
Renesas Electronics America Inc.

Serial Communications
Chapter 7

Embedded Systems using the RX63N

00000-A

Rev. 1.0

© 2014 Renesas Electronics America Inc. All rights reserved.

In this chapter we will learn:

 General Communications
 Serial Communications

 RS232 Standard
 UART Operation
 RSPI Operation
 I2C

© 2014 Renesas Electronics America Inc. All rights reserved.

Data Communications

 The International Organization for Standardization (ISO) has
established a reference model which organizes network
function in seven layers.

 Each layer provides a service to the layer above and
communicates with the same layer’s software or hardware
on other computers.

 Layers 5-7 are
concerned with
services for the
applications.

 Layers 1-4 are
concerned with
the flow of data
from end to end
through the
network.

© 2014 Renesas Electronics America Inc. All rights reserved.

Physical Layer (1) – Serial Communications

 The basic premise of serial communications is that one or
two wires are used to transmit digital data.
 An extra ground reference wire is also needed.

 Communication can be one way or two way, however, most
often two way, hence the need for two communication wires.

 Other wires are often used for other aspects of the
communications such as: ground, “clear-to-send,” “data
terminal ready,” etc.

© 2014 Renesas Electronics America Inc. All rights reserved.

Serial Communication Basics

 Send one bit of the message at a time.
 Message field consists of:

 Start bit (one bit)
 Data (LSB first or MSB, and size – 7, 8, 9 bits)
 Optional parity bit is used to make total number of ones in data

even or odd
 Stop bit (one or two bits)

 All devices on network or link must use the same
communications parameters, such as speed, for example.

© 2014 Renesas Electronics America Inc. All rights reserved.

Bit Rate vs. Baud Rate

 Bit Rate:
 How many data bits are transmitted per second

 Baud Rate:
 How many symbols are transmitted per second
 A symbol may be represented by a voltage level, a sine wave’s

frequency or phase, etc.
 Extra symbols (channel changes) may be inserted for

framing, error detection, acknowledgment, etc. These
reduce the bit rate.

 A single symbol might encode more than one bit. This
increases the bit rate.

© 2014 Renesas Electronics America Inc. All rights reserved.

UART Concepts

 UART stands for Universal Asynchronous
Receiver/Transmitter

 Universal
 Configurable to fit protocol requirements

 Asynchronous
 No clock line needed to de-serialize bits

 Receiver/Transmitter
 Signals can be both received and transmitted

© 2014 Renesas Electronics America Inc. All rights reserved.

General UART Concepts

 The UART subsystem consists of:
 Two shift registers

 Parallel to serial for transmit
 Serial to parallel for receive

 Programmable clock source
 Clock must run at 16x desired bit rate

 Error detection
 Detect bad stop or parity bits
 Detect receive buffer overwrite

 Interrupt generators
 Character received
 Character transmitted, ready to send another

© 2014 Renesas Electronics America Inc. All rights reserved.

General UART Concepts cont.

 Here is a circuit representation of a Serial Input Parallel
Output (SIPO) shift register,

 and a Parallel Input Serial Output (PISO) shift register.

[1]

[1]

© 2014 Renesas Electronics America Inc. All rights reserved.

Block Diagram of RX63N Serial
Communications Interface

[2]
© 2014 Renesas Electronics America Inc. All rights reserved.

SCI in UART Mode

 In order to communicate from the RX63N chip, you need to
set up several registers, including:
 Mode
 Speed
 Parity
 Stop bits
 Configuration

 There are two primary “Data Registers”:
 SCIx.RDR (Receive Data Register)
 SCIx.TDR (Transmit Data Register)

© 2014 Renesas Electronics America Inc. All rights reserved.

Serial Mode Register (SMR)

 This special function register is concerned with operational
variations of the UART.

 The bits related to the SMR are:
 CKS: transmission speed
 MP: Multi processor (set to 0)
 STOP: Stop bits
 PM: Parity mode
 PE: Parity Enable
 CHR: Length of data
 CM: Communications mode

 The following slide contains the values each bit can be set
to.

