
Digital Design 2e
Copyright © 2010
Frank Vahid

1

Digital Design
Chapter 3:

Sequential Logic Design -- Controllers

Slides to accompany the textbook Digital Design, with RTL Design, VHDL,
and Verilog, 2nd Edition,

by Frank Vahid, John Wiley and Sons Publishers, 2010.
http://www.ddvahid.com

Copyright © 2010 Frank Vahid
Instructors of courses requiring Vahid's Digital Design textbook (published by John Wiley and Sons) have permission to modify and use these slides for customary course-related activities,
subject to keeping this copyright notice in place and unmodified. These slides may be posted as unanimated pdf versions on publicly-accessible course websites.. PowerPoint source (or pdf
with animations) may not be posted to publicly-accessible websites, but may be posted for students on internal protected sites or distributed directly to students by other electronic means.
Instructors may make printouts of the slides available to students for a reasonable photocopying charge, without incurring royalties. Any other use requires explicit permission. Instructors
may obtain PowerPoint source or obtain special use permissions from Wiley – see http://www.ddvahid.com for information.

http://www.ddvahid.com/

Digital Design 2e
Copyright © 2010
Frank Vahid

2

Introduction
• Sequential circuit

– Output depends not just on present inputs (as in
combinational circuit), but on past sequence of inputs

• Stores bits, also known as having “state”
– Simple example: a circuit that counts up in binary

• This chapter will:
– Design a new building block, a flip-flop, to store one bit
– Combine flip-flops to build multi-bit storage – register
– Describe sequential behavior with finite state machines
– Convert a finite state machine to a controller –

sequential circuit with a register and combinational logic

3.1

Combinational
digital circuit

1
a

b

1
F0

1
a

b
? F0

Must know
sequence of

past inputs to
know output

Sequential
digital circuit

Note: Slides with animation are denoted with a small red "a" near the animated items

Digital Design 2e
Copyright © 2010
Frank Vahid

3

Storing One Bit – Flip-Flops
Example Requiring Bit Storage

• Flight attendant call button
– Press call: light turns on

• Stays on after button released
– Press cancel: light turns off

• Stays off after button released
– Logic gate circuit to implement this?

QCall
Cancel

Doesn’t work. Q=1 when Call=1, but
doesn’t stay 1 when Call returns to 0

Need some form of “feedback” in the circuit

a

a

3.2

Bit
Storage

Blue lightCall
button

Cancel
button

1. Call button pressed – light turns on

Bit
Storage

Blue lightCall
button

Cancel
button

2. Call button released – light stays on

Bit
Storage

Blue lightCall
button

Cancel
button

3. Cancel button pressed – light turns off

1

1

0

Digital Design 2e
Copyright © 2010
Frank Vahid

4

First attempt at Bit Storage

• Need some sort of feedback
– Does circuit on the right do what we want?

• No: Once Q becomes 1 (when S=1), Q stays 1
forever – no value of S can bring Q back to 0

QS

t

0
t

0 QS
0

1
0

1
0

1
0Q

t

S

0
t

1 QS
0 0

t

1 QS
1

1
t

1 QS
1

1
t

0 QS
1

a

Digital Design 2e
Copyright © 2010
Frank Vahid

5

0

0

1

R=1

S=0 t

Q

1
0
1
0

R

S

1
0

t

1
0

Q

Bit Storage Using an SR Latch

Q

S (set) SR latch

R (reset)

• Does the circuit to the right, with cross-coupled
NOR gates, do what we want?
– Yes! How did someone come up with that circuit?

Maybe just trial and error, a bit of insight...

