Example Embedded
Application for an Industrial
Control System

Real Time O/S

S 'An‘application has a hard real-time requirement
If it must always meet a time constraint,
otherwise the system will fail.

S For example, some systems must be able to

respond to an interrupt on time, every time. If it
ever fails to meet its deadline, then the system
won't work.

S LynxOS was designed for hard real-time
problems

Designing a real-time system

S A real-time system is composed of multiple threads running
concurrently and doing different tasks. (I/O, Processing, Analysis, etc)

Threads can be user threads or kernel threads.

In the process of the design of your application and device drivers it is
important to identify:

§ Which threads, functions or system calls will affect the response time of

your hard real-time requirement.
S Example: The update of the database can be put in a low priority thread.
What are the data that need to be transferred between threads.

S Example: Update of the screen can be another thread that will read its value
from shared memory or a message queue.

What type of communication do you need between threads.
(Synchronization, Data transfer, etc)

S Example: Use a signal when the thread should update the screen.
Is there critical code or resources that will be shared between threads.

S Example: changing a shared data structure concurrently by two different threads
or any other critical code region protected by mutexes.

Processes model

In UNIX, a program is executed by a process.

Each LynxOS process has at least one flow-of-control, called the
main thread or initial thread.

The process also includes resources such as file descriptors, signal
masks, and many other items.

In LynxOS, each process has its own virtual address space. This
means that programs running in different processes are protected
from each other. No process can see the memory used by another
Process, so processes cannot inadvertently damage each other.

IPC, Inter-Process Communication means under LynxOS a
communication between two different main threads

Threads model

Within a process, there may be more than one thread. These
threads share the virtual address space of the process. This means
that threads within a process can see the same memory.

LynxOS also has kernel threads. They are part of the operating
system, and are often used in device drivers.

The threads are the entities that get scheduled. There is only one
scheduler in LynxOS, so user threads and kernel threads are all
scheduled the same way.

This means that a user thread can preempt a kernel thread.

ITC, Inter-Thread Communication means under LynxOS a
communication between two different threads running in the same
process context or not.

Kernel Threads model

Kernel threads are schedulable and prioritized, just like user threads.
§ You can see the kernel thread with ps -tT command.

Application programmers do not create kernel threads.

LynxOS can use threads within the kernel to perform much of the I/O processing that is typically done
by an ISR in other OS.

§ The goal is to have a short ISR. The code that services the interrupt is moved to a kernel thread that will be
scheduled according to its priority.

Standard OS

ISR()
{
/* HANDLE INTR */
}

KT() ISR()
{ {

for(;;) { /* signal semaphore */
/* block on semaphore */ }
/* HANDLE INTR */

}

Kernel

Hardware
Interrupt

Threads

A thread is a flow-of-control that runs within a process context.

Threads in the same process share the same virtual address space.

Threads are the running entities of LynxOS.

Threads don’t have a parent-child hierarchy.

Any thread created within a process can terminate itself or can read the exit status of
any other thread

Exception: If the main thread exits, the process terminates. All other threads in the
process are terminated.

Inter Thread Thread 1 \ Thread 3 \

communication
- Thread 4 address space. Communications
between processes require kernel

Each process has its own protected

/ services.

/ Threads in a single process exist in

Main Thread Main Thread the same address space. They can
communicate and share data using

globals

Application

a a

Kernel
Inter Process communication

Multi-threaded program

If two threads are running concurrently and are calling the same
function we cannot predict:

§ at what time you get preempted in the function call
S the order of execution of the same function.

So functions use in a multi-threaded program should be thread safe
or you should provide your own synchronization.

Use stack variables, not static or global variables.

S Ever;t/) Ithread that executes the function gets its own copy of the stack
variable.

A thread safe function is a function that may be executed by two or
more threads at the same time and still behaves the same. Known
also as a reentrant function.

Design Issue

S Is a multithreaded application better than a multi-process?

S Multithreaded:

§ Advantage

§ Run in the same address space, switch time, communication, and
synchronization between threads are fast.

