

Digital Design

Chapter 4: Datapath Components

Slides to accompany the textbook
Digital Design, with RTL Design, VHDL, and Verilog, 2nd Edition, by Frank Vahid, John Wiley and Sons Publishers, 2010.
http://www.ddvahid.com

Copyright © 2010 Frank Vahid

Instructors of courses requiring Vahid's Digital Design textbook (published by John Wiley and Sons) have permission to modify and use these slides for customary course-related activities, subject to keeping this copyright notice in place and unmodified. These slides may be posted as unanimated pdf versions on publicly-accessible course websites.. PowerPoint source (or pdf with animations) may not be posted to publicly-accessible websites, but may be posted for students on internal protected sites or distributed directly to students by other electronic means. Instructors may make printouts of the slides available to students for a reasonable photocopying charge, without incurring royalties. Any other use requires explicit permission. Instructors may obtain PowerPoint source or obtain special use permissions from Wiley - see http://www. ddvahid.com for information.

Introduction

- Chpts 2 \& 3: Introduced increasingly complex digital building blocks
- Gates, multiplexors, decoders, basic registers, and controllers
- Controllers good for systems with control inputs/outputs
- Control input: Single bit (or a few), representing environment event or state
- Ex: 1 bit representing button pressed
- Data input: Multiple bits representing single entity
- Ex: 7 bits representing temperature in binary
- Need appropiate building blocks for data
- Datapath components (register-transfer-level, or RTL) components: store/transform data
- Combine datapath components to form a datapath

- Chpt 4 introduces some datapath components and simple datapaths
- Next chapter will combine controllers and datapaths into "processors"

Appropriate building blocks:
Tires, seat, pedals Not:
Rubber, glue, metal

Registers

- $\quad \mathrm{N}$-bit register: Stores N bits, N is the width
- Common widths: 8, 16, 32
- Storing data into register: Loading
- Opposite of storing: Reading (does not alter contents)
- Basic register of Ch 3: Loaded every cycle
- Useful for implementing FSM—stores encoded state

Basic register loads on every clock cycle
How extend to only load on certain cycles?

Register with Parallel Load

- Add 2×1 mux to front of each flip-flop
- Register's load input selects mux input to pass
- load=0: existing flip-flop value; load=1: new input value

block symbol

Register Example using the Load Input: Weight Sampler

- Scale has two displays
- Present weight
- Saved weight
- Useful to compare present item with previous item
- Use 4-bit parallel load register to store weight
- Pressing button loads present weight into register
- Register contents always displayed as "Saved weight," even when new present weight appears

Buses

- N-bit bus: N wires to carry N -bit data item
- Circuit drawings can become cluttered
- Convention for drawing buses
- Single bold line and/or small angled line across

Register Example: Above-Mirror Display

- Ch2 ex: Four simultaneous values from car's computer
- To reduce wires: Computer writes only 1 value at a time, loads into one of four registers
- Was: $8+8+8+8=32$ wires
- Now: $8+2+1=11$ wires

0001010

Register Example: Computerized Checkerboard

- Each register holds values for one column of LEDs
- "1" lights LED
- Microprocessor loads one register at a time
- Occurs fast enough that user sees entire board change at once

Register Example: Computerized Checkerboard

Shift Register

- Shift right
- Move each bit one position right
- Rightmost bit is "dropped"

Register contents before shift right

Register contents after shift right

- Assume 0 shifted into leftmost bit

Q: Do four right shifts on 1001, showing value after each shift

A:	1001 (original)
	0100
	0010
	0001
	0000

- Implementation: Connect flip-flop output to next flip-flop's input

Shift Register

- To allow register to either shift or retain, use 2×1 muxes
- shr: "0" means retain, "1" shift
- shr_in: value to shift in
- May be 0 , or 1

Left-shift register also easy to design

(b)

(c)

Rotate Register

- Rotate right: Like shift right, but leftmost bit comes from
 rightmost bit

Shift Register Example: Above-Mirror Display

- Earlier example:

8+2+1 = 11wires from car's computer to above-mirror display's four registers

- Better than 32 wires, but 11 still a lotwant fewer for smaller wire bundles
- Use shift registers
- Wires: 1+2+1=4
- Computer sends one value at a time, one bit per clock cycle

Multifunction Registers

- Many registers have multiple functions
- Load, shift, clear (load all 0s)
- And retain present value, of course
- Easily designed using muxes
- Just connect each mux input to achieve desired function

Functions:

$s 1$	$s 0$	Operation
0	0	Maintain present value
0	1	Parallel load
1	0	Shift right
1	1	(unused - let's load 0s)

(b)

Multifunction Registers

s1	$s 0$	Operation
0	0	Maintain present value
0	1	Parallel load
1	0	Shift right
1	1	Shift left

(a)

(b)

Multifunction Registers with Separate Control Inputs

Register Operation Table

- Register operations typically shown using compact version of table - X means same operation whether value is 0 or 1
- One X expands to two rows
- Two Xs expand to four rows
- Put highest priority control input on left to make reduced table simple

Inputs			Outputs		Note Operation				
Id	shr	shl	s1	s0		Id	shr	shl	Operation
0	0	0	0	0	Maintain value	0	0	0	Maintain value
0	0	1	1	1	Shift left	0	0	1	Shft left
0	1	0	1	0	Shift right	0	1	X	Shift right
0	1	1	1	0	Shift right	1	X	X	Parallel load
1	0	0	0	1	Parallel load				
1	0	1	0	1	Parallel load				
1	1	0	0	1	Parallel load				
1	1	1	0	1	Parallel load				

Register Design Process

- Can design register with desired operations using simple four-step process

TABLE 4.1 Four-step process for designing a multifunction register.

