
Renesas Electronics America Inc.

Designing Responsive and Real-Time
Systems
Chapter 10

Embedded Systems using the RX63N

00000-A

Rev. 1.0

© 2014 Renesas Electronics America Inc. All rights reserved.

Learning Objectives

 Most Embedded Systems have multiple real time tasks
running at the same time.

 “Which task should it perform first?” determines how
responsive the Processor is.

 Response of a Processor determines many important
matrices while choosing the right processor for our
application.

 In this chapter we will see how to design Responsive and
Real time Embedded Systems along with some task
scheduling approaches.

© 2014 Renesas Electronics America Inc. All rights reserved.

Scheduling

 Topic—How do we make the processor do things at the right
times?

 There are various methods, the best fit depends on:
 System requirements: response time
 Software complexity: number of threads of execution
 Resources: RAM, interrupts, energy available

© 2014 Renesas Electronics America Inc. All rights reserved.

Scheduling

 How do we schedule the tasks on the CPU?

 An infinite loop in main.
 Real-time operating system.
 Is there anything else available?

© 2014 Renesas Electronics America Inc. All rights reserved.

Scheduling

 A Simple Scheduling Example
 Consider an embedded system which controls a doorbell in a

house. When someone presses a switch, the doorbell should
ring. The system’s responsiveness describes how long it takes
from pressing the switch to sounding the bell.

– Simple code to realize the above example:

1. void main (void){

2. init_system();

3. while(1){

4. if(switch == PRESSED){

5. Ring_The_Bell();

6. }

7. }

8. }

© 2014 Renesas Electronics America Inc. All rights reserved.

Scheduling

 The doorbell in the previous example is very responsive.
What if we decide to throw in burglar detector and a smoke
detector?

– Our while loop should look like this:

3. while(1){

4. if(switch == PRESSED){

5. Ring_The_Doorbell();

6. }

7. if(Burglar_Detected() == TRUE){

8. Sound_The_Burglar_Alarm();

9. }

10. if(Smoke_Detected() == TRUE){

11. Sound_The_Fire_Alarm();

12. }

13. }

© 2014 Renesas Electronics America Inc. All rights reserved.

Scheduling

 How should we share the processor’s time between these
tasks?

 It depends on various factors:
 Delay between smoke detection and alarm going off?
 What if smoke is detected while someone is at the door and

someone is trying to break thorough the window? What gets
precedence?

 Now that we have to share the processor, we have to worry
about how long the bell rings and the alarms sound. If
doorbell rings for 30 seconds, it will run for 30 seconds.
During this time, we won’t know if our house is burning or
being robbed.

© 2014 Renesas Electronics America Inc. All rights reserved.

Scheduling

 This example reveals the two fundamental issues in
scheduling for responsive system:

 If we have multiple tasks ready to run, which one do we run
first? This decision defines the ordering of task execution.

 Do we allow one task to interrupt or preempt another task (or
even itself)?

 Both of these decisions will determine the system’s
responsiveness (measured by response time).

© 2014 Renesas Electronics America Inc. All rights reserved.

Task Ordering

– Trelease (i) = Time at which task i becomes ready to run.
– Tresponse (i) = Delay between request for service and

completion of service for task i.
– Ttask (i) = Time needed to perform computations for task i.
– TISR(i) = Time needed to perform interrupt service routine i.

© 2014 Renesas Electronics America Inc. All rights reserved.

Going Dynamic

 We can change the order based on current conditions (e.g.,
if the house is on fire) using a dynamic schedule.

 We will try to take a step forward and hard code the
priorities in our earlier home alarm system example.

– Code:

3. while(1){

4. if(Smoke_Detected() == TRUE){

5. Sound_The_Fire_Alarm();

6. }
7. else if (Burglar_Detected() == TRUE) Sound_The_Burglar_Alarm();

8. }

9. else if (switch == PRESSED) { Ring_The_Doorbell();

10. }

11. }

© 2014 Renesas Electronics America Inc. All rights reserved.

Going Dynamic

 The else clauses will change the schedule to a dynamic one.
 As long as smoke is detected, the burglar alarm and doorbell

will be ignored. Similarly, burglar detection will disable the
doorbell.

 This strict prioritization may or may not be appropriate for
a given system. We may want to ensure some fairness,
perhaps by limiting how often a task can run.