§ Disadvantage
§ All threads terminate if the main thread terminates.

S Multi-processes:
§ Advantage
§ Each main thread runs in a separate protected memory address space.
§ Disadvantage

§ Switch time, communication, and synchronization between main threads are
slower.

Inter-Thread Communications

Each arrow represents a
communication path

The table identifies which
communication mechanisms
are valid for each
communication path

Application

Process 1

Process 2

Thread 1

4

Thread 3 Main thread is the running
entity of the process

Yes* : If declared in
shared memory

Main Thread

Yes**: If using BUILPID()
macro

Main Thread

Kernel

Unnamed
Pipes

Yes***: If using sigwait()
Yes**** If processes are

related, such as parent &

Kernel Thread child.

Named pipes, Message
Queues, Named
Semaphores, Shared RW Locks

Memor

Unnamed Semaphore, Mutex,
Condition Variables, Barriers,

Introduction to Semaphores

High performance inter-threads synchronization mechanism

Used for synchronizing access to shared resources
S Global variables, Shared memory segments

Semaphores can also be used:

§ to help threads co-operate: One thread blocks on a semaphore, waiting for
another thread to signal it.

§ for managing a pool of resources: A semaphore is used to count free resources
in a pool, so a task can block when no resources are available.

There are 2 types of POSIX semaphores:
§ Named Semaphores
§ Unnamed semaphores

LynxOS has also its own semaphore implementation that offers priority
inheritance but are not POSIX and must be linked with /iblynx.a library.

Locking and Unlocking a Semaphore

S To test and block on a semaphore, you use the functions sem_wait()
or sem-_trywait() for the non-blocking version.

S 1int sem walt (sem t *sem) ;
S If semaphore value > 0, value is decremented and thread continues

§ If semaphore value <= 0, value is decremented and thread is blocked, put
on semaphore queue (priority ordered)

§ int sem trywait (sem_t *sem);
§ If semaphore value > 0, value is decremented and thread continues
§ If semaphore value <= 0, returns immediately with -1, errno == EAGAIN

S To post a semaphore, you use the function sem_post()

S 1int sem_post (sem_t *sem) ;
S If semaphore value >= 0, value is incremented

S If semaphore value < 0, value is incremented and highest priority thread is
made ready to run.

Example

#include <sys/types.h> /*.Create and Open the /sem_write (unlock) */
#include <stdlib.h> if ((sem _write =
#include <semaphore.h> sem_open ("/sem_write",O_CREAT |O_EXCL,
sem_t *sem read, *sem_write; S_IRWXU, 1))==(sem t*)-1) {
void read_access () { perror ("sem_open"); exit (EXIT_FAILURE); }
sem _wait (sem_read) ;
read_shared_memory () ; /* Remove /sem_xxx when they will be closed */
sem_post (sem_write) ; if (sem_unlink ("/sem_read")==-1) ({

perror ("sem_unlink"); exit (EXIT_FAILURE); }
1f (sem_unlink ("/sem write")==-1) {

void write_access () { perror ("sem_unlink"); exit (EXIT_FAILURE); }

sem_wailt (sem_write) ;

write_shared_memory () ; switch (fork ()) {
case —1:

perror ("fork"); exit (EXIT FAILURE) ;

sem_post (sem_read) ;

case O:

main () for (i 0; i < 10000; d++)

{ write_access () ;
int i; break;

init_shared_memory () ; default:

/* Create and Open /sem_read (lock) */ for (i 0; i < 10000; i++)

if ((sem_read = read_access () ;

sem_open ("/sem_read",O_CREAT|O_EXCL, }

S_IRUSR |[S_IWUSR, 0))==(sem_t*)-1) { close (sem_read); close (sem_write) ;

perror ("sem_open"); exit (EXIT FAILURE); } close_shared _memory () ;

Design Issue

S ‘Semaphores are an efficient way to synchronize a single
reader/writer or to protect a counting variable or any
countable resources.

