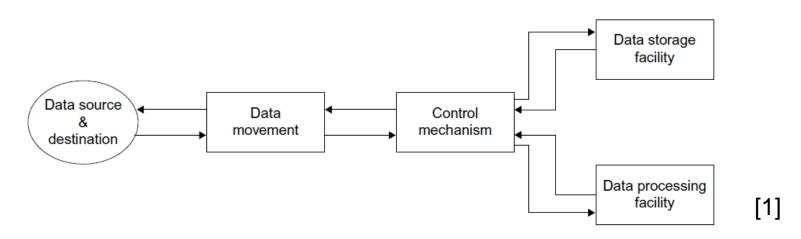


Organization and Architecture of the Renesas RX63N Microcontroller Board Chapter 3

Renesas Electronics America Inc. Embedded Systems using the RX63N


Rev. 1.0

In this chapter we will learn:

- Basic organization of computers
- Architecture of the Renesas RX63N board
- Endianness, data arrangement, and bus specification in RX63N CPU
- Data types, operating modes, and memory map of RX63N CPU

Introduction to Computer Organization & Architecture

- Computer systems looked at from a hierarchical point of view
- Four basic functions for a computer to perform are:
 - 1. Data processing
 - 2. Data storage
 - 3. Data movement
 - 4. Data control
- The following illustration outlines how data flows between the differend components

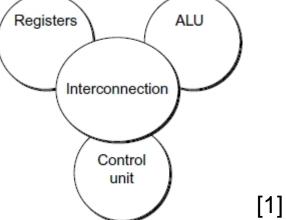
Structural Components of a Computer

- The four main structural components of a computer are:
 - CPU: Processes the data and controls the operation of computer.
 - Memory: Stores data.
 - I/O: Moves the data between the computer and the external environment.
 - **System Interconnection:** Provides a mechanism for transferring data or communicating between components such as the CPU, main memory, and I/O.

I/O

System > interconnection

CPU



Memory

[1]

Central Processing Unit

- The Central Processing Unit (CPU) is the most complex component of the system
- The components that make up the CPU are:
 - Control Unit: Controls the operation of the CPU.
 - Arithmetic and Logic Unit (ALU): Performs the computer's data processing functions.
 - Registers: Provides internal storage for the CPU. They store ALU operands.
 - Interconnections: Provides a mechanism for transferring data or communicating between components such as the Control Unit, ALU, and registers.

- The RX63N microcontroller architecture has the following components:
 - Central Processing Unit:
 - CPU: It is a 32-bit RX CPU with maximum operating frequency of 100MHz.
 - Floating Point Unit (FPU): This unit is a single precision
 (32-bit) floating point unit which supports data type.
 - Memory:
 - ROM: RX63N variants have the following ROM capacities:
 ROMless, 256 Kbytes, 384 Kbytes, 512 Kbytes, 768 Kbytes,
 1Mbyte, 1.5 Mbytes, 2 Mbytes.
 - RAM: Its variants have the following capacities: 64 Kbytes,
 128 Kbytes, 192 Kbytes, 256 Kbytes.
 - E2 Data Flash: Its capacity is 32 Kbytes.

Clock Generation Circuit:

- The clock generation circuit consists of two circuits: a main clock oscillator and a sub clock oscillator.
- The system clock (ICLK) operates at up to 100 MHz.
- The peripheral clock (PCLK) and external bus clock (BCLK) operate at up to 50 MHz.

Reset:

- There are various reset sources available, such as: pin reset, power-on reset, watchdog timer reset, and deep software standby reset.
- Voltage detection circuit:
 - When the voltage available on VCC falls below the voltage detection level (V_{det}), an internal reset or internal interrupt is generated.

- External bus extension:
 - The external address space is divided into nine areas: CS0 to CS7 and SDCS
 - A chip-select signal (CS0# to CS7#, SDCS#) can be output for each area
 - Each area is specifiable as an 8-, 16-, or 32-bit bus space
- Direct Memory Access (DMA):
 - The DMA system consists of three different controllers:
 - DMA controller: Has four channels and three transfer modes: normal transfer, repeat transfer, and block transfer.
 - EXDMA controller: Has two channels and four transfer modes: normal transfer, repeat transfer, block transfer, and cluster transfer.
 - Data transfer controller: Has three transfer modes: normal transfer, repeat transfer, and block transfer.

- I/O ports:
 - The main modules of I/O ports are programmable I/O ports.
 - The number of programmable I/O ports depends on the package.

