward. Most
software packages utilize GNU Autoconf [21] suite to extract
system dependent compile time requirements. Therefore, the
target machine can be specified to be different than the host
machine simply by specifying −−target=h8300-elf option to
configure. Another option worth mentioning is the installation
prefix for the toolchain, which in this case is −−prefix=/h8s.
However, the first step is to declare a few environment
variables, as illustrated in Fig. 1.

Fig. 1: Defined environment variables.

When compiling the binutils suite, it is essential to explicitly
enable the Binary File Descriptor (BFD) library build. It is
required later when compiling elf2flt. The steps required to
compile and install binutils are illustrated in Fig. 2.

Fig. 2: Compiling the GNU binutils software package.

A full featured C compiler installation contains target sys-
tem libraries and headers. These are not built yet because
we will need a working C compiler in order to do so. To
circumvent this dilemma, a temporary version of the compiler
is built as illustrated in Fig. 3.

The option −−with-build-sysroot in Fig. 3 instructs the
GCC compile process that the headers and the libraries are
supposed to reside there, but they are not used in any way. This
is in contrast with the semantics of the −−with-sysroot option
used later, which enables the build process to utilize those
headers and libraries when building a full featured compiler.

Fig. 3: Compiling a temporary version of GCC.

The rest of the options in Fig. 3 merely disable those features,
which are not supported on the H8 architecture.

The C library needs header files that are created during the
kernel configuration. The kernel is usually configured inter-
actively using the make menuconfig command. An alternative
way is to use the existing configuration file kernelconfig as
Fig. 4 illustrates.

Fig. 4: An example of kernel configuration.

Figure 4 also illustrates the applying of patches. The com-
mand make prepare-all creates the required header files for
the C library.

Like the kernel, the uClibc library could be configured
interactively, but the existing configuration file uclibcconfig
can be used analogously when compiling the C library as Fig.
5 illustrates. After that, the C library is patched, compiled and
installed.

Fig. 5: An example of the C library compilation.

After the C library has been compiled, the full featured
version of GCC must be compiled as Fig. 6 illustrates.
Moreover, a symbolic link is required in order to fix the lack
of limits.h header file.

Fig. 6: The installation of the final version of GCC.

When the final version of GCC has been successfully
installed, it is time to install elf2flt program (see Fig. 7).

Now everything is ready to compile and install the first
application program, BusyBox, into our Embedded Linux as
Fig. 8 illustrates.

BusyBox installation is now located at install directory that
includes the contents of embedded device’s root file system.
Initialization files of the system, such as inittab, can be added
into file system by extracting busybox-etc.tar file. Moreover,
we had to create two device nodes, tty and console, as Fig. 9
illustrates.

20

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on January 14, 2010 at 23:36 from IEEE Xplore. Restrictions apply.

Fig. 7: The installation of elf2flt program.

Fig. 8: The installation of BusyBox program.

At this point, the software of our embedded Linux is ready
and it is time to compile the kernel. The root file system will
be included into kernel as an object file. First, we installed
genromfs program as Fig. 10 illustrates. Second, we created
an image file of BusyBox install directory by using genromfs
program. Third, we converted the image file into ELF format
by using the linker. It is worth noting that the controlling file
of the linker, ldscript, is also required. Finally, we compiled
the kernel.

When the kernel has been successfully compiled, vmlinux
file will be located at the root of the directory tree. Normally,
when developing on the actual hardware, vmlinux file is
converted to a raw binary format more suited to burning
to ROM. This can be done by using the command make
vmlinux.bin. However, due to the use of simulator, we skipped
this part.

The final phase before the actual simulation was the instal-

Fig. 9: Commands for creating device nodes tty and console.

Fig. 10: Commands for compiling the kernel.

Fig. 11: Commands for installing the simulator.

lation of the simulator (see Fig. 11). When the simulator has
been successfully installed, our embedded Linux for limited
resource devices is ready.

IV. SIMULATION

The simulated SCI ports are represented by pseudo terminal
(PTY) slave nodes on the host machine. A terminal program,
such as minicom, is connected to the terminal node. First,
we started the simulator and defined the hardware to be
simulated as Fig. 12 illustrates. Second, the debugger printed
out corresponding device nodes of the simulated serial ports.
Finally, we started the terminal program by using the command
minicom -o -p /dev/pts/4.

Fig. 12: Commands for starting the simulator and defining the
hardware to be simulated.

At this point, programs can be loaded into the memory of
the simulator by using the command load. After loading a
program, the simulator prints out sizes of the loaded segments
and their corresponding positions in memory as Fig. 13
illustrates.

As Fig. 13 depicts, Linux kernel requires 859 kB of ROM,
kernel-related data 41 kB of ROM, and the file system 435 kB
of ROM. Therefore, the total amount of ROM required is 1335
kB. When the program has been loaded into memory, it can
be executed by using the command run as Fig. 14 illustrates.

Fig. 13: An example output of the simulator.

21

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on January 14, 2010 at 23:36 from IEEE Xplore. Restrictions apply.

Fig. 14: Our embedded Linux in action.

22

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on January 14, 2010 at 23:36 from IEEE Xplore. Restrictions apply.

As Fig. 14 depicts, the command free shows that approx-
imately 4 MB of RAM has been used and another 4 MB of
RAM is still available. Moreover, as the command ps shows,
there are four user processes running on our embedded Linux
consuming over 2 MB of RAM. Therefore, the embedded
Linux kernel requires only 2 MB of RAM to work. In practice,
as little as 4 MB of RAM is enough for our embedded Linux
with BusyBox in case of a very limited resource device that
still needs Linux and its versatile features.

