
Example Embedded Example Embedded
Application for an Industrial Application for an Industrial

Control SystemControl System

Real Time O/SReal Time O/S

§§ An application has a An application has a hard realhard real--timetime requirement requirement
if it must always meet a time constraint, if it must always meet a time constraint,
otherwise the system will fail.otherwise the system will fail.

§§ For example, some systems must be able to For example, some systems must be able to
respond to an interrupt on time, every time. If it respond to an interrupt on time, every time. If it
ever fails to meet its deadline, then the system ever fails to meet its deadline, then the system
won’t work.won’t work.

§§ LynxOSLynxOS was designed for hard realwas designed for hard real--time time
problemsproblems

Designing a realDesigning a real--time systemtime system
§§ A realA real--time system is composed of multiple threads running time system is composed of multiple threads running

concurrently and doing different tasks. (I/O, Processing, Analysconcurrently and doing different tasks. (I/O, Processing, Analysis, etc)is, etc)
§§ Threads can be Threads can be user threadsuser threads or or kernel threadskernel threads..
§§ In the process of the design of your application and device drivIn the process of the design of your application and device drivers it is ers it is

important to identify:important to identify:
§§ Which threads, functions or system calls will affect the responsWhich threads, functions or system calls will affect the response time of e time of

your hard realyour hard real--time requirement.time requirement.
§§ Example: The update of the database can be put in a low priorityExample: The update of the database can be put in a low priority thread.thread.

§§ What are the data that need to be transferred between threads.What are the data that need to be transferred between threads.
§§ Example: Update of the screen can be another thread that will reExample: Update of the screen can be another thread that will read its value ad its value

from shared memory or a message queue.from shared memory or a message queue.

§§ What type of communication do you need between threads. What type of communication do you need between threads.
(Synchronization, Data transfer, etc)(Synchronization, Data transfer, etc)
§§ Example: Use a signal when the thread should update the screen.Example: Use a signal when the thread should update the screen.

§§ Is there critical code or resources that will be shared between Is there critical code or resources that will be shared between threads.threads.
§§ Example: changing a shared data structure concurrently by two diExample: changing a shared data structure concurrently by two different threads fferent threads

or any other critical code region protected by mutexes.or any other critical code region protected by mutexes.

Processes modelProcesses model
§§ In UNIX, a program is executed by a In UNIX, a program is executed by a processprocess..

§§ Each Each LynxOSLynxOS process has at least one flowprocess has at least one flow--ofof--control, called the control, called the
mainmain thread thread oror initial thread.initial thread.

§§ The process also includes resources such as file descriptors, siThe process also includes resources such as file descriptors, signal gnal
masks, and many other items.masks, and many other items.

§§ In In LynxOSLynxOS, each process has its own , each process has its own virtual address space.virtual address space. This This
means that programs running in different processes are protectedmeans that programs running in different processes are protected
from each other. No process can see the memory used by another from each other. No process can see the memory used by another
process, so processes cannot inadvertently damage each other.process, so processes cannot inadvertently damage each other.

§§ IPC, InterIPC, Inter--Process Communication means under Process Communication means under LynxOSLynxOS a a
communication between two different communication between two different main threadsmain threads

Threads modelThreads model
§§ Within a process, there may be more than one thread. These Within a process, there may be more than one thread. These

threads share the virtual address space of the process. This methreads share the virtual address space of the process. This means ans
that threads within a process can see the same memory.that threads within a process can see the same memory.

§§ LynxOSLynxOS also has also has kernel threads.kernel threads. They are part of the operating They are part of the operating
system, and are often used in device drivers.system, and are often used in device drivers.

§§ The threads are the entities that get scheduled. There is only The threads are the entities that get scheduled. There is only one one
scheduler in scheduler in LynxOSLynxOS, so user threads and kernel threads are all , so user threads and kernel threads are all
scheduled the same way.scheduled the same way.

§§ This means that a user thread can preempt a kernel thread.This means that a user thread can preempt a kernel thread.

§§ ITC, InterITC, Inter--Thread Communication means under Thread Communication means under LynxOSLynxOS a a
communication between two different communication between two different threadsthreads running in the same running in the same
process context or notprocess context or not..

Kernel Threads modelKernel Threads model
§§ Kernel threads are schedulable and prioritized, just like user tKernel threads are schedulable and prioritized, just like user threads.hreads.

§§ You can see the You can see the kernel threadkernel thread with with ps ps --tTtT command.command.