Timers:

- Seven timers are available for controlling the sequence of events or processes. Some timers are:
 - Watchdog timer (14 bits)
 - 8-bit timers
 - Compare-match timer (16 bits)
- Communication function:
 - Controllers used for communicating with the outside world, examples:
 - Ethernet controller (10 or 100 Mbps)
 - USB 2.0 host/function module (USB 2.0, up to 12 Mbps)
 - Serial communication interfaces (13 channels)
 - I²C bus interfaces (up to 1 Mbps)

- A/D converter:
 - 12-bit or 10-bit
 - Single scan mode and continuous scan mode
- D/A converter:
 - Two channels, 10-bit resolution
- CRC calculator:
 - Generates code for data in 8-bit units
- Low power consumption:
 - Four low power consumption modes are available: sleep mode, all-module clock stop mode, software standby mode, and deep software standby mode
- Interrupt:
 - 187 peripheral function interrupts are available
 - 16 external interrupts pins (IRQ0 to IRQ15)
 - 16 levels of interrupt priority can be specified

- Temperature sensor:
 - On-chip temperature sensor with 1 channel
 - Precision of 1°C.
- Data encryption unit:
 - AES encryption and decryption functions
 - 128/192/256-bit key lengths

Terms Frequently Used

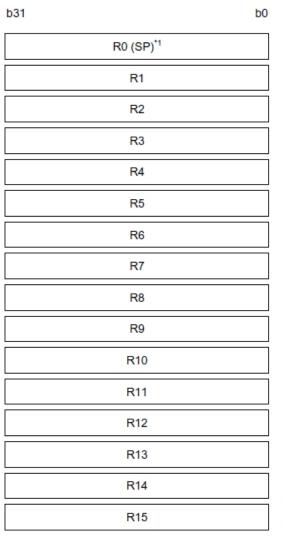
DEFINITION OF TERMS:										
ETHERC:	Ethernet Controller	WDT:	Watchdog timer							
EDMAC:	DMA controller for Ethernet controller	IWDT:	Independent watchdog timer							
ICU:	Interrupt control unit	CRC:	Cyclic redundancy check calculator							
DTC:	Data transfer controller	MPU:	Memory-protection unit							
DMACA:	DMA controller	SCI:	Serial communications interface							
EXDMAC:	EXDMA controller	USB:	USB 2.0 host/function module							
BSC:	Bus controller	RSPI:	Serial peripheral interfaces							
CAN:	CAN module	TMR:	8-bit timer							
MTU:	Multi-function timer pulse unit	CMT:	Compare match timer							
POE:	Port output enable	RTC:	Realtime clock							
PPG:	Programmable pulse generator	RIIC:	I ² C bus interface							

[1]

CPU

- The CPU used in RX63N/RX631 group of MCU's supports high-speed and high-performance.
- The instruction set architecture (ISA) has 90 instructions:
 - 73 are basic instructions
 - Eight are floating-point operation instructions
 - Nine are digital signal processing (DSP) instructions
- The CPU has a five stage pipeline for processing instructions:
 - Instruction fetching stage
 - Instruction decoding stage
 - Execution stage
 - Memory access stage
 - Write-back stage

Register Set


- The RX CPU has 16 general-purpose registers, nine control registers, and one accumulator used for DSP instructions
- The general-purpose registers can be used as data or address registers
- The nine control registers are:
 - Interrupt stack pointer (ISP)/User stack pointer (USP)
 - Holds the value zero after a reset
 - 32 bits
 - Interrupt table register (INTB)
 - Points to the address of the relocatable vector table
 - Program counter (PC)
 - Points to the address of the instruction that will be executed next
 - Processor status word (PSW)
 - Indicates the status of the processor; e.g., result is negative, result is zero, overflow has occurred etc.

Register Set cont.

- Backup PC (BPC)
 - Speeds up the response of interrupts
 - Backs up the program counter
- Backup PSW (BPSW)
 - After a fast interrupt has been generated, the contents of the processor status word (PSW) are saved in this register
- Fast interrupt vector register (FINTV)
 - As soon as a fast interrupt is generated, the FINTV register specifies a branch destination address.
- Floating-point status word (FPSW)
 - Indicates the result of floating-point operations

Register Set cont.

General-purpose register

Control register

ISP (interrupt stack pointer)	
USP (User stack pointer)	
INTB (Interrupt table register)	
PC (Progam counter)	
PSW (Process status word)	
BPC (Backup PC)	
BPSW (Backup PSW)	
FINTV (Fast interrupt vector register)	
FPSW (Floating point status word)	

DSP instruction register

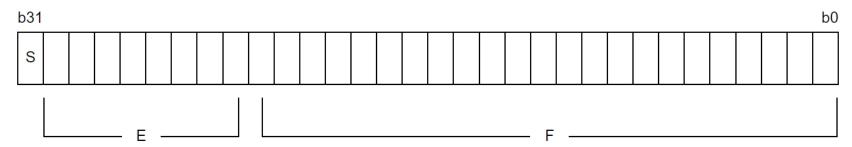
b63 b16 b15 b0 ACC (Accumulator)

[1]

[1]

Data Types cont.