S POSIX Semaphores should not be use to protect critical
code region, you can end up with a priority inversion
situation. Use LynxOS semaphores or pthread mutexes.

S Disadvantage
§ Priority inversion problem with POSIX semaphores.

S Advantage

§ System call overhead only if the thread blocks

Mutexes

S ‘A mutex is a mechanism to be use to protect critical
code region.

S A mutex has only two states
S locked and unlocked

§ Threads waiting on a locked mutex are queued in a priority-
based queue

S Unlike a semaphore
§ mutexes have no concept of a count

§ A mutex has the property of ownership: only the thread currently
POSsessing a mutex can release the mutex.

Using a Mutex

A thread may lock a mutex to ensure exclusive access to a resource by issuing either
pthread_mutex_lock() or pthread_mutex trylock()

§ pthread mutex lock (mutex t *mutex)
§ pthread mutex_trylock (mutex t *mutex)

S non-blocking version
S Returns 0 or EBUSY if mutex is already locked

A thread executing pthread_mutex _lock on an owned mutex will block until the owner
of the mutex releases the mutex

A thread can release a mutex using pthread_mutex_unlock()
S 1int pthread mutex_unlock (pthread mutex t *mutex);

The mutex becomes not owned only if no threads are queued on the mutex

If threads are waiting, ownership of the mutex is given to the thread of highest priority
that has been queued for the longest period

S
S
S
S
S
S
S
S
S
S
S
S
S

W W W W W W

Example

struct resource {

)

thing *thing1, *thing2;

pthread_mutex_t lock; lock
thing *freelist;

mutex

freelist ——

list *allocate ()

{

pthread_mutex_lock (&resource->lock);
ptr = freelist;

freelist = ptr->next;
pthread_mutex_unlock (&resource->lock);
return (ptr);

void deallocate (list *ptr)

{

pthread_mutex_lock (&resource->lock);
ptr->next = freelist;

freelist = ptr;

pthread_mutex_unlock (&resource->lock);

Knitting Machine

System Requirements

S Motion Control

S Cylinder Position

S Stitch CAM

S Selector Actuation

S Motion Faults (Stop Motion Inputs)

S Outputs

§ User Interface

S Network Interface

S User Program and Configuration (Database)

System Architecture

Linux ABI Layer

User Space
GUI

Input
Thread GUI Interface

TCP/UDP < TGP Sockets QtLib App
GUI / ’ running on Linux
/' ABI

Update
Thread
A

A 4

Empress
Embedded DBMS

Real-time Event Manager Thread

Input Encoder DevNet
(main thread)

Monitor Monitor Monitor
Thread Thread Thread

A l

v

Device Device Driver
Driver

Kernel
Thread

Kernel Space

v
Selector HC Output GUI

A\ 4

Input Motion Control Card
Card DevNet/Encoders/Stepper Card

Card Touchscreen

Physical Hardware

Motion Control

S Main Axis - Cylinder § Stitch CAM

§ Servo Control S Stepper motor
S Dynamic Motion S Encoder feedback

Profiles S Bi-directional
S Bi-directional § Incremental

S Variable Speed Positioning
§ 50 to 300 RPM

Main Servo System

A\ ’) “H ”, ™ '“

Main Cylinder — 84 Needles

Cylinder Position

S 84 or 108 Needles

§ Encoder Interface
§ 2048 Pulses/Revolution

S ABZ Inputs with
complementary inputs

§ Gated Index line

Forward Trawvel

Quadrature Encoder Signals

Cuadrature
State

EA

QER

MO

count cloclk " " - - - " - - - " - - - - - " - - - 'l
FOSCHNT DDE%UE;}{-:-:-EEI(WEQ:Mﬂn):ﬂuu%ﬂﬂzxmmxwunﬁ DoDs xaaﬂ%aﬂjluuuzxnum}:aﬂﬂuﬁaEﬂuuEEHnnquwEamez:(wElxmm

LIFCM s ' 1 '

Recognize Incex _+ t Generate QEI Intermipt
™ FOSCMT set to MAXCNT
Generate QEI Interrupt Recognize Index

FOSCHT setto Q000 Whael
Revarsas

L

Encoder Timing Requirements

§ ‘Maximum RPM = 300 RPM
S Maximum Needle count = 108 Needles
S Encoder generates 2048 pulses per revolution

S At max speed:
300 Revs x 1 Minute x 2048 Pulses = 10,240 Pulses
1 Minute 60 Seconds 1 Rev Second

S This equates to an encoder interrupt every 97.65us!

