Digital Design

Digital Design

Chapter 6:
 Optimizations and Tradeoffs

Slides to accompany the textbook Digital Design, with RTL Design, VHDL, and Verilog, 2nd Edition,
by Frank Vahid, John Wiley and Sons Publishers, 2010.
http://www.ddvahid.com

[^0]
Karnaugh Maps for Two-Level Size Optimization

- Easy to miss possible opportunities to combine terms when doing algebraically
- Karnaugh Maps (K-maps)
- Graphical method to help us find opportunities to combine terms

ally	0	$x^{\prime} y^{\prime} z^{\prime}$	$x^{\prime} y^{\prime} z$	$x^{\prime} y z$	x'yz'	
		xy'z'	$x y^{\prime} z$	xyz	xyz'	

- Minterms differing in one variable are adjacent in the map
- Can clearly see opportunities to combine terms - look for adjacent 1s
- For F, clearly two opportunities
- Top left circle is shorthand for:

$$
x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y^{\prime} z=x^{\prime} y^{\prime}\left(z^{\prime}+z\right)=x^{\prime} y^{\prime}(1)=x^{\prime} y^{\prime}
$$

- Draw circle, write term that has all the literals except the one that changes in the circle
- Circle $x y, x=1 \& y=1$ in both cells of the circle, but z changes ($z=1$ in one cell, 0 in the other)
- Minimized function: OR the final terms

$$
F=x^{\prime} y^{\prime}+x y
$$

$$
F=x^{\prime} y^{\prime} z+x y z+x y z^{\prime}+x^{\prime} y^{\prime} z^{\prime}
$$

K-maps

- Four adjacent 1 s means two variables can be eliminated
- Makes intuitive sense - those

$$
\begin{aligned}
& \mathrm{G}=x y^{\prime} z^{\prime}+x y^{\prime} z+x y z+x y z^{\prime} \\
& G=x\left(y^{\prime} z^{\prime}+y^{\prime} z+y z+y z^{\prime}\right) \text { (must be true) } \\
& G=x\left(y^{\prime}\left(z^{\prime}+z\right)+y\left(z+z^{\prime}\right)\right) \\
& G=x\left(y^{\prime}+y\right) \\
& G=x
\end{aligned}
$$ two variables appear in all combinations, so one term must be true

- Draw one big circle shorthand for the algebraic transformations above

K-maps

- Four adjacent cells can be in shape of a square
- OK to cover a 1 twice
- Just like duplicating a term
- Remember, $c+d=c+d+d$
- No need to cover 1s more than once
- Yields extra terms - not minimized

The two circles are shorthand for:
$\mathrm{I}=\mathrm{x}^{\prime} \mathrm{y}^{\prime} \mathrm{z}+x y^{\prime} z^{\prime}+x y^{\prime} z+x y z+x y z^{\prime}$
$I=x^{\prime} y^{\prime} z+x y^{\prime} z+x y^{\prime} z^{\prime}+x y^{\prime} z+x y z+x y z^{\prime}$
$I=\left(x^{\prime} y^{\prime} z+x y^{\prime} z\right)+\left(x y^{\prime} z^{\prime}+x y^{\prime} z+x y z+x y z^{\prime}\right)$
$\mathrm{I}=\left(\mathrm{y}^{\prime} \mathrm{z}\right)+(\mathrm{x})$

Frank Vahid

K-maps

- Circles can cross left/right sides
- Remember, edges are adjacent
- Minterms differ in one variable only
- Circles must have $1,2,4$, or 8 cells $-3,5$, or 7 not allowed
- 3/5/7 doesn't correspond to algebraic transformations that combine terms to eliminate a variable
- Circling all the cells is OK
- Function just equals 1

K-maps for Four Variables

- Four-variable K-map follows same principle
- Adjacent cells differ in one variable
- Left/right adjacent
- Top/bottom also adjacent
- 5 and 6 variable maps exist
- But hard to use
- Two-variable maps exist
- But not very useful - easy to do
- But not very useful -
algebraically by hand

Two-Level Size Optimization Using K-maps

General K-map method

1. Convert the function's equation into sum-of-minterms form
2. Place 1 s in the appropriate K-map cells for each minterm
3. Cover all 1 s by drawing the fewest largest circles, with every 1 included at least once; write the corresponding term for each circle
4. $O R$ all the resulting terms to create the minimized function.