© 2014 Renesas Electronics America Inc. All rights reserved.

Task Preemption

 Can one of the tasks interrupt a lower priority task? Or do all
tasks run to completion?

 What if a burglar breaks a window a second after the
doorbell switch is pressed? We wait 30 seconds till we know
there is an intruder?

 No. We can just allow the smoke and burglar detection code
to preempt Ring_The_Doorbell. We will need to use a more
sophisticated task scheduler which can:
 (1) preempt and resume tasks.
 (2) detect events which trigger switching and starting tasks.

© 2014 Renesas Electronics America Inc. All rights reserved.

Is it Fair?

 Prioritizing some tasks over others can lead to starvation of
lower priority tasks? They might never get a chance to run.

 This scenario is called as starvation.
 Some ways to feed these lower priority tasks some

processor time and keep them happy.

 We can allow multiple tasks to share the same priority level. If
both tasks are ready to run, we alternate between executing
each of them (whether by allowing each task to run to
completion, or by preempting each periodically).

 We can limit how often each task can run by defining the task
frequency. This is the common approach used for designers of
real-time systems. Note that we can still allow only one task per
priority level.

© 2014 Renesas Electronics America Inc. All rights reserved.

Response Time and Preemption

 With the non-preemptive static
scheduler, each task’s response
time depends on the duration of
all other tasks and ISRs,
so there are nine dependences.

© 2014 Renesas Electronics America Inc. All rights reserved.

Response Time and Preemption

 With the non-preemptive dynamic
scheduler, we assign priorities to
tasks (A B C).

 Any task no longer depends on
lower priority tasks, so we
have more timing independence
and isolation.

 If C starts running, it means a delay
for other tasks, A and B each which
results in a total of eight
dependences.

© 2014 Renesas Electronics America Inc. All rights reserved.

Response Time and Preemption

 With the preemptive dynamic
scheduler, we also prioritize the
tasks (A B C). Because a task
can preempt any lower priority
task.

 As a result we have only
six dependences.

 This means that in order to
determine the response time for
a task, we only need to consider
higher priority tasks.

© 2014 Renesas Electronics America Inc. All rights reserved.

Stack Memory Requirements

 The non-preemptive approach requires only one call
stack, while a preemptive approach typically requires one
call stack per task.

 The function call stack holds a function’s state information,
such as return address and limited lifetime variables.

 Without task preemption, task execution does not overlap in
time, so all tasks can share the same stack.

© 2014 Renesas Electronics America Inc. All rights reserved.

Task Management

 A task will be in one of several possible states. The
scheduler and the task code itself both affect which state is
active.

 With a dynamic scheduler, a task can be in any one of the
Ready, Waiting, or Running states.

 Task management consists of:
 Changing states
 Context switching
 Sharing Data between tasks

© 2014 Renesas Electronics America Inc. All rights reserved.

Task States

 Waiting for the scheduler
to decide that this task
is ready to run.

 Ready to start running
but not running yet.
There may be a
higher-priority task
which is running.

 Running on the processor.

© 2014 Renesas Electronics America Inc. All rights reserved.

Transitions between States

 The transition from ready to running:
 In a non-preemptive system, when the scheduler is ready to

run a task, it selects the highest priority ready task and moves
it to the running state.

 In a preemptive system, when the kernel is ready to run a task,
it selects the highest priority ready task and moves it to the
running state by restoring its context to the processor.

 The transition from running to waiting:
 In a non-preemptive system, the only way a task can move

from running to waiting is if it completes.
 In a preemptive system, the task can yield the processor and

request a delay.

© 2014 Renesas Electronics America Inc. All rights reserved.

Transitions between States

 The transition from waiting to ready:
 In a non-preemptive system the timer tick ISR moves the task

by setting the run flag. Alternatively, another task can set the
run flag to request for this task to run.

 In a preemptive system, the kernel is notified that some event
has occurred so it moves that particular task from the waiting
state to the ready state.

 The transition from running to ready:
 In a non-preemptive system this transition does not exist, as a

task cannot be preempted.
 In a preemptive system, when the kernel determines a higher

priority task is ready to run, it will save the context of the
currently running task, and move that task to the ready state.

