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Abstract

This paper describes a communications and control infrastructure for distributed mobile robotics, which makes use of wireless local area
network (WLAN) technology and Internet Protocols (IPs). The use of commercial off-the-shelf (COTS) hardware and software components,
and protocols, results in a powerful platform for conducting experiments into collective or co-operative robotics. Standard Transmission
Control Protocol/Internet Protocol (TCP/IP) compatible applications programming interfaces (APIs) allow for rapid and straightforward
development of applications software. Further, the message bandwidth available from WLAN interfaces (1–2 Mbits/s) facilitates multi-robot
experiments requiring high data rates, for instance in robot vision or navigation. The infrastructure described is equally applicable to tele-
operated mobile robots.q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Since the advent of high-performance wireless local area
network (WLAN) technology at relatively low cost, its use
for wireless control of mobile robots has become a practical
proposition. When a number of mobile robots are required
to co-operate then, from a systems design perspective, the
possibility that each mobile robot might be treated as a node
on a LAN is particularly attractive. Proprietary wireless
LAN devices that make use of spread-spectrum modulation
and a UHF carrier (typically 2.4 GHz) offer the potential for
high message data rates over a reliable physical layer imple-
mentation. Further, the fact that such devices typically offer
support for standard transport and network layer protocols,
such as Transmission Control Protocol/Internet Protocol
(TCP/IP), gives rise to the possibility of powerful multi-
robot networks at a relatively modest cost in application
level design and development effort.

This paper describes such an implementation on a fleet of
miniature-wheeled mobile robots, designed with the overall
goal of conducting laboratory experiments in collective or
multi-agent robot behaviour and control [1]. It is not the
intention of this paper to describe the collective robotics

algorithms or experiments. Instead this paper focuses on
the hardware and software architecture of both the mobile
robot and the fixed control base station with particular refer-
ence to the wireless control and communications infrastruc-
ture, and its software.

This paper proceeds as follows. First we review the
development of wireless local area technology. The paper
then describes the hardware architecture adopted for the
mobile robot and in particular the choice of an IBM PC
compatible embedded micro-controller. Following the
discussion of the choice of operating system, the paper
then describes the software architecture with particular
reference to the use of TCP/IP communications protocols
and the choice of a client–server paradigm for multiple
robot command and control. Finally the paper comments
on the performance achieved in the laboratory by the
WLAN-based robot controller.

2. Wireless local area network technology

WLAN technology, developed primarily to extend wired
networks to allow, for instance, roaming network nodes for
portable computers within a building, is now relatively
mature [2]. Typically a WLAN connection will employ
spread-spectrum modulation over a 2.4 GHz RF carrier, with
a raw over-air data rate of 1–2 Mbits/s. Spread-spectrum
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modulation is a technique that, as the name implies,
disperses the modulated signal over a much wider RF band-
width than the conventional modulation techniques. Spread-
spectrum modulation is particularly appropriate for a
conventional WLAN environment because it helps over-
come problems that would normally be associated with
multiple transceivers sharing the same RF spectrum, and
with high levels of multi-path interference. Spread-
spectrum modulation also confers a high degree of noise
immunity, including immunity to accidental or deliberate
interference.

There are two variants of spread-spectrum modulation in
common use. Frequency hopping (FH) spreads the spectrum
by rapidly switching the carrier frequency. The more
sophisticated direct sequence (DS) technique achieves the
same effect by multiplying the message data with a pseudo-
random bit sequence (PRBS) [3]. Both variants have the
same overall characteristics outlined here, but DS typically
will allow a higher over-air data rate than FH.

Because of their intended application with portable or
notebook computers, manufacturers have produced remark-
ably compact wireless network interface hardware.
Typically these employ the Personal Computer Memory
Card International Association (PCMCIA) interface [4],
which is a de facto standard in portable computers1, and
usually have a two-part construction consisting of a
PCMCIA card with a separate similarly sized wireless trans-
ceiver. Two additional implementations are available: an
ISA-bus plug-in card for desktop computers, and a stand-
alone wireless to wired network bridge, sometimes known
as an Access Point. It is the PCMCIA wireless network
interface that is of particular interest here, since its compact
size makes it ideal for integration into an embedded micro-
controller suitable for mobile robotics applications.