Hardware partitioning

S Alternative is to interrupt per needle change

S At max speed:
300 Revs x 1 Minute x 108 Needles = 540 Needles
1 Minute 60 Seconds 1 Rev Second

S This equates to a needle interrupt every 1.85ms

S To achieve this, encoder processing must be moved off
of the main CPU to a dedicated microcontroller

Encoder Architecture

Microchip PIC16F877 20MHz

LSB MSB
C7..C0 D7..D0 STRA IBFA STRB IBFB
A A

1 8 1 8
A\ 4 A\ 4 y A\ 4
Port A Port B Control Port

Intel 8255 PIC

RD WR CS A1 A0 INT

H I l ...

ISA Bus Signals

Encoder Signals

Microchip PIC16F877

Sense state change on ABZ lines
Write Data to data ports ﬂ
Strobe STRBe

IBF Lowered is ACK @)

Intel 8255 PIC

Get STRB

Latches data from port
Sets IBF High @)

Triggers Interrupt line o

Data is read 6

IOR lowers IBF

CPU (x86)

Gets IRQ

Fires ISR()

ISR Signals KT

KT Gets data via ioctl call
Reads Data

Selector Actuation

S Selector Blocks utilize bi-polar morphing actuators
S Control of actuator is via bi-polar +/-48VDC
S Needed a custom solution (+/-48VDC outputs not COTYS)

S Each selector output has to be activated and deactivate
within 100us.

S Drive signals need to be standard SVDC TTL levels

S Result solution was a design incorporating bi-polar
drivers

S Inputs -> 5VDC TTL
S Outputs -> +/-48VDC MOSFET Drivers

Selector Banks

Selector Driver

p1as) ||
FmvP21o04 |

LRl
s10

SELOUTEOT =

o7 | EVHLIZOA

Selector Card Design

L. Design Explorer - [C:A2003Development\Hardware\ProtelA2003, ddb]

et | Encoder | Wer 2 MCI.PCB | Selector Dutput Driver 11 B8l ver 2 PCE1.PCE

I llllllllllll M

2 f BottornLaper 4 Mechanicall 4Mechanic b echanicald AMechanicald AT opOverlay AT opPaste 4 BottormPaste 4 TopSalder ABattornS o eplutlaper /

Pneumatic Outputs

Real-time Performance

pyler: riker at 60 RPM
File Capture Display Search Help

R || |mm= 4 P
stracerd (28, 20) I =
null ¢ o, oy TININTTLD MITAToTOn (AT IR TN LI o] AT T ID NI I T rn I NI TN T T in IR aemimm ATrarminirm
CALLOUT (0, 1) | | | | | |
bsd. netisr (0, 2)
init1, 3
TH O, 4)
R0, 5)
ide: thread {0, 6}
login ¢ 38, T
syncer (15, 8)
telnetd (39, 9
bash¢a0,10)
ebd (0,113
netd £ 21,123
unfsio {23, 13)
portrmap { 26, 14)
rmountd { 28, 15)
nfsd { 30, 16)
rpc.statd (22,172
rpcilockd.swe (34, 18)
rpclockd.cint £ 36, 19)
kernel {35, 21}
EncoderkT (0, 22) LR e i e e e e e e e e e e e e e e e eernrl
Devetk<T {0, 23
InputkTe 0, 24)
kernel (35, 25) i i] 1] 1] 1]
Kermel (35, 26)]] I}] |} n
kemmnel (35, 27) N N L NN N I TR E NN EREEE AN
kernel {35, 28)
kernel {35, 29)