§§ Application programmers do not create kernel threads. Application programmers do not create kernel threads.
§§ LynxOS can use threads within the kernel to perform much of the LynxOS can use threads within the kernel to perform much of the I/O processing that is typically done I/O processing that is typically done

by an ISR in other OS.by an ISR in other OS.
§§ The goal is to have a short ISR. The code that services the intThe goal is to have a short ISR. The code that services the interrupt is moved to a kernel thread that will be errupt is moved to a kernel thread that will be

scheduled according to its priority.scheduled according to its priority.

Interrupt
Hardware

Kernel

Standard OS

ISR()
{
/* HANDLE INTR */
}

LynxOS

ISR()
{
/* signal semaphore */
}

KT()
{
for(;;) {

/* block on semaphore */
/* HANDLE INTR */
}

}

ThreadsThreads
§§ A thread is a flowA thread is a flow--ofof--control that runs within a process context.control that runs within a process context.
§§ Threads in the same process share the same virtual address spaceThreads in the same process share the same virtual address space..
§§ Threads are the running entities of Threads are the running entities of LynxOSLynxOS..
§§ Threads don’t have a parentThreads don’t have a parent--child hierarchy.child hierarchy.
§§ Any thread created within a process can terminate itself or can Any thread created within a process can terminate itself or can read the exit status of read the exit status of

any other threadany other thread
§§ Exception: If the main thread exits, the process terminates. AlException: If the main thread exits, the process terminates. All other threads in the l other threads in the

process are terminated.process are terminated.

Thread 1

Thread 2

Main ThreadApplication

Kernel

Thread 3

Thread 4

Main Thread

Inter Process communication

Inter Thread
communication l Each process has its own protected

address space. Communications
between processes require kernel
services.

l Threads in a single process exist in
the same address space. They can
communicate and share data using
globals

MultiMulti--threaded programthreaded program
§§ If two threads are running concurrently and are calling the sameIf two threads are running concurrently and are calling the same

function we cannot predict:function we cannot predict:
§§ at what time you get preempted in the function callat what time you get preempted in the function call
§§ the order of execution of the same function.the order of execution of the same function.

§§ So functions use in a multiSo functions use in a multi--threaded program should be thread safe threaded program should be thread safe
or you should provide your own synchronization.or you should provide your own synchronization.

§§ Use stack variables, not static or global variables.Use stack variables, not static or global variables.
§§ Every thread that executes the function gets its own copy of theEvery thread that executes the function gets its own copy of the stack stack

variable.variable.

§§ A thread safe function is a function that may be executed by twoA thread safe function is a function that may be executed by two or or
more threads at the same time and still behaves the same. Known more threads at the same time and still behaves the same. Known
also as a reentrant function.also as a reentrant function.

Design IssueDesign Issue
§§ Is a multithreaded application better than a multiIs a multithreaded application better than a multi--process?process?

§§ Multithreaded:Multithreaded:
§§ AdvantageAdvantage

§§ Run in the same address space, switch time, communication, and Run in the same address space, switch time, communication, and
synchronization between threads are fast.synchronization between threads are fast.

§§ DisadvantageDisadvantage
§§ All threads terminate if the main thread terminates.All threads terminate if the main thread terminates.

§§ MultiMulti--processes:processes:
§§ AdvantageAdvantage

§§ Each main thread runs in a separate protected memory address spaEach main thread runs in a separate protected memory address space. ce.
§§ DisadvantageDisadvantage

§§ Switch time, communication, and synchronization between main thrSwitch time, communication, and synchronization between main threads are eads are
slower.slower.

InterInter--Thread CommunicationsThread Communications
Thread 1

Thread 2

Main ThreadApplication

Kernel

Thread 3

Main Thread

Process 1

Kernel Thread

Process 2

l Main thread is the running
entity of the process

1

2

34

5 6

l Each arrow represents a
communication path

l The table identifies which
communication mechanisms
are valid for each
communication path

 Unnamed
Pipes Signals RTS

Signals

Named pipes, Message
Queues, Named

Semaphores, Shared
Memory

Unnamed Semaphore, Mutex,
Condition Variables, Barriers,

RW Locks

1 Yes**** Yes Yes Yes Yes*

2 Yes**** Yes** Yes** Yes Yes*

3 Yes**** Yes** Yes** Yes Yes*

4 Yes Yes Yes Yes Yes

5 No Yes No No No

6 No Yes*** No No No

l Yes* : If declared in
shared memory

l Yes**: If using BUILPID()
macro

l Yes***: If using sigwait()
l Yes**** If processes are

related, such as parent &
child.