Although wireless devices for interconnecting computers
and their peripherals have been available for some years, it
is only recently that the adoption of agreed standards by
manufacturers has meant that the wireless LAN can be
regarded as a generic system level component interchange-
able with the wired LAN network interface card (NIC). Two
standards in particular have brought this about: the IEEE
standard 802.11-1997 [5] and the European Telecommuni-
cations Standards Institute (ETSI) spectrum allocation
RES.2 [6].

The IEEE 802.11 standard specifies the media access
control (MAC) protocol, which forms the lower half of
layer 2 of the open systems interconnect (OSI) 7-layer
network reference model, and also the physical layer (PHY)
specification for layer 1. Within the physical layer specifi-
cation of IEEE 802.11 there are standards covering the use
of either infrared optical communications or spread-
spectrum radio. The spread-spectrum radio standard in
turn covers both FH and DS variants.

3. Hardware design considerations

A fundamental design decision was to employ a pro-
prietary microprocessor controller based upon the IEEE
PC/104 standard [7,8]. With PC/104 we have a form factor
small enough to be accommodated within the overall physical
requirements of a small mobile robot: a standard PC/104
card measures 90 mm× 95 mm: More significantly PC/
104 provides us with a micro-controller based upon the
Intel 386, 486 or Pentium processor within anIBM Personal
Computercompatible architecture. Clearly a card measuring
about 14 in.2 cannot accommodate a complete PC and so the
PC/104 card set provides a modular architecture in which
major functional blocks are all implemented as different PC/
104 cards, all interconnected via the PC/104 bus. This
modular approach clearly suits our mobile robotics appli-
cation, since many sub-systems of the standard desktop PC
architecture are unnecessary—the VGA (display) controller
for instance. In fact a CPU module typically embodies the
386 or 486 microprocessor, together with its supporting
logic: RAM (typically 4 MB); the basic input output system
(BIOS); serial and parallel I/O; floppy and IDE (hard disk)
interfaces; and a socket for a flash EPROM or solid-state
disk device. This is sufficient for a complete single-card
embedded micro-controller.

The flash ROM device merits further discussion since it is
here that our mobile robot control and communications
application software will be held. To understand how the
application ROM is utilised we need to consider that in a
standard PC, after power-up, the BIOS looks for a disk-drive
from which to boot load the disk operating system: on a
conventional PC this is either a floppy- or more usually a
hard-disk drive. Assuming that we are running MS-DOS,
then the boot up process requires that the executable files
associated with MS-DOS (command.com, msdos.sys and
io.sys) are all present, together with the script files auto-
exec.bat and config.sys, and any additional drivers required
by the hardware or by the application. By arranging for all
of the system files expected by the operating system to be
present within the device together with the application code
executable (itself started from within autoexec.bat), then we
can treat the ROM as a ‘virtual’ (i.e. solid-state) disk drive.

The recent availability of high capacityIDE compatible
solid-state disk drives has opened up the possibility that we
can use operating systems other than MS-DOS within the
mobile robot, for example Linux. An 80 MB IDE solid-state
disk drive typically measures 75 mm× 50 mm× 10 mm;
weighs 45 g and consumes about 75 mA at 5 V. The current
generation of 386 or 486 based PC/104 processor card typi-
cally incorporates an IDE interface and so we can realistic-
ally mount a solid-state disk drive within the mobile
robot with only a marginal increase in mass and energy
consumption. An additional major advantage of solid-state
disk technology is its ability to withstand much more severe
physical shock than conventional disk drives. Collisions are
a normal operational hazard of experimental mobile robots,
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and conventional disk drives would require mass-increasing
ruggedisation to ensure reliable operation.

In its minimum configuration the mobile robot requires
one additional PC/104 card: a PCMCIA adapter, which will
allow us to make use of a PCMCIA wireless LAN Network
Interface Card.

The PC/104 bus does not specify a physical backplane,
but instead employs a plug and socket arrangement which
allows PC/104 compliant cards to be ‘stacked’ one on top of
the other. Hence the provision of a PC/104 bus interface and
connector on the robot ‘motherboard’ allows for the CPU
and PCMCIA cards to be neatly stacked above the mother-
board as shown in Fig. 1. (The solid-state disk drive is small
enough to be mountedbetweenthe motherboard and the
underside of the PC/104 stack.) The combination of the

physical connectors and spacing pillars provides a robust
construction capable of reliable operation while subject to
the physical stresses (in particular accelerations, decele-
rations and collisions) inherent in a light wheeled mobile
robot.