© 2014 Renesas Electronics America Inc. All rights reserved.

Context Switching for Preemptive Systems

 In preemptive systems, some of these state transitions
require the scheduler to save a task’s execution context and
restore another task’s context to ensure programs execute
correctly.

 This is called Context Switch.

© 2014 Renesas Electronics America Inc. All rights reserved.

Context Switching

 In order to perform a context switch from one task to
another correctly, we must first copy all of this task-specific
processor register information to a storage location (TCB of
first task).

 Next, we must copy all of the data from TCB of second task
into the CPU’s registers.

 Now the CPU will be able to resume execution of the Second
task where it left off.

© 2014 Renesas Electronics America Inc. All rights reserved.

Context Switching

 Saving Task A’s context:

© 2014 Renesas Electronics America Inc. All rights reserved.

Context Switching

 Restoring Task B’s
context:

© 2014 Renesas Electronics America Inc. All rights reserved.

Sharing Data

 Preemption among tasks introduces a vulnerability to data
race conditions.

 The system can fail in new ways when:
 Multiple tasks or ISRs share data, or
 Multiple instances of a function can execute concurrently

 In order to prevent these failures we need to be careful
when considering shared data.

© 2014 Renesas Electronics America Inc. All rights reserved.

Data Shared Objects

 If a data object is accessed by code which can be interrupted
(is not atomic), then there is a risk of data corruption.

 Atomic code is the smallest part of a program that executes
without interruption.

© 2014 Renesas Electronics America Inc. All rights reserved.

Data Shared Objects

– Code:

1. unsigned time_minutes, time_seconds;

2. void task1 (void){

3. time_seconds++;

4. if(time_seconds >= 60){

5. time_minutes++;

6. time_seconds = 0;

7. }

8. }

9. void task2 (void){

10. unsigned elapsed_sec;

11. elapsed_seconds = time_minutes * 60 + time_seconds;

12. }

© 2014 Renesas Electronics America Inc. All rights reserved.

Data Shared Objects

 In the code example our shared object is a pair of variables
which measure the current time in minutes and seconds.

 If task1 is preempted between lines 4 and 5 or lines 5 and 6,
then when task2 runs it will only have a partially updated
version of the current time, and elapsed_seconds will be
incorrect.

 If task2 is preempted during line 11, then it is possible that
time_minutes is read before task1 updates it and
time_seconds is read after task 1 updates it. Again, this
leads to a corrupted elapsed_seconds value.

© 2014 Renesas Electronics America Inc. All rights reserved.

Function Reentrancy

 Another type of shared data problem comes with the use of
non-reentrant functions.

– Code:
1. void task1 (){

2

3. swap(&x, &y);

4.

5. }

6. void task2 (){

7.

8. swap(&p, &q);

9.

10. }

11. int Temp;

12. void swap (*i, *j){

13. Temp = *j;

14. *j = *i;

15. *i = Temp;

16. }

© 2014 Renesas Electronics America Inc. All rights reserved.

Function Reentrancy

 Such functions are called non-reentrant. The code which
can have multiple simultaneous, interleaved, or nested
invocations which will not interfere with each other is called
reentrant code.

 In a multi-processing environment, the non-reentrant
functions should be eliminated.

 A function can be checked for its reentrancy based on these
three rules:
 A reentrant function may not use variables in a non-atomic

way unless they are stored on the stack of the calling task or
are the private variables of that task.

 A reentrant function may not call other functions which are
not reentrant.

 A reentrant function may not use the hardware in a non-
atomic way.

© 2014 Renesas Electronics America Inc. All rights reserved.

Shared-Data Solutions and Protection

 Disable Interrupts
 Disable the interrupts during the critical section of the task.

 Use a Lock
 RTOS-Provided Semaphore
 RTOS-Provided Messages
 Disable Task Switching

© 2014 Renesas Electronics America Inc. All rights reserved.

Disabling Interrupts

 One of the easiest methods is to disable the interrupts
during the critical section of the task.

 Once the critical section of the code is executed, the
interrupt masking can be restored to its previous state.

1. #define TRUE 1

2. #define FALSE 0

3. static int error;

4. static int error_count;

5. void error_counter (){

6. if(error == TRUE){

7. SAVE_INT_STATE;

8. DISABLE_INTS;

9. error_count++;

10. error = FALSE;

11. RESTORE_INT_STATE;

12. }

13. }

© 2014 Renesas Electronics America Inc. All rights reserved.