Introduction to SemaphoresIntroduction to Semaphores
§§ High performance interHigh performance inter--threads synchronization mechanismthreads synchronization mechanism

§§ Used for synchronizing access to shared resourcesUsed for synchronizing access to shared resources
§§ Global variables, Shared memory segmentsGlobal variables, Shared memory segments

§§ Semaphores can also be used:Semaphores can also be used:
§§ to help threads coto help threads co--operate: One thread blocks on a semaphore, waiting for operate: One thread blocks on a semaphore, waiting for

another thread to signal it.another thread to signal it.
§§ for managing a pool of resources: A semaphore is used to count ffor managing a pool of resources: A semaphore is used to count free resources ree resources

in a pool, so a task can block when no resources are available.in a pool, so a task can block when no resources are available.

§§ There are 2 types of POSIX semaphores:There are 2 types of POSIX semaphores:
§§ Named SemaphoresNamed Semaphores
§§ Unnamed semaphoresUnnamed semaphores

§§ LynxOSLynxOS has also its own semaphore implementation that offers priority has also its own semaphore implementation that offers priority
inheritance but are not POSIX and must be linked with inheritance but are not POSIX and must be linked with liblynx.aliblynx.a library.library.

Locking and Unlocking a SemaphoreLocking and Unlocking a Semaphore

§§ To test and block on a semaphore, you use the functions To test and block on a semaphore, you use the functions sem_waitsem_wait()()
or or sem_trywaitsem_trywait()() for the nonfor the non--blocking version.blocking version.

§§ intint sem_wait(sem_tsem_wait(sem_t **semsem););
§§ If semaphore value > 0, value is decremented and thread continueIf semaphore value > 0, value is decremented and thread continuess
§§ If semaphore value <= 0, value is decremented and thread is blocIf semaphore value <= 0, value is decremented and thread is blocked, put ked, put

on semaphore queue (priority ordered)on semaphore queue (priority ordered)
§§ intint sem_trywait(sem_tsem_trywait(sem_t **semsem););

§§ If semaphore value > 0, value is decremented and thread continueIf semaphore value > 0, value is decremented and thread continuess
§§ If semaphore value <= 0, returns immediately with If semaphore value <= 0, returns immediately with --1, 1, errnoerrno == EAGAIN== EAGAIN

§§ To post a semaphore, you use the function To post a semaphore, you use the function sem_postsem_post()()

§§ intint sem_post(sem_tsem_post(sem_t **semsem););
§§ If semaphore value >= 0, value is incrementedIf semaphore value >= 0, value is incremented
§§ If semaphore value < 0, value is incremented and highest prioritIf semaphore value < 0, value is incremented and highest priority thread is y thread is

made ready to run.made ready to run.

ExampleExample
#include <sys/types.h>#include <sys/types.h>

#include <#include <stdlib.hstdlib.h>>

#include <semaphore.h>#include <semaphore.h>

sem_tsem_t **sem_readsem_read, *, *sem_writesem_write;;

void read_access() {void read_access() {

sem_wait(sem_readsem_wait(sem_read););

read_shared_memory(); read_shared_memory();

sem_post(sem_writesem_post(sem_write););

}}

void write_access() {void write_access() {

sem_wait(sem_writesem_wait(sem_write););

write_shared_memory();write_shared_memory();

sem_post(sem_readsem_post(sem_read););

}}

main()main()

{{

int i;int i;

init_shared_memory();init_shared_memory();

/* Create and Open //* Create and Open /sem_readsem_read (lock) */ (lock) */

if ((if ((sem_readsem_read = =
sem_open("/sem_read",O_CREAT|O_EXCLsem_open("/sem_read",O_CREAT|O_EXCL,,

S_IRUSR|S_IWUSR, 0))==(S_IRUSR|S_IWUSR, 0))==(sem_tsem_t*)*)--1) {1) {

perror("sem_openperror("sem_open"); exit(EXIT_FAILURE); }"); exit(EXIT_FAILURE); }

/* Create and Open the //* Create and Open the /sem_writesem_write (unlock) */ (unlock) */

if ((if ((sem_writesem_write = =
sem_open("/sem_write",O_CREAT|O_EXCLsem_open("/sem_write",O_CREAT|O_EXCL,,