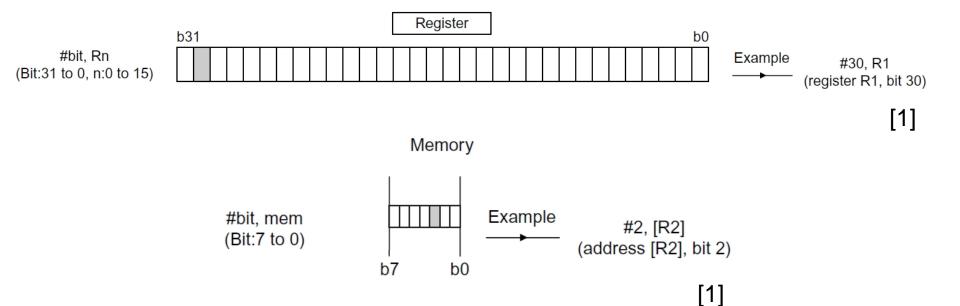
- The RX CPU supports four types of data:
 - Integer:
 - 8-, 16-, or 32-bit
 - Signed or Unsigned


		b7	b0
Signed byte (8-bit) Integer			
		b7	b0
Unsigned byte (8-bit) Integer			
	b15		b0
Signed word (16-bit) Integer			
	b15		b0
Unsigned word (16-bit) Integer			
b31			b0
Signed longword (32-bit) Integer			
b31			b0
Unsigned longword (32-bit) Integer			

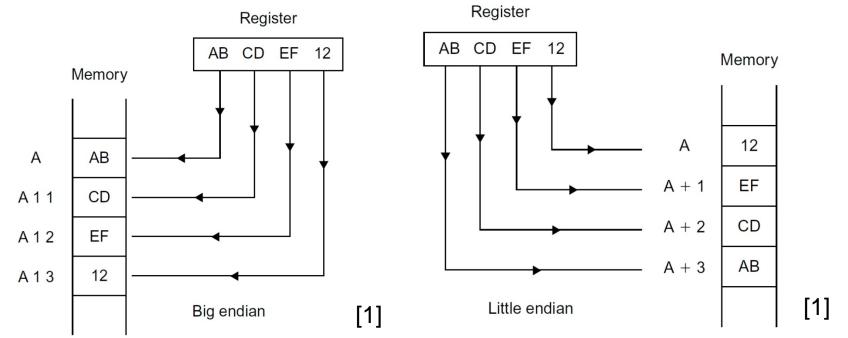
[1]

[1]

Data Types cont.


- Floating-Point:
 - RX Family supports single precision floating-point computation following the IEEE 754 standard
 - There are eight floating point operations available:
 - FADD, FCMP, FDIV, FMUL, FSUB, FTOI, ITOF, and ROUND
 - Single-precision floating-point
 - S: Sign (1 bit)
 - E: Exponent (8 bits)
 - F: Mantissa (23 bits)

Value =
$$(-1)^S \times (1 + F \times 2^{-23}) \times 2^{(E-127)}$$
 [1]


Data Types cont.

- Bitwise Operations:
 - Operations available:
 - BCLR, BMCnd, BNOT, BSET, and BTST
 - Notation used:
 - "#bit, R_n", which means: corresponding bit in register n
 - i.e., #30, R1 = 30th bit in R1 register
 - For bitwise operations in memory "#bit, mem." is used

Endianness

- Endianness refers to the arrangement of sub-units such as bytes within a longer data word, while storing it in memory.
 - Big endian: The most significant byte (MSB) is stored at the lowest byte address of the memory.
 - Little endian: The least significant byte (LSB) is stored at the lowest address of the memory.
- The RX63N/RX631 Group supports both big and little endian.

Data Arrangement

- Data Arrangement in Registers
 - The least significant bit is the rightmost bit while the most significant bit is the leftmost bit

			b7	bC
Byte (8-bit) data				
		b15		b(
Word (16-bit) data				
	b31		•	b
Longword (32-bit) data				
	MSB	·		LSE
				[1]

Data Arrangement cont.