Two-Level Size Optimization Using K-maps

General K-map method

1. Convert the function's equation into sum-of-minterms form
2. Place 1 s in the appropriate K-map cells for each minterm

Common to revise (1) and (2):

- Create sum-of-products
- Draw 1s for each product
$E x: F=w^{\prime} x z+y z+w^{\prime} x y^{\prime} z^{\prime}$

Two-Level Size Optimization Using K-maps

General K-map method

1. Convert the function's equation into sum-of-minterms form
2. Place 1 s in the appropriate K-map cells for each minterm
3. Cover all 1 s by drawing the fewest largest circles, with every 1 included at least once; write the corresponding term for each circle
4. OR all the resulting terms to create the minimized function.

Example: Minimize:

$$
G=a+a^{\prime} b^{\prime} c^{\prime}+b^{*}\left(c^{\prime}+b c^{\prime}\right)
$$

1. Convert to sum-of-products

$$
G=a+a^{\prime} b^{\prime} c^{\prime}+b c^{\prime}+b c^{\prime}
$$

2. Place 1 s in appropriate cells

3. OR terms: $\mathbf{G}=\mathbf{a}+\mathbf{c}$

Two-Level Size Optimization Using K-maps
 - Four Variable Example

- Minimize:
$-H=a^{\prime} b^{\prime}\left(c d^{\prime}+c^{\prime} d^{\prime}\right)+a b^{\prime} c^{\prime} d^{\prime}+a b^{\prime} c d^{\prime}$ + a'bd + a'bcd'

1. Convert to sum-of-products:
$-\mathrm{H}=\mathrm{a}^{\prime} b^{\prime} c d^{\prime}+\mathrm{a}^{\prime} \mathrm{b}^{\prime} \mathrm{c}^{\prime} d^{\prime}+\mathrm{ab}{ }^{\prime} \mathrm{c}^{\prime} \mathrm{d}^{\prime}+$ $a b ' c d^{\prime}+a^{\prime} b d+a ' b c d '$
2. Place 1s in K-map cells
3. Cover 1s
4. OR resulting terms

$$
\mathbf{H}=\mathbf{b}^{\prime} \mathbf{d}^{\prime}+\mathbf{a} \mathbf{a} \mathbf{b c}+\mathbf{a} \mathbf{a} \mathbf{b d} \quad \begin{gathered}
\text { adjacent, and top botom } \\
\text { adjicent }
\end{gathered}
$$

Don't Care Input Combinations

- What if we know that particular input combinations can never occur?
- e.g., Minimize F = xy'z', given that $x^{\prime} y^{\prime} z^{\prime}$ ($x y z=000$) can never be true, and that $x y$ 'z ($x y z=101$) can never be true

- So it doesn't matter what F outputs when $x^{\prime} y^{\prime} z$ ' or $x y^{\prime} z$ is true, because those cases will never occur
- Thus, make F be 1 or 0 for those cases in a way that best minimizes the equation
- On K-map
- Draw Xs for don't care combinations
- Include X in circle ONLY if minimizes equation
- Don't include other Xs \qquad Unnecessary use of don't cares; results in extra term

Optimization Example using Don't Cares

- Minimize:
$-F=a^{\prime} b c^{\prime}+a b c^{\prime}+a^{\prime} b^{\prime} c$
- Given don't cares: $\underline{a \prime b c, a b c}$
- Note: Introduce don't cares with caution

- Must be sure that we really don't care what the function outputs for that input combination
- If we do care, even the slightest, then it's probably safer to set the output to 0