Step	Description	
1.	Determine mux size	Count the number of operations (don't forget the maintain present value operation!) and add in front of each flip-flop a mux with at least that number of inputs.
2.	Create mux operation table	Create an operation table defining the desired operation for each possible value of the mux select lines.
3.	Connect mux inputs	For each operation, connect the corresponding mux data input to the appropriate external input or flip-flop output (possibly passing through some logic) to achieve the desired operation.
4.	Map control	Create a truth table that maps external control lines to the internal mux select lines, with appropriate priorities, and then design the logic to achieve that mapping

Register Design Example

- Desired register operations
- Load, shift left, synchronous clear, synchronous set
- Want unique control input for each operation

Step 1: Determine mux size

5 operations: above, plus maintain present value (don't forget this one!) \rightarrow Use $\mathbf{8 x 1}$ mux

Step 2: Create mux operation table
Step 3: Connect mux inputs

s2	s1	s0	Operation
0	0	0	Maintain present value
0	0	1	Parallel load
0	1	0	Shift left
0	1	1	Synchronous clear
1	0	0	Synchronous set
1	0	1	Maintain present value
1	1	0	Maintain present value
1	1	1	Maintain present value

Step 4: Map control lines

Register Design Example

Step 4: Mapcontrol lines

$$
\begin{aligned}
& \text { s2 }=\text { clr'*set } \\
& \text { s1 }=\text { clr'*set' } * l d \text { ' } * \text { shl }+ \text { clr } \\
& \text { s0 }=\text { clr'*set }{ }^{\prime} * l d+\operatorname{clr}
\end{aligned}
$$

Adders

- Adds two N -bit binary numbers
- 2-bit adder: adds two 2-bit numbers, outputs 3-bit result
- e.g., $01+11=100 \quad(1+3=4)$
- Can design using combinational design process of Ch 2, but doesn't work well for typical N
- Why not?

Inputs				Outputs			
a1	a0	b1	b0	c	s1	s0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	1	
0	0	1	0	0	1	0	
0	0	1	1	0	1	1	
0	1	0	0	0	0	1	
0	1	0	1	0	1	0	
0	1	1	0	0	1	1	
0	1	1	1	1	0	0	
1	0	0	0	0	1	0	
1	0	0	1	0	1	1	
1	0	1	0	1	0	0	
1	0	1	1	1	0	1	
1	1	0	0	0	1	1	
1	1	0	1	1	0	0	
1	1	1	0	1	0	1	
1	1	1	1	1	1	0	

Why Adders Aren't Built Using Standard Combinational Design Process

- Truth table too big
- 2-bit adder's truth table shown
- Has $2^{(2+2)}=16$ rows
- 8-bit adder: $2^{(8+8)}=65,536$ rows
- 16-bit adder: $2^{(16+16)}=\sim 4$ billion rows
- 32-bit adder: ...
- Big truth table with numerous 1s/0s yields big logic
- Plot shows number of transistors for N -bit

	Inputs				Outputs		
a1	a0	b1	b0	C	s1	s0	
0	0	0	0	0	0	0	
0	0	0	1	0	0	1	
0	0	1	0	0	1	0	
0	0	1	1	0	1	1	
0	1	0	0	0	0	1	
0	1	0	1	0	1	0	
0	1	1	0	0	1	1	
0	1	1	1	1	0	0	
1	0	0	0	0	1	0	
1	0	0	1	0	1	1	
1	0	1	0	1	0	0	
1	0	1	1	1	0	1	
1	1	0	0	0	1	1	
1	1	0	1	1	0	0	
1	1	1	0	1	0	1	
1	1	1	1	1	1	0	

Q: Predict number of transistors for 16-bit adder
A: 1000 transistors for $\mathrm{N}=5$, doubles for each increase of N . So transistors $=1000^{*} 2^{(\mathrm{N}-5)}$. Thus, for $\mathrm{N}=16$, transistors $=1000 * 2^{(16-5)}=1000 * 2048=$ $2,048,000$. Way too many!