S_IRWXU, 1))==(S_IRWXU, 1))==(sem_tsem_t*)*)--1) {1) {

perror("sem_openperror("sem_open"); exit(EXIT_FAILURE); }"); exit(EXIT_FAILURE); }

/* Remove //* Remove /sem_xxxsem_xxx when they will be closed */when they will be closed */

if (if (sem_unlink("/sem_readsem_unlink("/sem_read")==")==--1) {1) {

perror("sem_unlinkperror("sem_unlink"); exit(EXIT_FAILURE); }"); exit(EXIT_FAILURE); }

if (if (sem_unlink("/sem_writesem_unlink("/sem_write")==")==--1) {1) {

perror("sem_unlinkperror("sem_unlink"); exit(EXIT_FAILURE); }"); exit(EXIT_FAILURE); }

switch(fork()) {switch(fork()) {

case case --1:1:

perror("forkperror("fork"); exit(EXIT_FAILURE);"); exit(EXIT_FAILURE);

case 0:case 0:

for (i = 0; i < 10000; i++)for (i = 0; i < 10000; i++)

write_access();write_access();

break;break;

default:default:

for (i = 0; i < 10000; i++)for (i = 0; i < 10000; i++)

read_access();read_access();

}}

close(sem_readclose(sem_read);); close(sem_writeclose(sem_write););

close_shared_memory();close_shared_memory();

}}

Design IssueDesign Issue
§§ Semaphores are an efficient way to synchronize a single Semaphores are an efficient way to synchronize a single

reader/writer or to protect a counting variable or any reader/writer or to protect a counting variable or any
countable resources.countable resources.

§§ POSIX Semaphores should not be use to protect critical POSIX Semaphores should not be use to protect critical
code region, you can end up with a priority inversion code region, you can end up with a priority inversion
situation. Use situation. Use LynxOSLynxOS semaphores or semaphores or pthreadpthread mutexesmutexes..

§§ DisadvantageDisadvantage
§§ Priority inversion problem with POSIX semaphores.Priority inversion problem with POSIX semaphores.

§§ AdvantageAdvantage
§§ System call overhead only if the thread blocksSystem call overhead only if the thread blocks

MutexesMutexes

§§ A A mutexmutex is a mechanism to be use to protect critical is a mechanism to be use to protect critical
code region.code region.

§§ A A mutexmutex has only two stateshas only two states
§§ locked and unlockedlocked and unlocked
§§ Threads waiting on a locked Threads waiting on a locked mutexmutex are queued in a priorityare queued in a priority--

based queuebased queue

§§ Unlike a semaphoreUnlike a semaphore
§§ mutexesmutexes have no concept of a counthave no concept of a count
§§ A A mutexmutex has the property of ownership: only the thread currently has the property of ownership: only the thread currently

possessing a possessing a mutexmutex can release the can release the mutexmutex..

Using a Using a MutexMutex
§§ A thread may lock a A thread may lock a mutexmutex to ensure exclusive access to a resource by issuing either to ensure exclusive access to a resource by issuing either

pthread_mutex_lockpthread_mutex_lock()() or or pthread_mutex_trylockpthread_mutex_trylock()()

§§ pthread_mutex_lock(mutex_tpthread_mutex_lock(mutex_t **mutexmutex))
§§ pthread_mutex_trylock(mutex_tpthread_mutex_trylock(mutex_t **mutexmutex))

§§ nonnon--blocking versionblocking version
§§ Returns 0 or EBUSY if Returns 0 or EBUSY if mutexmutex is already lockedis already locked

§§ A thread executing A thread executing pthread_mutex_lockpthread_mutex_lock on an owned on an owned mutexmutex will block until the owner will block until the owner
of the of the mutexmutex releases the releases the mutexmutex

§§ A thread can release a A thread can release a mutexmutex using using pthread_mutex_unlockpthread_mutex_unlock()()

§§ intint pthread_mutex_unlock(pthread_mutex_tpthread_mutex_unlock(pthread_mutex_t **mutexmutex););

§§ The The mutexmutex becomes not owned only if no threads are queued on the becomes not owned only if no threads are queued on the mutexmutex

§§ If threads are waiting, ownership of the If threads are waiting, ownership of the mutexmutex is given to the thread of highest priority is given to the thread of highest priority
that has been queued for the longest periodthat has been queued for the longest period

ExampleExample
§§ structstruct resource {resource {
§§ pthread_mutex_tpthread_mutex_t lock;lock;
§§ thing *thing *freelistfreelist;;
§§ }}