- Data Arrangement in Memory
 - Byte (8-bit), word (16-bit), or longword (32-bit)
 - Different depending on whether little or big endian is used

Data type	Address	Little endian						E	Big e	ndia	n						
		b7							b0	b7							b0
1-bit data	Address L	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
Byte data	Address L	MSB							LSB	MSB							LSB
Word data	Address M								LSB	MSB							
Word data	Address M + 1	MSB															LSB
	Address N								LSB	MSB							
Language data	Address N + 1																
Longword data	Address N + 2																
	Address N + 3	MSB															LSB

Bus Specification

- CPU bus
 - Instruction bus and Operand bus:
 - Connects the CPU to on-chip memory (RAM and ROM)
 - Operates in synchronization with the system clock (ICLK)
- Memory bus
 - Memory bus 1 and 2:
 - Connected to the on-chip RAM
- Internal main bus
 - Internal main bus 1:
 - Connected to CPU
 - Internal main bus 2:
 - Connected to DMACA, DTC, EDMAC, and on-chip RAM and ROM

Description of Buses

- CPU Buses
 - Fetches instructions for the CPU and accesses operands
 - Programming and erasure is handles by the internal peripheral bus
 - Bus-access operations can proceed simultaneously; e.g., parallel access to on-chip RAM or ROM
- Memory bus
 - Accesses on-chip ROM and RAM
- Internal main bus

 Internal main bus 1 is used by the CPU and internal main bus 2 is used by other bus-master modules such as DTC, DMACA, and FDMAC.

Bus master priority:

PRIORITY	BUS MASTER
High	
A	EDMAC
	DMACA
	DTC
l	CPU
Low	

Description of Buses cont.

- Internal peripheral bus
 - The table below lists the six internal peripheral buses and what peripheral modules they are connected to

TYPES OF BUS	PERIPHERAL MODULES
Internal peripheral bus 1	DTC, DMAC
	EXDMAC
	Interrupt controller
	Bus error monitoring section
Internal peripheral bus 2	Peripheral modules other than those connected to internal peripheral buses 1, 3, 4, and 5
Internal peripheral bus 3	USB
Internal peripheral bus 4	EDMAC and ETHERC
Internal peripheral bus 5	Reserved area
Internal peripheral bus 6	ROM (P/E)/E2 DataFlash memory, and FCU RAM

Description of Buses cont.

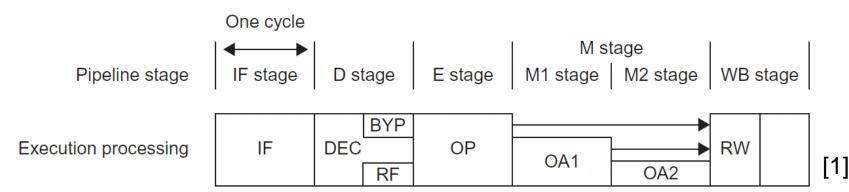
- External Bus
 - Arbitrates requests from the internal main bus 1, 2, and EXDMAC, and decides the master
 - The order of priority is, from high to low:
 - EXDMAC
 - Internal main bus 2
 - Internal main bus 1
- Bus Error Monitor Section
 - Generates an interrupt whenever an error is detected on the bus
 - Some errors are:
 - Illegal address access error
 - Access to areas for which operation has been disabled
 - Timeout error
 - Happens after 768 cycles if the bus access is not completed

Pipelining

- Pipelining is an important technique used to make fast CPUs.
- A pipeline consists of several stages which allows the instruction throughput to increase.
- A pipeline stage cannot be any faster than the slowest stage.
 - If for example the execution stage takes more time than the memory access stage, then performance degrades to the slowest stage.
- The RX CPU is based on a five-stage pipeline:
 - Instruction Fetch Stage (IF Stage):
 - CPU fetches 32/64 bit instructions from the memory.
 - PC is incremented by 4 or 8 since the instructions are 4 or 8 bytes long.
 - Instruction Decode Stage (ID Stage):
 - Instructions are decoded and converted into microoperations.

Pipelining cont.

• Execution Stage (E Stage):


- Two types of calculations take place in this stage
 - Normal ALU operations:
 - Add, subtract, compare, and logical operations
 - Memory address calculations

• Memory Access (M Stage):

 Memory is accessed for either fetching an operand from the memory or storing an operand in the memory

Write-back stage (WB stage):

 The last stage of the pipeline writes data into the register file

Pipeline Operational Hazards

- Ideally, each pipeline stage should take the same amount of time to process the instruction.
- Unfortunately, ideal conditions are hard to achieve and hence stalls are created in the pipeline and performance is degraded.
- Hazards prevent the next instruction from executing at the next cycle and reduce the performance of the pipeline.