Alternative Method to Design an Adder: Imitate Adding by Hand

- Alternative adder design: mimic how people do addition by hand
- One column at a time
- Compute sum, add carry to next column

Alternative Method to Design an Adder: Imitate Adding by Hand

- Create
component for each column
- Adds that column's bits, generates sum and carry bits

Half-Adder

- Half-adder: Adds 2 bits, generates sum and carry
- Design using combinational design process from Ch 2

Step 1: Capture the function

Step 2A: Create equations

$$
\mathrm{co}=\mathrm{ab}
$$

$\mathrm{s}=\mathrm{a}$ 'b +ab ' (same as $\mathrm{s}=\mathrm{a}$ xor b)

Step 2B: Implement as circuit

(a)

(b)

Full-Adder

- Full-adder: Adds 3 bits, generates sum and carry
- Design using combinational design process from Ch 2

Step 1: Capture the function

Inputs			Outputs		$\begin{aligned} & c o=a^{\prime} b c+a b^{\prime} c+a b c^{\prime}+a b c \\ & c o=a^{\prime} b c+a b c+a b b^{\prime} c+a b c+a b c^{\prime}+a b c \end{aligned}$
a	b	ci	co	S	
0	0	0	0	0	
0	0	1	0	1	$c o=\left(a^{\prime}+\mathrm{a}\right) \mathrm{bc}+\left(\mathrm{b}^{\prime}+\mathrm{b}\right) \mathrm{ac}+\left(c^{\prime}+\mathrm{c}\right) \mathrm{ab}$
0	1	0	0	1	$\mathrm{co}=\mathrm{bc}+\mathrm{ac}+\mathrm{ab}$
0	1	1	1	0	
1	0	0	0	1	$s=a \prime b^{\prime} c+a{ }^{\prime} c^{\prime}+\mathrm{ab}{ }^{\prime} c^{\prime}+\mathrm{abc}$
1	0	1	1	0	$s=a^{\prime}\left(b^{\prime} c^{\prime}+b c^{\prime}\right)+\mathrm{a}\left(\mathrm{b}^{\prime} \mathrm{c}^{\prime}+\mathrm{bc}\right)$
1	1	0	1	0	$s=a^{\prime}(b \text { xor } c)^{\prime}+\mathrm{a}(\mathrm{b}$ xor c$)$
1	1	1	1	1	$s=a \operatorname{lor} \mathrm{~b}$ xor c

Step 2B: Implement as circuit

Carry-Ripple Adder

- Using half-adder and full-adders, we can build adder that adds like we would by hand
- Called a carry-ripple adder
- 4-bit adder shown: Adds two 4-bit numbers, generates 5-bit output
- 5-bit output can be considered 4-bit "sum" plus 1-bit "carry out"
- Can easily build any size adder

(a)
(b)

Carry-Ripple Adder

- Using full-adder instead of half-adder for first bit, we can include a "carry in" bit in the addition
- Useful later when we connect smaller adders to form bigger adders

(a)
(b)

Carry-Ripple Adder's Behavior

Wrong answer-is there a problem? No-just need more time for carry to ripple through the chain of full adders.

Carry-Ripple Adder's Behavior

Cascading Adders

(a)

(b)

Block symbol

(c)

Simplified block symbol

Adder Example: DIP-Switch-Based Adding Calculator

- Goal: Create calculator that adds two 8-bit binary numbers, specified using DIP switches
- DIP switch: Dual-inline package switch, move each switch up or down
- Solution: Use 8-bit adder

> DIP switches

Adder Example: DIP-Switch-Based Adding Calculator

- To prevent spurious values from appearing at output, can place register at output
- Actually, the light flickers from spurious values would be too fast for humans to detect-but the principle of registering outputs to avoid spurious values being read by external devices (which normally aren't humans) applies here.

DIP switches

Adder Example: Compensating Weight Scale

- Weight scale with compensation amount of 0-7
- To compensate for inaccurate sensor due to physical wear
- Use 8-bit adder

Incrementer

- Adds 1 to input A

Inputs					Outputs				
a3	a2	a1	a0	c0	s3	s2	s1	s0	
0	0	0	0	0	0	0	0	1	
0	0	0	1	0	0	0	1	0	
0	0	1	0	0	0	0	1	1	
0	0	1	1	0	0	1	0	0	
0	1	0	0	0	0	1	0	1	
0	1	0	1	0	0	1	1	0	
0	1	1	0	0	0	1	1	1	
0	1	1	1	0	1	0	0	0	
1	0	0	0	0	1	0	0	1	
1	0	0	1	0	1	0	1	0	
1	0	1	0	0	1	0	1	1	
1	0	1	1	0	1	1	0	0	
1	1	0	0	0	1	1	0	1	
1	1	0	1	0	1	1	1	0	
1	1	1	0	0	1	1	1	1	
1	1	1	1	1	0	0	0	0	

Could design using combinational design process, but smaller design uses carry-ripple, only need half-adders