§§ thing *thing1, *thing2;thing *thing1, *thing2;

§§ list *allocate ()list *allocate ()
§§ {{
§§ pthread_mutex_lockpthread_mutex_lock (&resource(&resource-->lock);>lock);
§§ ptrptr = = freelistfreelist;;
§§ freelistfreelist = = ptrptr-->next;>next;
§§ pthread_mutex_unlockpthread_mutex_unlock (&resource(&resource-->lock);>lock);
§§ return (return (ptrptr););
§§ }}

§§ void void deallocatedeallocate (list *(list *ptrptr))
§§ {{
§§ pthread_mutex_lockpthread_mutex_lock (&resource(&resource-->lock);>lock);
§§ ptrptr-->next = >next = freelistfreelist;;
§§ freelistfreelist = = ptrptr;;
§§ pthread_mutex_unlockpthread_mutex_unlock (&resource(&resource-->lock);>lock);
§§ }}

freelist NULL

mutexlock

thing

Knitting MachineKnitting Machine

System RequirementsSystem Requirements

§§ Motion ControlMotion Control
§§ Cylinder PositionCylinder Position
§§ Stitch CAM Stitch CAM
§§ Selector ActuationSelector Actuation
§§ Motion Faults (Stop Motion Inputs)Motion Faults (Stop Motion Inputs)
§§ OutputsOutputs
§§ User InterfaceUser Interface
§§ Network InterfaceNetwork Interface
§§ User Program and Configuration (Database)User Program and Configuration (Database)

System ArchitectureSystem Architecture

Physical Hardware

Output
Card

Input
Card

Motion Control Card
DevNet/Encoders/Stepper

Selector
Card

HC Output
Card

GUI
Touchscreen

K
er

ne
l S

pa
ce

User Space

Real-time Event Manager Thread
(main thread)

Encoder
Monitor
Thread

GUI
Input

Thread

Device
Driver

Device
Driver

Device
Driver

Device DriverDevice
Driver

Kernel
Thread

ISR

Kernel
Thread

Kernel
Thread

ISR ISR

DevNet
Monitor
Thread

Input
Monitor
Thread

Shared Memory (protected by Mutexes)

Encoder Counts

Input Faults

DevNet I/O Register System Flags

GUI Commands

GUI Updates GUI
Update
Thread

TCP/UDP
GUI Interface

QtLib App
running on Linux

ABI

Linux ABI Layer

Empress
Embedded DBMS

TCP Sockets

Motion ControlMotion Control

§§ Main Axis Main Axis -- CylinderCylinder
§§ Servo ControlServo Control
§§ Dynamic Motion Dynamic Motion

ProfilesProfiles
§§ BiBi--directionaldirectional
§§ Variable SpeedVariable Speed
§§ 50 to 300 RPM50 to 300 RPM

§§ Stitch CAMStitch CAM
§§ Stepper motorStepper motor
§§ Encoder feedbackEncoder feedback
§§ BiBi--directionaldirectional
§§ Incremental Incremental

PositioningPositioning

Main Servo SystemMain Servo System

Main Cylinder Main Cylinder –– 84 Needles84 Needles

Cylinder PositionCylinder Position

§§ 84 or 108 Needles84 or 108 Needles
§§ Encoder InterfaceEncoder Interface

§§ 2048 Pulses/Revolution2048 Pulses/Revolution
§§ ABZ Inputs with ABZ Inputs with

complementary inputscomplementary inputs
§§ Gated Index lineGated Index line

QuadratureQuadrature Encoder SignalsEncoder Signals

Encoder Timing RequirementsEncoder Timing Requirements

§§ Maximum RPM = 300 RPMMaximum RPM = 300 RPM
§§ Maximum Needle count = 108 NeedlesMaximum Needle count = 108 Needles
§§ Encoder generates 2048 pulses per revolutionEncoder generates 2048 pulses per revolution

§§ At max speed:At max speed:
300 Revs300 Revs x 1 Minutex 1 Minute x 2048 Pulsesx 2048 Pulses = 10,240 Pulses= 10,240 Pulses
1 Minute1 Minute 60 Seconds60 Seconds 1 Rev1 Rev Second Second

§§ This equates to an encoder interrupt every 97.65This equates to an encoder interrupt every 97.65µµs!s!