B SpyKer: riker at 60 RPM =&k
File Capturs Display Search Help

k[@ Q|mm 4 W

stracerd { 29, 200

null ¢ o, 0y
CALLOUT (0, 1)
bsd_netisr {0, 2
init1, 3

TH 0, 4)

R¥ (0,5

ide_thread {0, 6

login (38, 7

syncer (15, 8)
telrietd { 39,)

hash 40,10)

eld (0,11}

inetd {21,123

unfsio (23, 13
portmap (26, 14)
mountd { 28, 15)

nfsd (30, 16)
rpe.statd (32,17
rpclockd. sve {34, 18)
rpe:lockd.elnt ¢ 36, 19)
kernel (35, 21}
EncoderkT {0, 22)
DewhlatkT (0, 23)
InputhTx {0, 24)
kernel ¢ 35, 25) . | L O
kernel { 35, 26)
kemel (35, 27) L L
kernel { 35, 28)
kernel { 35, 29)

Content switch

Frorn: EncoderkT (0, 22)
To: kernel { 36, 273
B27,481.2494 microseconds
CPUD

B SpyKer; testmutex
File Capture Display Search Help

ko

stracerd {17, 200
null (0, 0y RN AR NN RRNRRNNE R RN RN
CALLOUT (0, 1)
bsd netisr (0, 2)
init(1, 3

TR0, 4

R¥-(0, 5)

ide: thread {0, &)
login § 36, 7)

syncer 13, 8)
telnetd { 37, @

hash (38,10}

eld (0,11}

inetd (19,12}

unfsio {21, 13)
partmap (24, 14)
mountd { 26, 15)
nfsd (28, 16)
rpe.statd ¢ 30, 17
rpclockd. sve (32, 18)
rpelockd.cint {34, 19)
testrmutex { 22, 21)

LR RAR R R RARARRRARRRRARAARRARR RN, ARARARRARARARRA R ARRARRRRARARA MY ARRRNRRRRARARAR AN

| |
4,395 6045 microsecands

._______.__.____._I_.__________._|___.__.|_______|.__.__ LN AR A __.__.____I_._____l__._________.|______|.__.__ﬂ_____________.__
G54,000 655,000 56,000 BET.000 58,000 659,000 660,000 B61,000 662,000 GEZ,000 664,000 BE5,000 i, 000 667,000 BES,000
o i |

Final System

Software Packages Used

S ‘Hardware Design

§ Protel — Schematic capture and PCB Design
§ Xilinx — VHDL Design
§ ModelSim — VHDL Simulation

§ Software Design

S

ClMplicity MotionFX — Motion Control Design
C/C++ - Gnu toolchain
Microchip
S MLAB — IDE for development, simulation, and debugging
LynxOS — RTOS from Lynuxworks
Linux — RedHat 7.2 for GUI development
KDeveloper — KDE/QtLib IDE for Linux native development
Empress — Embedded SQL database
SpyKer — Kernel Timing Capture

Technologies Employed

C/C++

Assembler

VHDL

Device Driver development
TCP/IP Sockets
KDE/QtLib

XWindows

SQL

Schematic Capture
PCB Layout/Design

Motion Control
(Servo/Steppers)

RTOS

Multi-threaded application
design

Concurrency / Interprocess
communication ISsues

=" Thodo 2003 Knitting Machine
— atatus

Run State

— Faults
[Mo Faults |

_ﬂnzjm:qmu

Current Course
Current Meedle

Current RPM

bAain Inputs atyles Service

_ Dutputs

aelectors _ Steppers _ Messages

style Description Created rAodified “_

LU PO Al
q4499

mdfz11:2

Feny

news

zel

slowe

slowrd

testa

BLRRI LT AT RRIR IR ()

g9949
Mew style

FIE
Mewy style
sel
sl
Mewy style
Mewy style
WA
Mesy style

F L8 P Wl
20031027
20031117
20031027
20031117
20031027
20031027
20031117
20031117
20031027
20031117