Comparators

- N-bit equality comparator: Outputs 1 if two N -bit numbers are equal
- 4-bit equality comparator with inputs A and B
- a3 must equal b3, a2 = b2, a1 = b1, a0 = b0
- Two bits are equal if both 1 , or both 0
$-\mathrm{eq}=\left(\mathrm{a} 3 \mathrm{~b} 3+\mathrm{a} 3^{\prime} \mathrm{b} 3^{\prime}\right)$ * (a2b2 + a2'b2') * (a1b1 + a1'b1') * (a0b0 + a0'b0')
- Note that function inside parentheses is XNOR
$-\mathrm{eq}=(\mathrm{a} 3$ xnor b 3$)$ * (a2 xnor b2) * (a1 xnor b1) * (a0 xnor b0)

$0110=0111 ?$

a

a

Magnitude Comparator

- N-bit magnitude comparator: Two N-bit inputs A and B, outputs whether $A>B, A=B$, or $A<B$, for
- How design? Consider comparing by hand.
- First compare a3 and b3. If equal, compare a2 and b2. And so on.
- Stop if comparison not equal (the two bits are 0 and 1 , or 1 and 0) - whichever of A or B has the 1 is thus greater. If never see unequal bit pair, then $A=B$.

Magnitude Comparator

- By-hand example leads to idea for design
- Start at left, compare each bit pair, pass results to the right
- Each bit pair called a stage
- Each stage has 3 inputs taking results of higher stage, outputs new results to lower stage

How design each stage?

Magnitude Comparator

- Each stage:
- out_gt = in_gt + (in_eq * a * b')
- A>B if already determined in higher stage, or if higher stages equal but in this stage $a=1$ and $b=0$
- out_It = in_It + (in_eq * a' * b)
- A<B if already determined in higher stage, or if higher stages equal but in this stage $a=0$ and $b=1$
- out_eq = in_eq * (a XNOR b)
- A=B (so far) if already determined in higher stage and in this stage $a=b$ too
- Simple circuit inside each stage, just a few gates (not shown)

Magnitude Comparator

- How does it work?

Ieq=1 causes this stage to compare

(b)

Magnitude Comparator

- Final answer appears on the right
- Takes time for answer to "ripple" from left to right
- Thus called "carry-ripple style" after the carry-ripple adder
- Even though there's no "carry" involved

Magnitude Comparator Example: Minimum of Two Numbers

- Design a combinational component that computes the minimum of two 8 -bit numbers
- Solution: Use 8-bit magnitude comparator and 8-bit 2×1 mux
- If $A<B$, pass A through mux. Else, pass B.

Multiplier - Array Style

- Can build multiplier that mimics multiplication by hand
- Notice that multiplying multiplicand by 1 is same as ANDing with 1

0110	(the top number is called the multiplicand)
0011	(the bottom number is called the multiplier)
0110	(each row below is called a partial product)
0110	(because the rightmost bit of the multiplier is 1 , and $0110 * 1=0110$)
0000	(because the second bit of the multiplier is 1 , and $0110 * 1=0110$)
+0000	(because the leftmost bit of the multiplier is 0 , and $0110 * 0=0000$)
00010010	(the product is the sum of all the partial products: 18 , which is $6 * 3$)

Multiplier - Array Style

- Generalized representation of multiplication by hand

		\times	$\begin{aligned} & \text { a3 } \\ & \text { b3 } \end{aligned}$	$\begin{aligned} & \mathrm{a} 2 \\ & \mathrm{~b} 2 \end{aligned}$	$\begin{aligned} & \text { a } 1 \\ & \text { b1 } \end{aligned}$	$\begin{aligned} & \text { a0 } \\ & \text { b0 } \end{aligned}$	
			b0a3	b0a2	b0a1	b0a0	(pp1)
		b1a3	b1a2	b1a1	b1a0	0	(pp2)
	b2a3	b2a2	b2a1	b2a0	0	0	(pp3)
+ b3a3	b3a2	b3a1	b3a0	0	0	0	(pp4)
p7 p6	p5	p4	p3	p2	p1	p0	

Multiplier - Array Style

- Multiplier design - array of AND gates

Subtractors and Signed Numbers

- Can build subtractor as we built carry-ripple adder
- Mimic subtraction by hand
- Compute the borrows from columns on left
- Use full-subtractor component:
- wi is borrow by column on right, wo borrow from column on left

1st column					2nd column					3rd column				4th column			
		0		${ }^{0} 10$		10^{1}	1		0		${ }^{0} 10^{1}$	1	0	1^{0}	0	1	0
0		1	1	1	- 0	1	1		1	- 0	- 1	1	1	0	1	1	1
				1			1		1		0	1	1	0	0	1	1

(b)

Digital Design 2e
Copyright © 2010
Frank Vahid

(c)

Subtractor Example: DIP-Switch Based Adding/Subtracting Calculator

- Extend earlier calculator example
- Switch findicates whether want to add ($\mathrm{f}=0$) or subtract ($\mathrm{f}=1$)
- Use subtractor and 2x1 mux

Subtractor Example:

Color Space Converter - RGB to CMYK

- Color

- Often represented as weights of three colors: red, green, and blue (RGB)
- Perhaps 8 bits each (0-255), so specific color is 24 bits
- White: R=11111111 (255), $G=11111111, B=11111111$
- Black: R=00000000, $\mathrm{G}=00000000, \mathrm{~B}=00000000$
- Other colors: values in between, e.g., R=00111111, $\mathrm{G}=00000000, \mathrm{~B}=00001111$ would be a reddish purple
- Good for computer monitors, which mix red, green, and blue lights to form colors

- Printers use opposite color scheme
- Because inks absorb light
- Use complementary colors of RGB: Cyan (absorbs red), reflects green and blue, Magenta (absorbs green), and Yellow (absorbs blue)

Subtractor Example:

 Color Space Converter - RGB to CMYK- Printers must quickly convert RGB to CMY
- C=255-R, M=255-G, Y=255-B
- Use subtractors as shown

Subtractor Example: Color Space Converter - RGB to CMYK

- Try to save colored inks
- Expensive
- Imperfect - mixing C, M, Y doesn't yield good-looking black
- Solution: Factor out the black or gray from the color, print that part using black ink
- e.g., CMY of $(250,200,200)=$ $(200,200,200)+(50,0,0)$.
- $(200,200,200)$ is a dark gray - use black ink

Subtractor Example: Color Space Converter - RGB to CMYK

- Call black part K
- (200,200,200): K=200
- (Letter "B" already used for blue)
- Compute minimum of C , M, Y values
- Use MIN component designed earlier, using comparator and mux, to compute K
- Output resulting K value, and subtract K value from C, M, and Y values
- Ex: Input of $(250,200,200)$ yields output of (50,0,0,200)

Representing Negative Numbers: Two's Complement

- Negative numbers common
- How represent in binary?
- Signed-magnitude
- Use leftmost bit for sign bit
- So -5 would be:

1101 using four bits
10000101 using eight bits

- Better way: Two's complement
- Big advantage: Allows us to perform subtraction using addition
- Thus, only need adder component, no need for separate subtractor component

Ten's Complement

- Before introducing two's complement, let's consider ten's complement
- But, be aware that computers DO NOT USE TEN'S COMPLEMENT. Introduced for intuition only.
- Complements for each base ten number shown to right. Complement is the number that when added results in 10

Ten's Complement

- Nice feature of ten's complement
- Instead of subtracting a number, adding its complement results in answer exactly 10 too much
- So just drop the 1 - results in subtracting using addition only

Adding the complement results in an answer that is exactly 10 too much - dropping the tens column gives the right answer.

Two's Complement is Easy to Compute: Just Invert Bits and Add 1

- Hold on!
- Sure, adding the ten's complement achieves subtraction using addition only
- But don't we have to perform subtraction to have determined the complement in the first place? E.g., we only know that the complement of 4 is 6 by subtracting 10-4=6 in the first place.
- True. But in binary, it turns out that the two's complement can be computed easily
- Two's complement of 011 is 101 , because $011+101$ is 1000
- Could compute complement of 011 as $1000-011=101$
- Easier method: Just invert all the bits, and add 1
- The complement of 011 is $100+1=101$. It works!

Q: What is the two's complement of 0101? A: 1010+1=1011
(check: 0101+1011=10000)
Q: What is the two's complement of 0011 ? A: $1100+1=1101$

Two's Complement

- Two's complement can represent negative numbers
- Suppose have 4 bits
- Positive numbers 0 to 7: 0000 to 0111
- Negative numbers
- -1: Take two's complement of 1 : $0001 \rightarrow 1110+1=1111$
- -2: $0010 \rightarrow 1101+1=1110 \ldots$
- -8: $1000 \rightarrow 0111+1=1000$
- So -1 to -8: 1111 to 1000
- Leftmost bit indicates sign of number, known as sign bit. 1 means negative.

Quick method to determine magnitude of negative number-
4-bit: subtract right 3 bits from 8.
Ex. 1110: -(8-6) = -2
Or just take two's complement again:
$1110 \rightarrow-(0001+1)=-0010=-2$

- Signed vs. unsigned N -bit number
- Unsigned: 0 to $2^{\mathrm{N}}-1$
- Ex. Unsigned 8-bit: 0 to 255
- Signed (two's complement): -2 ${ }^{\mathrm{N}-1}$ to $2^{\mathrm{N}-1}-1$
- Ex. Signed 8-bit: -128 to 127

Two's Complement Subtractor Built with an Adder

- Using two's complement

$$
\begin{aligned}
& A-B=A+(-B) \\
= & A+(\text { two's complement of } B) \\
= & A+\text { invert_bits }(B)+1
\end{aligned}
$$

- So build subtractor using adder by inverting B's bits, and setting carry in to 1

Adder/Subtractor

- Adder/subtractor: control input determines whether add or subtract
- Can use 2×1 mux - sub input passes either B or inverted B
- Alternatively, can use XOR gates - if sub input is 0 , B's bits pass through; if sub input is $1, \mathrm{XOR}$ inverts B's bits

Adder/Subtractor Example: Calculator

- Previous calculator used separate adder and subtractor
- Improve by using adder/subtractor, and two's complement numbers