Structural hazard:

- Arises from resource conflicts when the hardware is not capable of supporting multiple instructions simultaneously in an overlapped manner.
- For example, a single memory that is being accessed simultaneously in both the instruction fetch stage and the memory stage.

Pipeline Operational Hazards cont.

Data hazard:

- Arises when an instruction depends on the result of a previous instruction; e.g.,
 - Instruction 1: A+B = C
 - Instruction 2: C+D = F
 - Instruction 2 cannot be executed before instruction 1 has completed since the instruction is dependent on the value C calculated in instruction 1

Control hazard:

- Also known as a branch hazard
- Arises from pipelining of branches and other instructions that change the program counter
- For example, when a set of instructions are control dependent on the branch condition, and what value the PC will take is not known until the execution stage or decode stage

Operating Modes

There are six operating modes with two types of operatingmode selections.

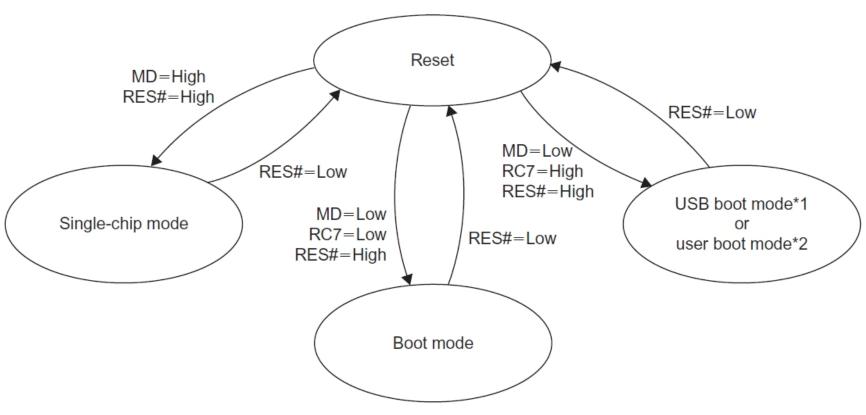
MD1	MD0	ROME	EXBE	OPERATING MODE	ON-CHIP ROM	EXTERNAL BUS
0	1	1	0	Boot mode	Enabled	Disabled
1	0	1	0	USB Boot mode	Enabled	Disabled
1	1	1	0	Single-chip mode	Enabled	Disabled

Boot Mode:

[1]

- Provided for the flash memory
- Functions the same way as single-chip mode except for data write/erase function to the flash memory
- USB Boot mode:
 - Provided for the flash memory
 - Functions the same way as single-chip mode except for data write/erase function to the flash memory

Operating Modes cont.


- Single-Chip Mode:
 - On-chip ROM can be set to either enabled or disabled
 - All I/O ports are accessible and the external bus is always disabled

ROME	EXBE	OPERATING MODE	ON-CHIP ROM	EXTERNAL BUS
0	0	Single-chip mode	Disabled	Disabled
1	0	Single-chip mode	Enabled	Disabled
0	1	On-chip ROM enabled extended mode	Disabled	Enabled
1	1	On-chip ROM enabled extended mode	Enabled	Enabled

[1]

Operating Modes

The following illustration outlines the mode transitions depending on the settings of the MD and PC7 pins.

Memory Organization

Byte Addressing vs. Word Addressing By using N address lines we can address 2^N distinct addresses, numbered 0 through 2^N - 1.

			0	8 bits of data
		Byte addressing	1	8 bits of data
V	Vord addressing	3	2	8 bits of data
0	16 bits of data		3	8 bits of data
2	16 bits of data		4	8 bits of data
4	16 bits of data		5	8 bits of data
6	16 bits of data		6	8 bits of data

- Memory Map
 - This microcontroller has a 4-Gbyte address space, which ranges from0000 0000h to FFFF FFFFh.

I/O Registers

- This section focuses on preventive measures that should be taken while using I/O registers.
- In some cases, after writing into I/O registers, you must check whether the write operation is completed.
- The CPU could also behave differently and could lead to unpredictable results.
- The correct way to handle each situation is to wait until the write operation is completed and by following these steps:
 - Write to an I/O register.
 - Read the value from the I/O register to a general register.
 - Execute the operation using the value read.
 - Execute the subsequent instruction.

What we have covered

- Architecture of the Renesas RX63N
- CPU Specifications and Instruction Set
- Register Set
- Data Types
- Data Arrangement
- Bus Specifications
- Pipelining and Pipeline Hazards
- Operating Modes
- Organization of Registers and Memory
- How I/O Registers should be accessed

References

■ [1] Embedded Systems, An Introduction Using the Renesas RX63N Microcontroller