Fig. 2 illustrates in block diagram form the bus architec-
ture described above. The motherboard shown in Fig. 2
provides all of the motor drive power electronics, power
management (regulation and battery level monitoring) and
analogue and digital interfaces for sensor devices that may
be mounted on the mobile robot. The PC/104 compliant
interface on the motherboard maps the input and output
interfaces to the robot’s motors and sensors into the
CPU’s I/O space; all robot functions can then be controlled
using straightforward I/O port reads and writes using, for
example, the C functionsinportb( ) and outportb( ) (or,
under Linux,inb( ) andoutb( )).

The use of a PC/104 compliant micro-controller confers a
remarkable power and simplicity to the robot control archi-
tecture. Not only does it allow us to make use of the power-
ful off-the-shelf PCMCIA compliant WLAN technology,
but also most significantly, it provides an embedded con-
troller that, from a software development perspective, is
identical to a desktop PC. Not only can we then use standard
PC development tools, including for example familiar C
compilation and debugging environments, but most impor-
tantly, we will be able to use off-the-shelf MS-DOS or
Linux compatible hardware device drivers for the PCMCIA
and WLAN hardware. Our software development effort is
free therefore to focus only on the high-level robot control
applications development without the burden of low-level
device programming. Software development for the mobile
robot is, as a consequence, rapid and straightforward.

4. Operating system considerations

As described above, the PC compatible embedded micro-
processor controller chosen for the mobile robot gives rise
to a number of options in the choice of robot operating
system, and we have successfully made use of both
MS-DOS and Linux. While MS-DOS may be uncontro-
versial for a minimal embedded system, the use of Linux
is less obvious, and so merits further discussion.

Linux is a Unix-like multi-user multi-tasking operating
system that is available for a very wide range of hardware
platforms, including the PC [9]. Linux has a number of
attributes that make it particularly attractive for the appli-
cation described in this paper. In particular:

• Multi-tasking is particularly useful in a robot controller
so that, for instance, a number of robot ‘behaviours’ can
be implemented as separate tasks or processes, any of
which may be started or stopped independently of the
others.

• Linux integrates TCP/IP networking as standard,
together with session or presentation layer protocols
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Fig. 2. Hardware block diagram.



such as the file transfer protocol (FTP), Telnet, or the
hypertext transfer protocol (HTTP). Thus Telnet facili-
tates remote control or monitoring of any individual
mobile robot, by allowing a user to ‘log-in’ to the robot
via the wireless LAN. By the same token FTP assists
program development or results collection by allowing
data to be transferred to or from a mobile robot via the
WLAN.

• Because of the open source code policy of the Linux
developers the internal operation of Linux is transparent,
unlike proprietary operating systems. This is especially
useful when developing new low-level hardware device
drivers, such as for the WLAN card [10]. In fact the open
source nature of Linux means that there are a very large
number of device drivers in the public domain, including
drivers for many PCMCIA WLAN cards.

• Although Linux is not intrinsically a real-time operating
system, a number of real-time extensions to the Linux
kernel exist which allow time-critical tasks, or interrupts,
to be precisely scheduled [11].

Equally compelling is the fact that Linux does not require
large memory resources or a high-performance CPU (by
current standards). In fact, we have successfully ported a
full Linux implementation including all networking compo-
nents, a C compiler and its libraries, onto the mobile robot
hardware described above, comprising an Intel 386SX CPU
card running at 25 MHz, with 4 MB RAM and an 80 MB
solid-state disk drive. Linux also lends itself to optimisation.
The Linux kernel may, for instance, be re-compiled to omit
the drivers or services not required in a particular
implementation [12].

5. Internet protocols

Consider the OSI 7-layer network reference model shown
in Fig. 3. This provides a powerful model for describing
discrete network ‘layers’ which allow us to ‘mix-and-
match’ different network software components. The
interchangeability of network software components is
achieved by the adoption of standard interfaces between
each layer. An implementation of the network layers (3

and 4) is sometimes referred to as a ‘protocol stack’,
which needs to be present at both ends of the communi-
cations link; in our case the mobile robot and the desktop
controller. Any message from the applications layer at one
end of the link (an instruction from the control PC for the
robot to move, for instance), is transferred down the proto-
col stack at the originating end of the link, then across the
physical network interface (in our case the wireless connec-
tion), and finally up the protocol stack at the destination
(i.e. the robot). The arrows in Fig. 3 illustrate this
message flow.