DIP switches

Overflow

- Sometimes result can't be represented with given number of bits
- Either too large magnitude of positive or negative
- Ex. 4-bit two's complement addition of 0111+0001 (7+1=8). But 4-bit two's complement can't represent number >7
- 0111+0001 = 1000 WRONG answer, 1000 in two's complement is -8 , not +8
- Adder/subtractor should indicate when overflow has occurred, so result can be discarded

Detecting Overflow: Method 1

- For two's complement numbers, overflow occurs when the two numbers' sign bits are the same but differ from the result's sign bit
- If the two numbers' sign bits are initially different, overflow is impossible
- Adding positive and negative can't exceed largest magnitude positive or negative
- Simple overflow detection circuit for 4-bit adder
- overflow = a3'b3's3 + a3b3s3'
- Include "overflow" output bit on adder/subtractor

If the numbers' sign bits have the same value, which differs from the result's sign bit, overflow has occurred.

Detecting Overflow: Method 2

- Even simpler method: Detect difference between carry-in to sign bit and carry-out from sign bit
- Yields simpler circuit: overflow = c3 xor c4

	1			0	0	0		0	0	0	
	1	1	1	1	1	1	1	1	0	0	0
+ 0	0	0	1	+1	0	0	0	+ 0	1	1	1
01	0	0		10	1	1		01111 no overflow (c)			
overflow (a)				overflow							

If the carry into the sign bit column differs from the carry out of that column, overflow has occurred.

Arithmetic-Logic Unit: ALU

- ALU: Component that can perform various arithmetic (add, subtract, increment, etc.) and logic (AND, OR, etc.) operations, based on control inputs

TABLE 4.2 Desired calculator operations

Inputs			Operation	Sample output if $\mathrm{A}=00001111$, $B=00000101$
x	y	z		
0	0	0	$\mathrm{S}=\mathrm{A}+\mathrm{B}$	S=00010100
0	0	1	$\mathrm{S}=\mathrm{A}-\mathrm{B}$	$\mathrm{S}=00001010$
0	1	0	$\mathrm{S}=\mathrm{A}+1$	$\mathrm{S}=00010000$
0	1	1	$\mathrm{S}=\mathrm{A}$	$\mathrm{S}=00001111$
1	0	0	$\mathrm{S}=\mathrm{A}$ AND B (bitwise AND)	$\mathrm{S}=00000101$
1	0	1	$\mathrm{S}=\mathrm{A}$ OR B (bitwise OR)	$\mathrm{S}=00001111$
1	1	0	$\mathrm{S}=\mathrm{A}$ XOR B (bitwise XOR)	$\mathrm{S}=00001010$
1	1	1	S $=$ NOT A (bitwise complement)	$\mathrm{S}=11110000$

Multifunction Calculator without an ALU

- Can build using separate components for each operation, and muxes
- Too many wires, also wastes power computing operations when only use one result at given time

Inputs			Operation	Sample output if $\mathrm{A}=00001111$, $\mathrm{B}=00000101$
x	y	z		
0	0	0	$\mathrm{S}=\mathrm{A}+\mathrm{B}$	S=00010100
0	0	1	$\mathrm{S}=\mathrm{A}-\mathrm{B}$	$\mathrm{S}=00001010$
0	1	0	$\mathrm{S}=\mathrm{A}+1$	$\mathrm{S}=00010000$
0	1	1	$\mathrm{S}=\mathrm{A}$	$\mathrm{S}=00001111$
1	0	0	$\mathrm{S}=\mathrm{A}$ AND B (bitwise AND)	$\mathrm{S}=00000101$
1	0	1	$\mathrm{S}=\mathrm{A}$ OR B (bitwise OR)	$\mathrm{S}=00001111$
1	1	0	$\mathrm{S}=\mathrm{A}$ XOR B (bitwise XOR)	$\mathrm{S}=00001010$
1	1	1	$\mathrm{S}=$ NOT A (bitwise complement)	$\mathrm{S}=11110000$

ALU

- More efficient design uses ALU
- ALU design not just separate components multiplexed (same problem as previous slide)
- Instead, ALU design uses single adder, plus logic in front of adder's A and B inputs
- Logic in front is called an arithmetic-logic extender
- Extender modifies A and B inputs so desired operation appears at output of the adder

(b)
(a)

Arithmetic-Logic Extender in Front of ALU

TABLE 4.2 Desired calculator operations

Inputs			\quad Operation	Sample output if $\mathrm{A}=00001111$ $\mathrm{~B}=0000101$
x	y	z		
0	0	0	$\mathrm{~S}=\mathrm{A}+\mathrm{B}$	$\mathrm{S}=00010100$
0	0	1	$\mathrm{~S}=\mathrm{A}-\mathrm{B}$	$\mathrm{S}=00001010$
0	1	0	$\mathrm{~S}=\mathrm{A}+1$	$\mathrm{~S}=00010000$
0	1	1	$\mathrm{~S}=\mathrm{A}$	$\mathrm{S}=00001111$
1	0	0	$\mathrm{~S}=\mathrm{A} A N D \quad \mathrm{~B}$ (bitwise AND)	$\mathrm{S}=00000101$
1	0	1	$\mathrm{~S}=\mathrm{A}$ OR B (bitwise OR)	$\mathrm{S}=00001111$
1	1	0	$\mathrm{~S}=\mathrm{A}$ XOR B (bitwise XOR)	$\mathrm{S}=00001010$
1	1	1	$\mathrm{~S}=$ NOT A (bitwise complement)	$\mathrm{S}=11110000$