[2]

© 2014 Renesas Electronics America Inc. All rights reserved.

Serial Mode Register (SMR) cont.

[2]

© 2014 Renesas Electronics America Inc. All rights reserved.

Serial Control Register (SCR)
 This register is responsible for controlling whether the Serial

Communications Interface is turned on or off, the choice of
input clock to the shift register, and function of the SCK pin

 The following two slides contain the values each bit can be
set to, as well as their description.

[2]

© 2014 Renesas Electronics America Inc. All rights reserved.

Serial Control Register (SCR) cont.

[2]

© 2014 Renesas Electronics America Inc. All rights reserved.

Serial Control Register (SCR) cont.

[2]

© 2014 Renesas Electronics America Inc. All rights reserved.

Serial Status Register (SSR)

 The SSR is a read only register which indicates the status of
the currently received byte over the corresponding SCI.

 TEND:
 This flag is set at the end of transmission of a byte from the

TDR or in case the serial transmission is disabled.
 PER:

 Parity error flag.
 FER:

 This flag indicates if there is a framing error.
 ORER:

 Overrun error flag.
 MPB and MPBT bits are multi-processor related.

[2]

© 2014 Renesas Electronics America Inc. All rights reserved.

Setting up the Speed of the Serial Port

 The speed of communications is a combination of:
 PCLK
 Bits CKS in the SMR
 The Bit Rate Register (BRR)

 Formula:

 B=bit rate, N=BRR setting, n=CKS setting

 If you, for example, want to communicate at 38,400 bps,
and your PCLK is 50 MHz, n should be set to 0 and N should
be set to 40.

 SCI0.BRR.BYTE = 40

© 2014 Renesas Electronics America Inc. All rights reserved.

Error Rate

 Since you cannot get an exact value of xx.0 there is an error
rate associated with calculating the bit rate

 Formula:

 For example, communication at 38,400 bps, with a PCLK of
50 MHz, n set to 0 and N set to 40, the percent error will be:

© 2014 Renesas Electronics America Inc. All rights reserved.

Bit Rates and Percent Errors

[1]

© 2014 Renesas Electronics America Inc. All rights reserved.

Serial Communications and Interrupts

 There are three separate threads of control in the program:
 Main program and subroutines it calls
 Transmit ISR

– Executes when UART is ready
to send another character

 Receive ISR
– Executes when UART receives a

character
 Problem: Information needs to be

buffered between threads:
 Solution: circular queue with head

and tail pointers
 One for Tx and one for Rx

© 2014 Renesas Electronics America Inc. All rights reserved.

Code Implementing Queues

 Enqueue at tail
 tail_ptr points to next free entry

 Dequeue from head
 head_ptr points to item to remove

 #define the queue size makes it
easy to change in the future

 One queue direction
 Tx ISR unloads tx_q
 Rx ISR loads rx_q

 Other threads (e.g., main) load tx_q
and unload rx_q

 Queue is empty if size == 0
 Queue is full if size == Q_SIZE

© 2014 Renesas Electronics America Inc. All rights reserved.

Defining the Queues

#define Q_SIZE (32)

typedef struct {
unsigned char Data[Q_SIZE];
unsigned int Head; //points to oldest data element
unsigned int Tail; //points to next free space
unsigned int Size; //quantity of elements in queue

} Q_T;
Q_T tx_q, rx_q;

© 2014 Renesas Electronics America Inc. All rights reserved.

Initialization and Status Inquiries

void Q_Init(Q_T * q) {
unsigned int i;
for (i=0; i<Q_SIZE; i++)

q->Data[i] = 0; //simplifies debugging
q->Head = 0;
q->Tail = 0;
q->Size = 0;

}

int Q_Empty(Q_T * q) {
return q->Size == 0;

}
int Q_Full(Q_T * q) {

return q->Size == Q_SIZE;
}
© 2014 Renesas Electronics America Inc. All rights reserved.