Layer 2, the data link layer, is represented in software by
the ‘device driver’ which a manufacturer needs to supply
with the network interface hardware. Layers 3 and 4 are
frequently grouped together and given a generic network
description. The group of protocols known as the Internet
Protocols, or TCP/IP, have arguably become the most
widely used for both local and wide area networks [13].
Clearly, one of the most interesting benefits that might
flow from the adoption of TCP/IP is that the mobile
robots could send and receive messages to and from
anywhere with Internet connectivity. This would allow
the full spectrum of operational possibilities, ranging
from direct tele-operation, through assignment and
monitoring of missions, to passively receiving data
from fully autonomous robots.

Even if remote operation via the Internet is not a require-
ment, there are still strong technical arguments in favour of
the use of TCP/IP. One is the fact that the protocols are well
known and understood, with well-established libraries to
support the applications programmer. Another is that
standard and proven software components to implement
TCP/IP are available for practically every operating system
in common use. We have, for instance, employed both
MS-DOS in the mobile robot controller, with TCP/IP soft-
ware components from FTP Inc, and more recently Linux,
which has the TCP/IP networking built-in. The controlling
computer may typically employ MS Windows 95/98 or NT,
both of which have built-in support for TCP/IP. The fact that
different operating systems can be employed at each end of
the link might also be regarded as an advantage.

A particularly strong argument in favour of TCP/IP is that
the TCP employed in the transport layer provides us with a
robust and reliable data connection. In contrast to the
alternative User Datagram Protocol (UDP), error detection
and repeat request mechanisms are built into TCP so that,
providing the connection is not physically broken, reliable
data delivery is practically guaranteed. This means that the
applications programmer does not need to be concerned
with data integrity. Once a TCP connection has been
established data can be transmitted without the need for
acknowledgements or other such handshake mechanisms
in the applications layer code. In short the development
engineer does not need to ‘invent’ a reliable communications
protocol, as would be the case for a completely bespoke
radio telemetry link.
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6. System software design

Equipping a fleet of mobile robots with WLAN interfaces
offers two distinct opportunities: enabling communication
between robots; and enabling communication between
robots and a base station. The focus of our laboratory is
on collective and co-operative robotics, and so it might be
thought that communication between robots would be the
first priority. However, this is not the case; the paradigm in
which we are most interested is that of swarm robotics, in
which communication between robots is minimal, usually
taking the form of low-bandwidth broadcasting using infra-
red or ultrasonic channels [14] or direct sensing of the
environmental disturbances created by other robots [15].
Instead, our first application of this technology focussed
on the communication between robots and a base station,
or controller.

The overall system described in this paper employs a
client–server paradigm. Although it may seem counter-
intuitive, the desktop base station at the hub of the WLAN
acts as the ‘client’ software, and the application software in
each mobile robot acts as a ‘server’. The reason for this
approach is that in the control architecture implemented
here each robot will passively ‘listen’ for commands from
the base station. When a command is received (to start or
stop a motor drive, for instance) the robot will execute the
command immediately, then (if the command requires it)
the robot will respond with a reply message. Finally the
robot will simply return to its passive listening state (of
course the robot may actually be on the move while in
this listening state). Thus the robots passively service
commands sent by the controller and are, from a networking
perspective, ‘servers’. The ‘client’ software at the network
hub issues commands to each robot, either from manual
control, or from some ‘script’, and is thus entirely respon-
sible for the sequencing and timing of commands, and the
coordination of the actions of different robots.

Of course the alternative control schema could be
envisaged in which robot ‘clients’ actively fetch or request
their next commands from a central ‘server’. However, such
a scheme was considered inappropriate for this first imple-
mentation, especially since manual control (for test and
debug) would be more difficult. Another advantage of the
robot–server, hub-client architecture adopted here is that,
within the same control paradigm, different levels of robot
autonomy could readily be implemented. In other words,
commands sent from the network controller could be at
the low level of motor-on or motor-off (as in this imple-
mentation) but could easily be at higher levels of control
abstraction such asgo and execute this given trajectoryor,
at a still higher level,navigate to point C via way points A
and B.