Use a Lock

 Associate every shared variable with a lock variable, which is
also declared globally.

 If a function uses the shared variable, then it sets the lock
variable; and once it has finished process, it resets the lock
variable.

 Every function must test the lock variable before accessing
it.

1. unsigned int var;

2. char lock_var;

3. void task_var (){

4. unsigned int sum;

5. if(lock_var == 0){

6. lock_var = 1;

7. var = var + sum;

8. lock_var = 0;

9. }

10. else { //message to scheduler to check var

12. }

14. }

© 2014 Renesas Electronics America Inc. All rights reserved.

RTOS-Provided Semaphore

 Most operating systems provide locks to shared variables
through the use of semaphores.

 A semaphore is a mechanism that uses most of the
multitasking kernels to protect shared data and to
synchronize two tasks.

© 2014 Renesas Electronics America Inc. All rights reserved.

Example of Semaphore

1. typedef int semaphore;

2. float temp;

3. semaphore var_temp

4. void Task1 (void){5. wait (var_temp);

6. temp = (9/5)(temp + 32); /* Celsius into Fahrenheit */

7. Signal (var_temp);

8. }

9. void Task2 (void){

10. wait(var_temp);

11. temp = ADDR0; /* Read ADC value from thermistor */

12. temp = ADCtotemp_conversion();

13. Signal (var_temp);

14. }

 Just before the tasks enter the critical section, they request
the semaphore and only then perform the operation on the
shared variable.

© 2014 Renesas Electronics America Inc. All rights reserved.

Nonpreemptive Dynamic Scheduler

 The scheduler has three fundamental parts.
 Task Table: This table holds information on each task,

including:
– The address of the task’s root function.
– The period with which the task should run (e.g., 10 ticks).
– The time delay until the next time the task should run

(measured in ticks).
– A flag indicating whether the task is ready to run.

 Tick ISR: Once per time tick (say each 1 millisecond) a
hardware timer triggers an interrupt.

 Task Dispatcher: It is simply an infinite loop which examines
each task’s run flag. If it finds a task with the run flag set to 1,
the scheduler will clear the run flag back to 0, execute the task,
and then go back to examining the run flags.

© 2014 Renesas Electronics America Inc. All rights reserved.

Nonpreemptive Dynamic Scheduler

© 2014 Renesas Electronics America Inc. All rights reserved.

Example Application Using RTC Scheduler

 Let’s use the RTC scheduler to create a toy with red and
green LEDs flashing at various frequencies. The grnLED task
toggles a green LED (on board LED 6) every one second,
and the redLED task toggles a red LED (on board LED 12)
every 0.25 seconds. The grn_redLED task toggles one red
LED and one green LED (on board LED 7 and LED 8
respectively) every 0.5 seconds.

© 2014 Renesas Electronics America Inc. All rights reserved.

Scheduler Code for Adding a New Task

1. int Add_Task(void (*task)(void), int time, int priority){

2. //Check for valid priority

3. if(priority >= MAX_TASKS || priority < 0)

4. return 0;

5. //Check to see if we are overwriting an already scheduled
task

6. if(GBL_task_table [priority].task != NULL)

7. return 0;

8. // Schedule the task

9. GBL_task_table[priority].task = task;

10. GBL_task_table[priority].run = 0;

11. GBL_task_table[priority].timer = time;

12. GBL_task_table[priority].enabled = 1;

13. GBL_task_table[priority].initialTimerValue = time;

14. return 1;

15. }

© 2014 Renesas Electronics America Inc. All rights reserved.

Scheduler Code for Task Timer Initialization

1. void init_Task_Timers(void){

2. int i;

3. // Initialize all tasks

4. for(i = 0; i < MAX_TASKS; i++){

5. GBL_task_table[i].initialTimerValue = 0;

6. GBL_task_table[i].run = 0;

7. GBL_task_table[i].timer = 0;

8. GBL_task_table[i].enabled = 0;

9. GBL_task_table[i].task = NULL;

10. }

11. }

© 2014 Renesas Electronics America Inc. All rights reserved.