(b)

- $x y z=000$ Want $S=A+B$: just pass a to ia, b to ib, and set cin=0
- $x y z=001$ Want $S=A-B$: pass a to ia, b' to ib and set cin=1 (two's complement)
- $x y z=010$ Want $S=A+1$: pass a to ia, set ib=0, and set cin=1
- xyz=011 Want $S=A$: pass a to ia, set ib=0, and set cin=0
- xyz=100 Want S=A AND B : set ia=a*b, b=0, and cin=0
- Others: likewise
- Based on above, create logic for $i a(x, y, z, a, b)$ and $i b(x, y, z, a, b)$ for each abext, and create logic for $\operatorname{cin}(x, y, z)$, to complete design of the AL-extender component

ALU Example: Multifunction Calculator

- Design using ALU is elegant and efficient
- No mass of wires
- No big waste of power

Shifters

- Shifting (e.g., left shifting 0011 yields 0110) useful for:

- Manipulating bits
- Converting serial data to parallel (remember earlier above-mirror display example with shift registers)
- Multiply/divide by 2 (unsigned numbers only)
- Shift left once is same as multiplying by 2. Ex: 0011 (3) becomes 0110 (6)
- Why? Essentially appending a 0 -- Note that multiplying decimal number by 10 accomplished just be appending 0, i.e., by shifting left (55 becomes 550)
- Shift right once same as dividing by 2

Shifter with left shift or no shift

Shifter with left shift, right shift, and no shift

Shifter Example: Temperature Averager

- Four registers storing a history of temperatures
- Want to output the average of those temperatures
- Add
- Use three adders
- Then divide by four
- Same as shift right by 2

Strength Reduction

- Many multiplications not by power of 2 constants (2, 4, 8, ...)
- E.g., by 5, or 10
- Could use multiplier component, but shifters are small and fast
- Replace multiplication by shifts and adds
- Operator strength reduction (multiply is "stronger" than shift/add)
- E.g., 5*C \rightarrow 4*C + C (4*C same as C<<2)
- Replacing division by shifts and adds slightly harder
- Approximate fraction using fraction having power of 2 denominator
- E.g., $\mathrm{C} / 5=0.20^{*} \mathrm{C}$, approx. equals (102/512)* $\mathrm{C}=0.199 * C$
- $(102 / 512)^{\star} \mathrm{C}=\mathrm{C}^{*}(64+32+4+2) / 512=\left(\mathrm{C}^{*} 64+\mathrm{C}^{*} 32+\mathrm{C}^{*} 4+\mathrm{C}^{*} 2\right) / 512$
- $=((\mathrm{C} \ll 6)+(\mathrm{C} \ll 5)+(\mathrm{C} \ll 2)+(\mathrm{C} \ll 1)) \gg 9$

Celsius to Fahrenheit Converter

- $\mathrm{F}=\mathrm{C} * 9 / 5+32$
$-\mathrm{F}=\mathrm{C}+\mathrm{C} * 4 / 5+32$
$-\mathrm{F}=\mathrm{C}+$ 4* $^{*}(\mathrm{C} * 64+\mathrm{C} * 32+\mathrm{C} * 4+\mathrm{C} * 2) / 512+32$ (1/5 from prev. slide)
- F = C + (C*64+C*32+C*4+C*2)/128+32

Note: Uses wider buses, padded on the left, to avoid losing bits during shifts

- Determine biggest possible internal values, set width accordingly
- Do divisions as late as possible to reduce rounding errors

Barrel Shifter

- A shifter that can shift by any amount
- 4-bit barrel left shift can shift left by 0 , 1 , 2, or 3 positions
- 8 -bit barrel left shifter can shift left by $0,1,2,3,4,5,6$, or 7 positions
- (Shifting an 8 -bit number by 8 positions is pointless -- you just lose all the bits)

Shift by 1 shifter uses 2 x 1 muxes. 8 x 1 mux solution for 8-bit barrel shifter: too many wires.