Enqueue and Dequeue

// Q_Enqueue – Called by a UART ISR – put a char on the queue
int Q_Enqueue(Q_T * q, unsigned char d) {

if (!Q_Full(q)) { // Check if queue is full
q->Data[q->Tail++] = d;
q->Tail %= Q_SIZE;
q->Size++;
return 1; // success

} else
return 0; // failure

}

// Q_Dequeue–called by a consumer function–take a char from queue
unsigned char Q_Dequeue(Q_T * q) {

unsigned char t=0;
if (!Q_Empty(q)) { //Check to see if queue is empty

t = q->Data[q->Head];
q->Data[q->Head++] = 0; // to simplify debugging, clear
q->Head %= Q_SIZE;
q->Size--;

}
return t;

}

© 2014 Renesas Electronics America Inc. All rights reserved.

Renesas Serial Peripheral Interface (RSPI)

 Synchronous communication
 Can work with as few as three

wires, but more needed to access
additional devices

 Better method to access peripherals
than parallel I/O

 Common clock means you can
transmit at 25.0 Mbps

 Intended for very short distances
(i.e., on-board)

 The RX63N has three SPI masters

[1]

© 2014 Renesas Electronics America Inc. All rights reserved.

SPI Details

 Serial Clock (RSPCK)
 Master Out, Slave in (MOSI)

 Transmission from RX63N
 Master In, Slave Out (MISO)

 Transmission from peripheral)
 Slave Select (SSLx)

 Select one of the peripheral devices\
 We will only cover SPI in Slave Mode

[1]

© 2014 Renesas Electronics America Inc. All rights reserved.

SPI Registers

 Serial Peripheral Control Register (SPCR)
 Serial Peripheral Control Register (SPCR2)
 Slave Select Polarity (SSLP)
 Serial Peripheral Pin Control Register (SPPCR)
 Serial Peripheral Status (SPSR)
 Serial Peripheral Data Register (SPDR)
 Serial Peripheral Bit Rate Register (SPBR)
 Serial Peripheral Clock Delay Register (SPCKD)

© 2014 Renesas Electronics America Inc. All rights reserved.

Serial Peripheral Control Register (SPCR)

 This register controls the operating mode of the RSPI.

[2]

[2]
© 2014 Renesas Electronics America Inc. All rights reserved.

Serial Peripheral Control Register (SPCR2)

 This register adds to the controllability of the operating
mode of the Renesas SPI.

[2]

[2]

© 2014 Renesas Electronics America Inc. All rights reserved.

Slave Select Polarity (SSLP):

 This register sets the polarity of the slave select lines SSL0
to SSL3 of the Renesas SPI module.

[2]

[2]

© 2014 Renesas Electronics America Inc. All rights reserved.

Serial Peripheral Pin Control Register (SPPCR)

 This register sets the modes of the RSPI pins.

[2]

[2]

© 2014 Renesas Electronics America Inc. All rights reserved.

Serial Peripheral Status (SPSR)

 This register is an indicator of the current operating status of
the RSPI.

[2]

[2]

© 2014 Renesas Electronics America Inc. All rights reserved.

Serial Peripheral Data Register (SPDR)

 This register contains data to be transmitted and data
received over the SPI channel.

[2]

© 2014 Renesas Electronics America Inc. All rights reserved.

Serial Peripheral Bit Rate Register (SPBR)

 The value of this register determines the rate of data
transfer.

[2]

[1]

© 2014 Renesas Electronics America Inc. All rights reserved.

Serial Peripheral Clock Delay Register (SPCKD)
 The value of this register sets a period from the beginning of

SSL signal assertion to the clock oscillations on the RSPK
line.

[2]

[2]

© 2014 Renesas Electronics America Inc. All rights reserved.

I2C (IIC)

 Inter-Integrated Circuit Bus
 A two line bus for communicating data at high speeds
 Multiple devices on the same bus with only one master

controlling the bus
 Needs pull up resistors and is kept at a digital high level

when idle

[1]

© 2014 Renesas Electronics America Inc. All rights reserved.