V. CONCLUSIONS AND FUTURE WORK

The designing process and implementation details of our
embedded Linux for limited resource devices were provided.
Due to lack of an actual hardware to test the implemented
embedded Linux, a simulator for development work had to be
implemented. Thus, a designing process and implementation
details of the simulator as well as the brief analysis of the
simulation results were described.

The simulation proved that our embedded Linux kernel
requires only 2 MB of RAM to work. Thus, as little as 4 MB
of RAM is enough for our embedded Linux with BusyBox in
case of a limited resource device that still needs Linux and its
versatile features.

In our future research work, we will investigate the current
state of various architectures in order to find out the supported
features of both the kernel and toolchains. In addition, we
will investigate what are the biggest obstacles in embedded
Linux usage in order to determine the worldwide commercial
potential for embedded Linux products. Moreover, we will
further investigate what is the minimum size of an embedded
Linux that still is versatile and functional as presented in
this paper. Shared libraries and directly ROM-executable code
(XIP, Execute In Place) are definitely worth investigation.

We feel that embedded Linux operating systems are suitable
for such devices, where simple microcontroller-based solutions
are inadequate and PC-based solutions would be too heavy
or cumbersome. Moreover, an embedded Linux is a very
neat solution in prototypes, where new ideas are to be tested
rapidly.

REFERENCES

[1] J. Williams, ”Embedding Linux in a Commercial Product: A Look at
Embedded Systems and What It Takes to Build One”, Linux Journal,
vol. 1999, no. 66, Oct. 1999.

[2] A.S. Berger, Embedded Systems Design – An Introduction to Processes,
Tools and Techniques, CMP Books, 2001.

[3] R.U. Rehman, C. Paul, The Linux Development Platform: Configuring,
Using, and Maintaining a Complete Programming Environment, Prentice
Hall, 2003.

[4] Renesas – H8S/2258, H8S/2239, H8S/2238, H8S/2237, H8S/2227
Groups Hardware Manual. Available: http://documentation.renesas.com/
eng/products/mpumcu/rej09b0054 h8s2239.pdf. [Accessed Nov. 25,
2008].

[5] Free Software Foundation, GDB: The GNU Project Debugger. Available:
http://www.gnu.org/software/gdb. [Accessed Nov. 25, 2008].

[6] uClinux – Embedded Linux/Microcontroller Project. Available: http://
www.uclinux.org. [Accessed Nov. 25, 2008].

[7] Y. Sato, Porting to H8/300 Architecture. Linux H8/300 porting
project. [Online]. Available: ftp://ftp.realtimelinuxfoundation.org/pub/
events/rtlws-2003/proc/sato.pdf. [Accessed Nov. 25, 2008].

[8] Renesas Technology – H8 Family. Available: http://www.renesas.
com/fmwk.jsp?cnt=h8 family landing.jsp&fp=/products/mpumcu/h8
family. [Accessed Nov. 25, 2008].

[9] The GNU Operating System – GNU Compiler Collection (GCC) 4.3.0.
Available: ftp://ftp.gnu.org/pub/gnu/gcc/gcc-4.3.0. [Accessed Nov. 25,
2008].

[10] The GNU Operating System – GNU binutils. Available: http://ftp.gnu.
org/gnu/binutils. [Accessed Nov. 25, 2008].

[11] Erik Andersen, uClibc library. Available: http://uclibc.org. [Accessed
Nov. 25, 2008].

[12] Free Software Foundation, CVS – Concurrent Versions System. Avail-
able: http://www.nongnu.org/cvs. [Accessed Nov. 25, 2008].

[13] CollabNet, Subversion – Open Source Version Control System. Avail-
able: http://subversion.tigris.org. [Accessed Nov. 25, 2008].

[14] The uClinux CVS Repository – elf2flt program. Available: http://cvs.
uclinux.org. [Accessed Nov. 25, 2008].

[15] Erik Andersen, BusyBox 1.10.2. Available: http://busybox.net/
downloads. [Accessed Nov. 25, 2008].

[16] SourceForge, Linux ROM filesystem – ROMfs 0.52 and genromfs
program. Available: http://downloads.sourceforge.net/romfs/genromfs-0.
5.2.tar.gz. [Accessed Nov. 25, 2008].

[17] The GNU Operating System – GDB debugger 6.1.1. Available: ftp://ftp.
gnu.org/pub/gnu/gdb/gdb-6.1.1.tar.gz. [Accessed Nov. 25, 2008].

[18] CSC, Linux kernel 2.6.16. Available: ftp://ftp.funet.fi/pub/linux/kernel/
v2.6/linux-2.6.16.tar.gz. [Accessed Nov. 25, 2008].

[19] uClinux – Embedded Linux/Microcontroller Project, Linux kernel
2.6.16 patch. Available: http://www.uclinux.org/pub/uClinux/uClinux-2.
6.x/linux-2.6.16-uc0.patch.gz. [Accessed Nov. 25, 2008].

[20] H. Lyytinen, Linux on H8S/2239. Public Software Packages, University
of Kuopio, Department of Computer Science. [Online]. Available: http:
//www.cs.uku.fi/tutkimus/GPL/gpl.shtml. [Accessed Nov. 25, 2008].

[21] The GNU Operating System – GNU Autoconf. Available: http://www.
gnu.org/software/autoconf. [Accessed Nov. 25, 2008].

23

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on January 14, 2010 at 23:36 from IEEE Xplore. Restrictions apply.