- Could design using 8×1 muxes
- Too many wires
- More elegant design
- Chain three shifters: 4, 2, and 1
- Can achieve any shift of $0 . .7$ by enabling the correct combination of those three shifters, i.e., shifts should sum to desired amount

Counters and Timers

- N-bit up-counter: N-bit register that can increment (add 1) to its own value on each clock cycle
- 0000, 0001, 0010, 0011,, 1110, 1111, 0000

00001

- Count "rolls over" from 1111 to 0000
- Terminal (last) count, tc, equals1 during value just before rollover
- Internal design
- Register, incrementer, and N-input AND gate to detect terminal count

Counter Example: Turnstile with Display

- Count people passing through a turnstile
- Assume turnstile generates 1-clock pulse on P

- Connect count to display
- Button can reset count
- Simple solution using upcounter

Up/Down-Counter

- Can count either up or down
- Includes both incrementer and decrementer
- Use dir input to select, via 2×1 mux: dir=0 means up
- Likewise, dir selects appropriate terminal count value (all 1 s or all Os)

Counter with Load

- Up-counter that can be loaded with external value
- Designed using 2×1 mux. Id input selects incremented value or external value
- Load the internal register when loading external value or when counting
- Note that Id has priority
 over cnt

Counter with Parallel Load

- Useful to create pulses at specific multiples of clock
- Not just at N-bit counter's natural wrap-around of 2^{N}
- Example: Pulse every 9 clock cycles
- Use 4-bit down-counter with parallel load
- Set parallel load input to 8 (1000)
- Use terminal count to reload

- When count reaches 0 , next cycle loads 8.
- Why load 8 and not 9 ? Because 0 is included in count sequence:
- $8,7,6,5,4,3,2,1,0 \rightarrow 9$ counts

Counter Example: New Year's Eve Countdown Display

- Chapter 2 example previously used microprocessor to count from 59 down to 0 in binary
- Can use 8-bit (or 7- or 6-bit) down-counter instead, initially loaded with 59

Note: Use 8bit counter, not 60-bit counter

Common Counter Use: Clock Divider

- Suppose have 512 Hz oscillator, but want 2 Hz pulse
- Thus, want divide fast clock by 256
- Design using 8-bit upcounter, use tc output as pulse
- Counts from 0 to 255 (256 counts), so pulses tc every 256 cycles

Clock Division by Amount not Power of 2 Example: 1 Hz Pulse Generator from 60 Hz Clock

- Example: U.S. electricity standard uses 60 Hz signal
- Device may convert that to 1 Hz signal to count seconds
- Use 6-bit up-counter
- Up counter: Detected count of 59 clears counter to 0; tc thus pulses every 60 cycles
- Note: Detect 59, not 60 (because the first number, 0, is included)
- Down counter approach also possible: When count reaches 0, load 59

Measuring Time Between Events using an Up-Counter

- Initially clear to 0. $1^{\text {st }}$ event: Set cnt=1. $2^{\text {nd }}$ event: Set cnt=0.
- Then, multiply counted clock cycles by clock period to determine time
- Ex: Highway speed measurement system
- Two sensors "a" and "b" in road
- Use FSM to detect "a" becoming 1, set cnt=1. Set cnt=0 when "b" 1
- If clock is 1 kHz (period is 1 ms), then time is C * 0.001 s
- If a and b separated by 0.01 miles, then vehicle speed in mph is: 0.01 miles / (time * (1 hour / 3600 seconds))
- E.g., if C is 500 , then speed is $0.01 /((500 * 0.001) / 3600)=72 \mathrm{mph}$

Timers

- Pulses output at userspecified timer interval when enabled
- "Ticks" like a clock
- Interval specified as multiple of base time unit
- If base is 1 microsec and user wants pulse every 300 ms , loads 300,000 into timer
- Can design using oscillator, register, and down-counter

Timer Example: Laser Surgery System

- Recall Chpt 3 laser surgery example
- Clock was 10 ns, wanted 30 ns, used 3 states.
- What if wanted 300 ms ? Adding 30 million states is not reasonable.

(a)

Inputs: b, Q Outputs:Id, en, x

(c)

Register Files

- Accessing one of several registers is:
- OK if just a few registers
- Problematic when many
- Ex: Earlier above-mirror display, with 16 registers
- Much fanout (branching of wire): Weakens signal
- Many wires: Congestion

begins to have fanout and wire problems

Register File

- MxN register file: Efficient design for one-at-a-time write/read of many registers
- Consider 16 32-bit registers

- Internal design uses drivers and bus
driver

Boosts signal
three-state driver

like no connection

Internal design of 4×32 RF; 16x32 RF follows similarly

Note: Each driver in figure actually represents 32 1-bit drivers

Register File Timing Diagram

- Can write one register and read one register each clock cycle
- May be same register

Register-File Example: Above-Mirror Display

- 16 32-bit registers that can be written by car's computer, and displayed
- Use 16x32 register file
- Simple, elegant design
- Register file hides complexity internally

- And because only one register needs to be written and/or read at a time, internal design is simple

Chapter Summary

- Need datapath components to store and operate on multi-bit data
- Also known as register-transfer-level (RTL) components
- Components introduced
- Registers
- Adders
- Comparators
- Multipliers
- Subtractors
- Arithmetic-Logic Units
- Shifters
- Counters and Timers
- Register Files
- Next chapter combines knowledge of combinational logic design, sequential logic design, and datapath components, to build digital circuits that can perform general and powerful computations