Fig. 4 illustrates the network architecture showing the
central controller (client) and a number of mobile robots
(servers). As illustrated, each robot must have its own
unique IP address.

6.1. The applications layer command protocol

The use of the reliable TCP communications protocol
means that, at the applications layer, there is no need to
incorporate either error detection or retransmission proto-
cols. In fact TCP is sufficiently robust that a command can
be sent to a robot (to start a motor with a given speed, for
instance), without the need for the robot to respond with an
acknowledgement message. Indeed, for the same reason,
there is no need for message length or checksum data to
be incorporated into the command string. We can therefore
construct a very simple command protocol in which some
commands consist of a single message from the controller to
the robot (motor commands, for instance). Other commands
consist of a request message (to read a proximity sensor, for
instance) followed by a response message from the robot
back to the controller (i.e. the sensor value).

Both for ease of debugging, and to simplify command
parsing in the Robot Server software, each command from
controller to robot is encoded as a fixed length ASCII
numeric string. Some commands require only the numeric
string, but others require parameters (motor speed values,
for instance), and these are also encoded as fixed length
ASCII strings, separated by spaces. The Robot Server soft-
ware will be able to determine from the command value
whether there will be parameter values and how many.
Table 1 lists a few such commands, with their optional
parameters and responses.

Certain commands require further explanation. The
NULL command, for instance, consists of the two ASCII
characters ‘00’, and is intended to solicit an identical ‘00’
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response back from the robot. This command serves two
purposes: firstly it allows the client application to periodic-
ally check that a robot is still responsive (at the applications
level), and secondly it will keep the TCP connection alive
(which might otherwise time-out after a long period of
communications inactivity). In this implementation the
network controller application sends a NULL message to
each robot once every 10 s. The client application also notes
the time of transmission of each NULL message and, by
noting the arrival time of the corresponding response
message enables transmission ‘round trip’ times to be
measured.

The MOTOR command consists of the two ASCII
characters ‘06’ followed by the ‘left’ and then the ‘right
motor’ speed values (the mobile robot is a differential
drive robot with independent motor drives on each wheel).
The speed values are signed so that the command string
‘06 00100 00100’ would mean ‘forward at speed 100’, the
command string ‘06 00050 –0050’ would cause the
robot to rotate on the spot, and the command string
‘06 00000 00000’ would be interpreted as ‘all stop’.

Note that messages do not need to incorporate any form
of identifier, or ‘unit number’, for the particular robot for
whom the message is intended. This is because each robot
has its own unique connection, or SVC, with the client
network controller. The client application sends a command
message to a given robot simply by sending the message
packet to that robot’s unique SVC. Only the single robot
connected via the SVC will actually receive the intended
message packet. Similarly, in the reverse direction, any
response message from a robot server back to the client
application will only be received via the unique SVC asso-
ciated with the robot. The client therefore ‘knows’ which
robot sent the response from the SVC on which it was
received.

The command set is intended to be simple and extensible,
allowing, for instance, new commands to be created as new
sensors or actuators are added to the robot hardware. This
paper is not, however, concerned with a detailed discussion
of which commands and actions might be required in a
given application scenario, and the representative
commands listed in Table 1 are given only to illustrate the
simplicity of the applications layer protocol.

6.2. The Robot Server software

As already described the mobile robot incorporates a

canonical PC compatible microprocessor controller board
running MS-DOS or Linux. Consider first MS-DOS. In
addition to the proprietary device drivers required to support
the PCMCIA card carrier and the wireless LAN card, an
MS-DOS implementation of the TCP/IP ‘protocol stack’
is required, and the FTP Inc PCTCP product [16] was
selected for this purpose. The FTP Inc software is a straight-
forward implementation of the ‘Berkeley Sockets’ [17]
application programmers interface (API) between the appli-
cation and the TCP (or UDP) layer. This product has the
additional (and necessary) feature of providing the ‘include’
and library files for the major PC C language compilers.