|8 P O
20031027
20031117
20031027
20031117
20031027
20031027
20031117
20031117
20031027
20031117

—
o

[o

Load Style

¥ Servo Online

£ Config Loaded

ﬁ._uqnmqma Loaded ﬁ Seryo Homed

i Mew Message

=" Thoro 2003 Knitting Machine
— atatus — Faults

Run State Configured [Mo Faults |

Current Course m

Current Needle H4
Current RPM 0

Pelain Dutputs Inputs — Styles aelectors _ Steppers _ Messanes _ SErice

Course Meedle | Instruction w_
0 or [E.1] Left Dropper

40 Meedle S0 :
a0 M [6.1] Left End Cam Half Lack Handle
40 aelectord Data 0=f0

75 Meedle 75 Download Style
75 O [10.5] Left End Cam Full
75 Speed = 40 RPk

15 FEEE nitialize Faults
75 Enahle [£.5] BETSR Fault

fa Enable [1.7] Elastic Yarn

fa Enable [2.1] Torgue Limiter
75 Enable [4.7] Broken Dial Needle shutdown

seryo Offline

Home Servo

Clear Soft Faults

e N S e N e Y e e R e SO e O e RN e R o S e

¥ Servo Online i Canfig Loaded ﬁ._uqnmqma Loaded ﬁ =ervo Homed 0 Mew Message

= Thoro 2003 Knitting Machine
— otatus — Faults

Run =tate __u._”_:q._m_:_dE [Mo Faults |

Current Course

Current Meedle

Current BPM

kAain _ Dtputs Inputs Styles Selectors steppers hessages SEMHCE

— ofitch

— atitch Sizing stepper — Tempaorary sizing Controls
Enable

Setpoint 1 Set _ Coarse
Setpoint 2 et |

Home

Setpoint 3 . Set | EAeeivi hove

Setpoint 4 i Set |

setpoint 5 . . set | — Cylinder ———

Enahkle

Setpoint & set |

Setpoint 7 : et | Enahle Hatme

Setpoint & set | | Disable hove

SServo Online 5 Config Loaded ﬁ._uqnmﬂma Loaded ﬁ aero Hofmed 0 Mew Message

=" Thoro 2003 Knitting Machine

— Status
Run State

Current Coutse
current Meedle

Current BPM

— Faults

| Configured [Ma Faults |

Bdait

_ Otputs _ Inputs Styles

1-2 | 34 _

— Bank 5

_ aelectors _ ateppers

1 = Left Hand Stitch Cam

2 = Dial Lowering Full

4 - Right Hand Stitch Cam

A

o =daap Closer

B -

7= Fingerd In

d - Jack Clear Cam Half

1 - Left End Cam Half

2 = Right End Cam Half

a4 - Elastic Cam Full

4 - Colar 3 Finger 3

g - Color 1 Lowering Cam Full

b - Colar 3 Finger 2

£ = Color 2 Raising Cam Full

- Color 3 Finger 1

£ Servo Online

£ Config Loaded ﬁ._uqnmqma Loaded ﬁ sero Homed

0 Mew Message

hessages Service

_-=* Thorio 2003 Knitting Machine
— otatus — Faults

Run state _ﬂu::mcqma [Mo Faults]

Zurrent Course

current Needle

Currett BPM

rAain _ Dutputs Inputs _ Siyles melectors Steppers hessages merice

Bank 1-Z _ Bank 3-4 _ Bank 5-5

— Bank ¥ — Bank &
1 - Jog Button 1 - 52K Servo Cnline

2 - Start Button : 2 - Gk

4 = Stop Button aJ - 57k

4 - E-5TOP |4 - 52K

o - servo Contactor R

E - Hand Crank Engaged b= SZk:

F - Home sensar |7 - Stitch CAM atepper Home Sen:
§ - Cylinder Stepper Home Sensor I

et neEeneEe

7 Servo Online 7 Config Loaded ﬁ.m_qnmqmz Loaded ﬁ aervo Homned 0 Mew Message