Scheduler Code Initialization

1. void Init_RTC_Scheduler(void){

2. IEN(TMR0,CMIA0) = 0;

3. IPR(TMR0,CMIA0) = 3;

4. MSTP(TMR0) = 0;

5. TMR0.TCNT = 0x00;

6. TMR0.TCORA = 78;

7. TMR0.TCSR.BYTE = 0xE2;

8. IEN(TMR0,CMIA0) = 1;

9. TMR0.TCCR.BYTE = 0x0C;

10. TMR0.TCR.BYTE = 0x48;

11. }

 A timer is set up to generate an interrupt at regular
intervals. Within the interrupt service routine the timer value
for each task is decremented.

 When the timer value reaches zero, the task becomes ready
to run.

© 2014 Renesas Electronics America Inc. All rights reserved.

Schedular code for Running Tasks
1. void Run_RTC_Scheduler(void){

2. int i;

3. // Loop forever

4. while(1){

5. // Check each task

6. for(i = 0; i < MAX_TASKS; i++){

7. // check if valid task

8. if(GBL_task_table[i].task != NULL){

9. // check if enabled

10. if(GBL_task_table[i].enabled == 1){

11. // check if ready to run

12. if(GBL_task_table[i].run == 1){

13. // Reset the run flag

14. GBL_task_table[i].run = 0;

15. // Run the task

16. GBL_task_table[i].task();

17. // break out of loop to start at entry 0

18. break;

19. }

20. }

21. }

22. }

23. }

24. }

© 2014 Renesas Electronics America Inc. All rights reserved.

Code – Tasks and Main

1. void grnLED(void){

2. if(LED3 == LED_ON)

3. LED3 = LED_OFF;

4. else

5. LED3 = LED_ON;

6. }

7. void redLED(void){

8. if(LED4 == LED_ON)

9. LED4 = LED_OFF;

10. else

11. LED4 = LED_ON;

12.}

13.void grn_redLED(void){

14. if(LED5 == LED_ON)

15. LED5 = LED9 = LED_OFF;

16. else

17. LED5 = LED9 = LED_ON;

18.}

© 2014 Renesas Electronics America Inc. All rights reserved.

Code – Tasks and Main

1. void main(void){

2. ENABLE_LEDS;

3. init_Task_Timers();

4. Add_Task(grnLED,10000,0);

5. Add_Task(redLED,2500,1);

6. Add_Task(grn_redLED,5000,2)

7. Init_RTC_Scheduler();

8. Run_RTC_Scheduler();

9. }

© 2014 Renesas Electronics America Inc. All rights reserved.

In This Chapter We Learned

 Scheduling
 Task Ordering
 Dynamic Scheduling
 Task Preemption and Response time
 Task Management
 Task States
 Transitioning between states
 Context Switching
 Shared Data problems and its solutions
 Example: Non preemptive dynamic scheduler

© 2014 Renesas Electronics America Inc. All rights reserved.

Renesas Electronics America Inc.
© 2014 Renesas Electronics America Inc. All rights reserved.

	Designing Responsive and Real-Time Systems
	Learning Objectives
	Scheduling
	Scheduling
	Scheduling
	Scheduling
	Scheduling
	Scheduling
	Task Ordering
	Going Dynamic
	Going Dynamic
	Task Preemption
	Is it Fair?
	Response Time and Preemption
	Response Time and Preemption
	Response Time and Preemption
	Stack Memory Requirements
	Task Management
	Task States
	Transitions between States
	Transitions between States
	Context Switching for Preemptive Systems
	Context Switching
	Context Switching
	Context Switching
	Sharing Data
	Data Shared Objects
	Data Shared Objects
	Data Shared Objects
	Function Reentrancy
	Function Reentrancy
	Shared-Data Solutions and Protection
	Disabling Interrupts
	Use a Lock
	RTOS-Provided Semaphore
	Example of Semaphore
	Nonpreemptive Dynamic Scheduler
	Nonpreemptive Dynamic Scheduler
	Example Application Using RTC Scheduler
	Scheduler Code for Adding a New Task
	Scheduler Code for Task Timer Initialization
	Scheduler Code Initialization
	Schedular code for Running Tasks
	Code – Tasks and Main
	Code – Tasks and Main
	In This Chapter We Learned
	Slide Number 47