Optimization with Don't Cares Example: Sliding Switch

- Switch with 5 positions
- 3-bit value gives position in binary
- Want circuit that
- Outputs 1 when switch is in position 2, 3, or 4
- Outputs 0 when switch is in position 1 or 5
- Note that the 3-bit input can never output binary 0,6 , or 7
- Treat as don't care input combinations

Automating Two-Level Logic Size Optimization

- Minimizing by hand
- Is hard for functions with 5 or more variables
- May not yield minimum cover depending on order we choose
- Is error prone
- Minimization thus typically done by automated tools
- Exact algorithm: finds optimal solution
- Heuristic: finds good solution, but not necessarily optimal

Basic Concepts Underlying Automated Two-Level Logic Size Optimization

- Definitions
- On-set: All minterms that define when $\mathrm{F}=1$
- Off-set: All minterms that define when $\mathrm{F}=0$
- Implicant: Any product term (minterm or other) that when 1 causes $\mathrm{F}=1$
- On K-map, any legal (but not necessarily largest) circle
- Cover: Implicant xy covers minterms xyz and xyz'
- Expanding a term: removing a variable (like larger K-map circle)
- xyz \rightarrow xy is an expansion of xyz
- Prime implicant: Maximally expanded implicant - any expansion would cover 1s not in on-set
- x'y'z, and xy, above
- But not xyz or xyz' - they can be expanded

Note: We use K-maps here just for intuitive illustration of concepts; automated tools do not use K-maps.

Basic Concepts Underlying Automated Two-Level Logic Size Optimization

- Definitions (cont)
- Essential prime implicant: The only prime implicant that covers a particular minterm in a function's on-set
- Importance: We must include all essential Pls in a function's cover
- In contrast, some, but not all, nonessential Pls will be included

Automated Two-Level Logic Size Optimization Method

TABLE 6.1 Automatable tabular method for two-level logic size optimization.

Step	Description
1 Determine prime implicants	Starting with minterm implicants, methodically compare all pairs (actually, all pairs whose numbers of uncomplemented literals differ by one) to find
opportunities to combine terms to eliminate a variable, yielding new implicants	
with one less literal. Repeat for new implicants. Stop when no implicants can be	
combined. All implicants not covered by a new implicant are prime implicants.	

2 Add essential prime implicants Find every minterm covered by only one prime implicant, and denote that prime to the function's cover implicant as essential. Add essential prime implicants to the cover, and mark all minterms covered by those implicants as already covered.

3 Cover remaining minterms with Cover the remaining minterms using the minimal number of remaining prime nonessential prime implicants implicants.

- Steps 1 and 2 are exact
- Step 3: Hard. Checking all possibilities: exact, but computationally expensive. Checking some but not all: heuristic.

Tabular Method Step 1: Determine Prime Implicants Methodically Compare All Implicant Pairs, Try to Combine

- Example function: F = x'y'z' + x'y'z + x'yz + xy'z + xyz' + xyz

Actually, comparing ALL pairs isn't necessary-just pairs differing in uncomplemented literals by one.

Minterms
(3-literal
implicants)

Tabular Method Step 2: Add Essential Pls to Cover

- Prime implicants (from Step 1): $x^{\prime} y^{\prime}, x y, z$

(a)

(b)

(c)

Digital Design 2e
Copyright © 2010
Frank Vahid

If only one \mathbf{X} in row, then that PI is essential-it's the only PI that covers that row's minterm.