For the Linux operating system we also require device
drivers for both the PCMCIA card carrier and the WLAN
card. However, no additional TCP/IP support is required
since TCP/IP networking is an integral part of Linux.
Linux also provides an API that conforms to the Berkeley
Sockets model. Thus, the application code for the robot
server is practically identical for both MS-DOS and
Linux. The only significant difference is that the robot
server, under Linux, runs as a background task in parallel
with other network servers such as FTP and Telnet, whereas
in the single-tasking MS-DOS the server is the only program
running.

The application or Basic Robot Server (BRS) software
consists of some 250 lines of C source code. The structure
of this software is very straightforward, with three distinct
phases. The first is an ‘initialisation’ phase in which the
sockets and associated data structures are created. Secondly
it enters a ‘listening’ phase, in which the server is waiting
for a connection (SVC) to be established by the network
controller (client). The third phase is a quasi-infinite loop
that waits for commands from the client, then executes them
when they are received.

The pseudo-code shown in listing one below (basic robot
server pseudo code) illustrates the structure of the BRS
application with particular reference to the calls to the
Berkeley Sockets API functions, which are shown in bold
text.

Listing 1

// PHASE 1, initialisation..
// Get a TCP stream socket, for listening..
socket(…);
// Get the local (our) IP address..
gethostid ( );
// bind our local IP address & port number to the socket..
bind (…);
// “passively open” the socket
listen (…);
// PHASE 2, listening..
// wait for Client controller to ‘connect’..
accept(…);
// now close listening socket (not accepting any more
connections)..
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Command Value Parameters Response Comment

NULL 00 None Yes Keep alive
STATUS 04 None Yes Read status switches
MOTOR 06 Two (left, right) No Set motor speeds
LEDS 07 One (data) No Set LED values



close(…);
// set the connected socket to non-blocking..
ioctl (…);
// PHASE 3, Loop checking for received commands from
Client Controller..
while ( )
{

// Execute a non-blocking read..
if read (…)
{

// We’ve received a command, so go and act on it..
// first parse the command value
cmd� strtol (…);
switch (cmd)
{

case NULL: // echo null message
send(…);

case STATUS: // read status switches
case MOTORS: // set motor speeds

}
}
else // nothing has been received, so perform local
control here..

} // end of while loop

Listing 1
For clarity, the data-structures are omitted from the

pseudo-code in the above listing; likewise, the error check-
ing on return values from each of the sockets API calls is not
shown. A number of aspects of the pseudo-code merit
further explanation. Firstly, note that the initial call to
socket( ) returns a socket which is used to listen for the
connection. (A ‘socket’ is simply a virtual input–output
port for TCP packets.) The listening state (phase 2) is essen-
tially in the call to the functionaccept( ). This is a blocking
call, which means that the function does not return until the
client has established the connection. Whenaccept( )does
return, it returns a new socket which is used thereafter as the
SVC connection between the client and this server software.
This explains why the original ‘listening’ socket is then
closed. The new ‘connected’ socket is then set up as non-
blocking by the call toioctl( ), so that the subsequent calls to
read( ) will return immediately whether or not data has been
received.

Within phase 3, the while loop, we have the non-
blocking call to theread( ) function. If a message has
been received on the connected socket thenread( ) will
return ‘true’, with the received data as an ASCII string.
Note that in the pseudo-code above the standard C
library function strtol( ) is used to ‘parse’ the received
message string, to convert the leading numeric digits
into the command value ‘cmd’. A switch structure is
then used to select the control code corresponding to
the received command value. Alternatively, if nothing
has been received thenread( ) will not wait, but return
‘false’, so that the BRS software can continue to

execute local control or sensor monitoring functions in the
‘else’ clause of the ‘ifread( )’ structure.

6.3. The Robot Client software

The Client software, running on the desktop PC at the hub
of the WLAN, consists of some 550 lines of ANSI com-
pliant C code. Of this code some 75% is responsible for
managing the 32-bit Windows 95/NT graphical user inter-
face (GUI). It is the other 25% which is of particular interest
in this paper, since it is this code which is responsible for
managing multiple TCP/IP connections with the mobile
robot servers.