Hardware partitioningHardware partitioning

§§ Alternative is to interrupt per needle changeAlternative is to interrupt per needle change

§§ At max speed:At max speed:
300 Revs300 Revs x 1 Minutex 1 Minute x 108 Needlesx 108 Needles = 540 Needles= 540 Needles
1 Minute1 Minute 60 Seconds60 Seconds 1 Rev1 Rev SecondSecond

§§ This equates to a needle interrupt every 1.85mThis equates to a needle interrupt every 1.85mss

§§ To achieve this, encoder processing must be moved off To achieve this, encoder processing must be moved off
of the main CPU to a dedicated microcontrollerof the main CPU to a dedicated microcontroller

Encoder ArchitectureEncoder Architecture

LSB
C7..C0

MSB
D7..D0 STRA IBFA STRB IBFB

B2..B0

Microchip PIC16F877 20MHz

Intel 8255 PIC

Port A Port B Control Port

D7..D0 RD WR CS A1 A0 INT

8 8

8

ISA Bus Signals

Encoder SignalsEncoder Signals

Sense state change on ABZ lines

Write Data to data ports

Strobe STRB

IBF Lowered is ACK

Get STRB

Latches data from port

Sets IBF High

Triggers Interrupt line

Data is read

IOR lowers IBF

Gets IRQ

Fires ISR()

ISR Signals KT

KT Gets data via ioctl call

Reads Data

STRB

IBF

INTR

READ

DATA

1
2

3
4

5
6

1

2

3

4

5

6

Microchip PIC16F877 Intel 8255 PIC CPU (x86)

Selector ActuationSelector Actuation

§§ Selector Blocks utilize biSelector Blocks utilize bi--polar morphing actuatorspolar morphing actuators
§§ Control of actuator is via biControl of actuator is via bi--polar +/polar +/--48VDC48VDC
§§ Needed a custom solution (+/Needed a custom solution (+/--48VDC outputs not COTS)48VDC outputs not COTS)
§§ Each selector output has to be activated and deactivate Each selector output has to be activated and deactivate

within 100within 100µµs.s.
§§ Drive signals need to be standard 5VDC TTL levelsDrive signals need to be standard 5VDC TTL levels
§§ Result solution was a design incorporating biResult solution was a design incorporating bi--polar polar

drivers drivers
§§ Inputs Inputs --> 5VDC TTL> 5VDC TTL
§§ Outputs Outputs --> +/> +/--48VDC MOSFET Drivers48VDC MOSFET Drivers

Selector BanksSelector Banks

Selector DriverSelector Driver

Selector Card DesignSelector Card Design

Pneumatic OutputsPneumatic Outputs

RealReal--time Performancetime Performance

Final SystemFinal System

Software Packages UsedSoftware Packages Used

§§ Hardware DesignHardware Design
§§ ProtelProtel –– Schematic capture and PCB DesignSchematic capture and PCB Design
§§ XilinxXilinx –– VHDL DesignVHDL Design
§§ ModelSimModelSim –– VHDL SimulationVHDL Simulation

§§ Software DesignSoftware Design
§§ CIMplicityCIMplicity MotionFXMotionFX –– Motion Control DesignMotion Control Design
§§ C/C++ C/C++ -- Gnu Gnu toolchaintoolchain
§§ MicrochipMicrochip

§§ MLAB MLAB –– IDE for development, simulation, and debuggingIDE for development, simulation, and debugging
§§ LynxOSLynxOS –– RTOS from RTOS from LynuxworksLynuxworks
§§ Linux Linux –– RedHatRedHat 7.2 for GUI development7.2 for GUI development
§§ KDeveloperKDeveloper –– KDE/KDE/QtLibQtLib IDE for Linux native developmentIDE for Linux native development
§§ Empress Empress –– Embedded SQL databaseEmbedded SQL database
§§ SpyKerSpyKer –– Kernel Timing CaptureKernel Timing Capture

Technologies EmployedTechnologies Employed
§§ C/C++C/C++

§§ AssemblerAssembler

§§ VHDLVHDL

§§ Device Driver developmentDevice Driver development

§§ TCP/IP SocketsTCP/IP Sockets

§§ KDE/KDE/QtLibQtLib

§§ XWindowsXWindows

§§ SQLSQL

§§ Schematic CaptureSchematic Capture

§§ PCB Layout/DesignPCB Layout/Design

§§ Motion Control Motion Control
(Servo/Steppers)(Servo/Steppers)

§§ RTOSRTOS

§§ MultiMulti--threaded application threaded application
designdesign

§§ Concurrency / Concurrency / InterprocessInterprocess
communication issuescommunication issues