I2C Working

 Two wires:
 SCL (Serial Clock): Synchronizing data transfer on the data line.
 SDA (Serial Data): Responsible for transferring data between

devices.
 Together they can toggle in a controlled fashion to indicated

certain important conditions that determine the status of the
bus and intentions of the devices on the bus.

 Before any form of data transfer takes place, a device
wanting to transfer data must take control of the bus
(monitor the bus).

© 2014 Renesas Electronics America Inc. All rights reserved.

I2C Working cont.

 If the bus is held high, then it is free. A device may issue a
START condition and take control of the bus.

 If a START condition is issued, no other device will transmit
data on the bus (predetermined behavior for all devices).

© 2014 Renesas Electronics America Inc. All rights reserved.

I2C Working cont.

 When device is ready to give up control of the bus, it issues
a STOP condition.

 STOP condition is one in which the SDA line gets pulled high
while the SCL line is high.

 Other conditions: RESTART (combination of a START and
STOP signal).

© 2014 Renesas Electronics America Inc. All rights reserved.

I2C Working cont.

 Address the slave device with one byte of data which
consists of a 7-bit address + 1 bit (R/W).

 If this bit is low, it indicates that the master wants to write
to the slave device; if high, the master device wishes to read
from the slave. This determines whether the next
transactions are going to be read from or written to the
addressed slave devices.

 A ninth bit (clock) is transmitted with each byte of data
transmitted (ACK(Logic 0)/NACK(logic 1) bit). The slave
device must provide an ACK within the ninth cycle to
acknowledge receipt of data.

© 2014 Renesas Electronics America Inc. All rights reserved.

I2C Working cont.

© 2014 Renesas Electronics America Inc. All rights reserved.

What we have covered

 Basics of communication
 Creating queues
 Various transmission protocols and how to operate them:

 RS232
 UART
 RSPI
 I2C

© 2014 Renesas Electronics America Inc. All rights reserved.

References

 [1] Embedded Systems, An Introduction Using the Renesas
RX63N Microcontroller

 [2] Renesas Electronics, Inc. (February, 2013). RX63N
Group, RX631 Group User’s Manual: Hardware, Rev.1.60.

© 2014 Renesas Electronics America Inc. All rights reserved.

Renesas Electronics America Inc.
© 2014 Renesas Electronics America Inc. All rights reserved.

	Serial Communications
	In this chapter we will learn:
	Data Communications
	Physical Layer (1) – Serial Communications
	Serial Communication Basics
	Bit Rate vs. Baud Rate
	UART Concepts
	General UART Concepts
	General UART Concepts cont.
	Block Diagram of RX63N Serial Communications Interface
	SCI in UART Mode
	Serial Mode Register (SMR)
	Serial Mode Register (SMR) cont.
	Serial Control Register (SCR)
	Serial Control Register (SCR) cont.
	Serial Control Register (SCR) cont.
	Serial Status Register (SSR)
	Setting up the Speed of the Serial Port
	Error Rate
	Bit Rates and Percent Errors
	Serial Communications and Interrupts
	Code Implementing Queues
	Defining the Queues
	Initialization and Status Inquiries
	Enqueue and Dequeue
	Renesas Serial Peripheral Interface (RSPI)
	SPI Details
	SPI Registers
	Serial Peripheral Control Register (SPCR)
	Serial Peripheral Control Register (SPCR2)
	Slave Select Polarity (SSLP):
	Serial Peripheral Pin Control Register (SPPCR)
	Serial Peripheral Status (SPSR)
	Serial Peripheral Data Register (SPDR)
	Serial Peripheral Bit Rate Register (SPBR)
	Serial Peripheral Clock Delay Register (SPCKD)
	I2C (IIC)
	I2C Working
	I2C Working cont.
	I2C Working cont.
	I2C Working cont.
	I2C Working cont.
	What we have covered
	References
	Slide Number 45