To implement TCP/IP compliant networking, the Client
code makes use of the well-known Windows implemen-
tation of the Berkeley sockets API known asWinsock.
The specification for the Winsock API is in the public
domain [18] and its associated libraries and header files
are distributed with most Windows C Programming envir-
onments, including Borland C11 as used for this work.
While programming using Berkeley sockets is generally
regarded as challenging, developing Winsock applications
is even more so because of the need for asynchronous event
handling [19]. To understand why this is so we need to
consider, firstly, that all Windows applications are based
upon an event-handling paradigm, and secondly that,
because of the way Windows performs multi-tasking, all
calls to I/O functions must be non-blocking. Any blocking
call that did not return immediately would be likely to cause
the whole of Windows to hang. Thus the Client software
consists (as does any Windows program) of a series of event
handlers each of which responds to messages posted by the
operating system. Some of those event handlers (responding
for instance to user input) will initiate non-blocking calls to
Winsock functions, and other event handlers will in turn
respond to the subsequent messages caused by asynchro-
nous completion of these Winsock functions, or indeed by
responses from the remote TCP connection.

It follows from the above that the Client needs to main-
tain a state-machine for each of the robots in its fleet. Each
state-machine will reflect the status of its respective TCP
connection and will move between the following states:
trying (i.e. a TCP connection has been requested);
connected(i.e. a SVC exists between client and server);
writable (i.e. the server can accept messages from the
client), anddisconnected.

In order to appreciate the overall structure of the Client
software a good starting point is the human machine inter-
face (HMI) since, in this prototype system, the emphasis is
on a user directly controlling robots via the base station. The
next section therefore reviews the HMI for the client appli-
cation.

6.4. The robot client human machine interface

There are four basic requirements for the HMI:
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• the means to configure and manage IP addresses for the
fleet of mobile robots;

• the means to initiate connections (virtual circuits) with
each mobile robot, and to monitor the connection status
of each virtual circuit;

• the means to send commands to any particular mobile
robot; and

• the means to monitor both outgoing (command) and
incoming (response) messages.

The Windows HMI meets these four requirements with a
main (default) window, which is always open, and two
subsidiary ‘dialog boxes’. The main window provides the
user with the ability to continuously monitor all messages to
and from mobile robots, together with the connection status
of each virtual circuit, as shown in Fig. 5. Clicking the
‘Configure IP Addresses’ button from the main window
brings up the dialog box shown in Fig. 6. From this dialog
box we can enter the IP addresses for each mobile robot, and
associate each IP address with a ‘unit number’. The unit
number simply provides a shorthand means to identify
each mobile robot.

Once the IP addresses have been configured, each mobile
robot’s unit number will be shown in the ‘connect status’
box of the main window asdisconnected. When the
‘Connect’ button in the main window is clicked, the appli-
cation will attempt to establish virtual circuits with each of
the mobile robots in the IP address database. The ‘connect

status’ box will initially show trying against each unit
number, and these will in turn change toconnectedas
each virtual circuit is successfully established. Of course
each mobile robot must be in the ‘listening’ state, as
described above, in order for the ‘connect’ process to
complete successfully.

As soon as the application has established connec-
tions with one or more mobile robots, it will automati-
cally start to send NULL messages to each connected
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robot, once every 10 s. Both outgoing and response
messages are shown in the respective boxes of the
main window, together with round trip times (in milli-
seconds).

While the overall robot network is in this state, the user
may click the ‘Send Command’ button on the main window
in order to bring up the dialog box shown in Fig. 7. From
this dialog, the user is able to select one of the connected
‘unit numbers’, then select one of the available commands
and finally click the ‘Send’ button to cause the command
message to be transmitted to the mobile robot. The MOTOR
command, for instance, allows left- and right-drive motor
speeds to be entered via the controls in the dialog box.
Altering the speed values and then clicking ‘Send’ a second
time will transmit the changed values to the mobile robot.
Selecting a command that provokes a response message,
such as the STATUS command (which reads and returns a
robot’s status switches), will result in the response message
being displayed in the main window’s incoming message
box.

Of course such low-level manual control of a fleet of
mobile robots via this interface is not easy, particularly
if a number of robots are moving simultaneously. This
HMI is, however, designed for initial test and experi-
mentation with the wireless network and, in particular,
‘proof of principle’. A more sophisticated HMI would
be required for serious experimentation with collective
mobile robotics.