Tabular Method Step 3: Use Fewest Remaining Pls to Cover Remaining Minterms

- Essential PIs (from Step 2): x'y', xy, z
- Covered all minterms, thus nothing to do in step 3
- Final minimized equation:

$$
F=x^{\prime} y^{\prime}+x y+z
$$

(c)

Problem with Methods that Enumerate all Minterms or Compute all Prime Implicants

- Too many minterms for functions with many variables
- Function with 32 variables:
- $2^{32}=4$ billion possible minterms.
- Too much compute time/memory
- Too many computations to generate all prime implicants
- Comparing every minterm with every other minterm, for 32 variables, is $(4 \text { billion })^{2}=1$ quadrillion computations
- Functions with many variables could requires days, months, years, or more of computation - unreasonable

Solution to Computation Problem

- Solution
- Don't generate all minterms or prime implicants
- Instead, just take input equation, and try to "iteratively" improve it
- Ex: F = abcdefgh + abcdefgh'+ jklmnop
- Note: 15 variables, may have thousands of minterms
- But can minimize just by combining first two terms:
$-\mathrm{F}=\mathrm{abcdefg}(\mathrm{h}+\mathrm{h}$ ') $+\mathrm{jklmnop}=\mathrm{abcdefg}+\mathrm{jklmnop}$

Two-Level Optimization using Iterative Method

- Method: Randomly apply "expand" operations, see if helps
- Expand: remove a variable from a term
- Like expanding circle size on K-map

- e.g., Expanding x'z to z legal, but expanding $x^{\prime} z$ to z^{\prime} not legal, in shown function
- After expand, remove other terms covered by newly expanded term
- Keep trying (iterate) until doesn't help

Ex:

$$
\begin{aligned}
& F=\text { abcdefgh }+ \text { abcdefgh' }+j k l m n o p \\
& F=a b c d e f g+\text { abcdefgh' }+j k l m n o p \\
& F=a b c d e f g+j k l m n o p
\end{aligned}
$$

Ex: Iterative Hueristic for Two-Level Logic Size Optimization

- $F=x y z+x y z '+x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y^{\prime} z \quad$ (minterms in on-set)
- Random expand: $F=x y X+x y z '+x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y^{\prime} z$
- Legal: Covers xyz' and xyz, both in on-set
- Any implicant covered by xy? Yes, xyz'.
- $F=x y+x / z^{\prime}+x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y^{\prime} z$
- Random expand: $F=x X+x^{\prime} y^{\prime} z^{\prime}+x^{\prime} y^{\prime} z$
- Not legal (x covers xy'z', xy'z, xyz', xyz: two not in on-set)
- Random expand: F = xy + x'y'zx + x'y'z
- Legal
- Implicant covered by x'y': x'y'z
- $\left.F=x y+x^{\prime} y^{\prime} z^{\prime}+x^{\prime}\right)(z$

Multi-Level Logic Optimization - Performance/Size Tradeoffs

- We don't always need the speed of two-level logic
- Multiple levels may yield fewer gates
- Example
- $\mathrm{F} 1=\mathrm{ab}+\mathrm{acd}+\mathrm{ace} \rightarrow \mathrm{F} 2=\mathrm{ab}+\mathrm{ac}(\mathrm{d}+\mathrm{e})=\mathrm{a}(\mathrm{b}+\mathrm{c}(\mathrm{d}+\mathrm{e}))$
- General technique: Factor out literals $-x y+x z=x(y+z)$

Multi-Level Example

- Q: Use multiple levels to reduce number of transistors for
- F1 = abcd + abcef
- A: abcd + abcef = abc(d + ef)
- Has fewer gate inputs, thus fewer transistors

Multi-Level Example: Non-Critical Path

- Critical path: longest delay path to output
- Optimization: reduce size of logic on non-critical paths by using multiple levels

$\mathrm{F} 1=(\mathrm{a}+\mathrm{b}) \mathrm{c}+d f g+e f g$
(a)

(b)

(c)

Automated Multi-Level Methods

- Main techniques use heuristic iterative methods
- Define various operations
- "Factoring": abc + abd = ab(c+d)
- Plus other transformations similar to two-level iterative improvement

[^0]: Copyright © 2010 Frank Vahid

 with animations) may not be posted to publicly-accessible websites, but may be posted for students on internal protected sites or distributed directly to students by other electronic means.
 may obtain PowerPoint source or obtain special use permissions from Wiley - see http://www.ddvahid.com for information.