7. Results and conclusions

The key result from this work is that the proposed archi-
tecture has been demonstrated to reliably and successfully
control a number of mobile robots, via the wireless network,
in a laboratory environment. In fact, the system has proven
to be sufficiently robust for demonstration at a number of
conferences and science and technology exhibitions. The
use of a notebook computer, fitted with an identical
PCMCIA wireless LAN adapter to that installed into each
mobile robot, acting as the network controller, has facili-
tated such demonstrations.

7.1. WLAN performance

A key performance indicator is the delay time introduced
by the WLAN. In fact the measured average round trip time
for a message to be sent from the control base station, to a
mobile robot and then echoed back to the control base
station, is 6 ms. A short message, consisting of a single IP
‘packet’, therefore requires of the order of 3 ms to be trans-
ferred across a SVC. This figure suggests that the control
base station would, for instance, be able to command up to
10 mobile robots, communicating with each 10 times/s
(allowing for a processing overhead in the control base
station). A control loop frequency of 10 Hz is clearly too
slow for low-level control functions in a mobile robot which
is easily capable of moving at 1 m/s. However, it would not
make sense to place the wireless communications within a
low-level control loop, such as a PID or adaptive neuro-
controller for individual motors. One of the benefits of
having a powerful embedded microprocessor onboard
each mobile robot is that many fast low-level control func-
tions can be run entirely within the robot. Wireless commu-
nication is then reserved for higher-level control loops,
supervisory or monitoring functions. In this way overall
multi-robot control is distributed between the onboard
robot control processors, the control base station and, if
necessary additional high-performance processing
resources connected to the control base station via wired-
LAN.

7.2. Remote access via Telnet

Our laboratory is equipped with a WLAN Access Point,
which provides a transparent bridge between wired and
wireless networks. In practice this means that mobile robots
equipped with WLAN interfaces and Linux (theLinuxBots)
may be accessed from any of the fixed workstations on the
laboratory LAN. This is especially convenient when a
number of LinuxBots are operating in our mobile robot
arena, since control software may be modified, compiled,
executed and monitored entirely remotely, via the WLAN.

For direct access to any given robot in the arena we
simply useTelnet. Once a Telnet connection is established
with a particular robot (uniquely specified by its IP address),
then we can log-in to the robot’s onboard Linux operating
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system. Providing the appropriate tools have been mounted
into the onboard Linux, then we can edit, compile and run
control programs in the usual way. In this fashion, programs
to drive robot motors, read sensors and run simple beha-
viours such as obstacle avoidance or navigation can be
developed and tested with minimal overheads. It is particu-
larly convenient to be able to run such programs as back-
ground tasks, so that other tasks can be started and stopped
in parallel. More sophisticated robot control experiments,
especially those involving multiple co-operating robots,
make use of the applications-level client–server architec-
ture described in the main body of this paper. Of course it
is still convenient to run simultaneous Telnet sessions with
each robot, at the same time as the main client–server
application, to facilitate low-level monitoring of system
resources within each robot.

7.3. Simultaneous program execution, Telnet and Web
access

The LinuxBot architecture additionally allows us to use
the FTP to move program code or results data between
robots and fixed workstations. This is particularly useful
for ‘backup’ purposes, or to ensure that each robot in the
collective experiment is running the same control software.
Remarkably, we have also found that it is perfectly feasible
to run the standard LinuxApacheWeb server as a back-
ground task within the LinuxBot. In practice a 25 MHz
386SX processor onboard a LinuxBot has been proven
capable of running a number of robot control programs as
background tasks (for navigation around an arena for
instance), whilst simultaneously managing a number of
remote Telnet log-in sessions and serving Web pages to a
remote Web browser. The wireless communications and
processing load imposed by Telnet and the Web server
introduces no observable delay or interruption to the robot
control behaviours running as background tasks. The ability
to run a Web server within the mobile robot has opened up
the interesting possibility that, by using Java, robot control
and the HMI could be managed entirely through a remote
Web-based interface.

7.4. Remote video tele-operation

As well as facilitating the laboratory’s work in collective
and co-operative robotics, this technology has also enabled
a recent strand of work concerned with tele-operation of a
single robot equipped with a miniature digital camera. The
introduction of a vision system places a significant demand
on the bandwidth available from the WLAN system, but
preliminary results do suggest that low frame-rate vision

using wireless and TCP/IP is feasible within the architecture
described in this paper [20].
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