1

0 0

10

1

t

Q

S=0

R=0

t

Q

S=1

R=0

0

1

1

t

Q

R=0

S=0

1

01

0

0
0

1

1
X

0

Recall NOR…

a

Digital Design 2e
Copyright © 2010
Frank Vahid

6

Example Using SR Latch for Bit Storage
• SR latch can serve as bit

storage in previous example
of flight-attendant call button
– Call=1 : sets Q to 1

• Q stays 1 even after Call=0
– Cancel=1 : resets Q to 0

• But, there’s a problem...
R

S

Q

Call
button

Blue light

Cancel
button

Bit
Storage

Blue lightCall
button

Cancel
button

1

01

a

Digital Design 2e
Copyright © 2010
Frank Vahid

7

Problem with SR Latch
• Problem

– If S=1 and R=1 simultaneously, we don’t know what value Q will take

R=1

S=1

0

0

0

0

t

Q

R=0

S=0

0

0

1

1

t

Q

R=0

S=0

1

1

0

0

t

Q

0

1

0

1

0

1

0

1

S

R

Q

t

1
t

0
1

Q
0

Q may oscillate. Then, because one path will be
slightly longer than the other, Q will eventually
settle to 1 or 0 – but we don’t know which.
Known as a race condition.

a

a

Digital Design 2e
Copyright © 2010
Frank Vahid

8

Problem with SR Latch
• Designer might try to avoid problem using external circuit

– Circuit should prevent SR from ever being 11
– But 11 can occur due to different path delays

Assume 1 ns delay per gate. The longer path from Call to
R than from Call to S causes SR=11 for short time –
could be long enough to cause oscillation

1

0

1

0

1

0

1

0

Call

Cncl

S

R

SR = 11

2 ns

R
Cncl

Call S SR latch

Q

Call
button

Cancel
button

External circuit

Digital Design 2e
Copyright © 2010
Frank Vahid

9

Problem with SR Latch
• Glitch can also cause

undesired set or reset

R
Cncl

Call S SR latch

Q

Call
button

Cancel
button

External circuit

Suppose this wire has 4 ns delay

1

0

1

0

1

0

1

0

Call

Cncl

S

R

SR = 01
(undesired

glitch)

4 ns

Digital Design 2e
Copyright © 2010
Frank Vahid

10

Solution: Level-Sensitive SR Latch
• Add enable input “C”
• Only let S and R change when C=0

• Ensure circuit in front of SR never sets
SR=11, except briefly due to path delays

– Set C=1 after time for S and R to be stable
– When C becomes 1, the stable S and R

value passes through the two AND gates to
the SR latch’s S1 R1 inputs.

R1

S1S

C

R

Level-sensitive SR latch

Q

S

C
Q’

Q
R

Level-sensitive
SR latch symbol

a

R1

S1
S

Call

Cncl

C
Clk

R

Level-sensitive SR latch

Q
Glitch on R (or S)
doesn’t affect R1 (or
(S1)

0
1

0
1

S1

R1

Correct
values when

enabled

1

0

1

0

1
0

1

0

Call

Cncl

S

R

1
0

C

Digital Design 2e
Copyright © 2010
Frank Vahid

11

Level-Sensitive D Latch
• SR latch requires careful design to

ensure SR=11 never occurs
• D latch relieves designer of that

burden
– Inserted inverter ensures R always

opposite of S

D Q’

QC

D latch symbol

R1

S1
D

C

D latch

Q

S

R

1

0
D

C

S1

R1

Q

1

0

1

0

1

0

1

0

a

a

Digital Design 2e
Copyright © 2010
Frank Vahid

12

Problem with Level-Sensitive D Latch
• D latch still has problem (as does SR latch)

– When C=1, through how many latches will a signal travel?
– Depends on how long C=1

• Clk_A – signal may travel through multiple latches
• Clk_B – signal may travel through fewer latches

D1 Q1 D2 Q2 D3 Q3 D4

C4C3C2C1

Q4Y

Clk

Clk_A Clk_B

1 1? 1? 1?

Digital Design 2e
Copyright © 2010
Frank Vahid

13

Problem with Level-Sensitive D Latch

R2

S2
D2

C2

D latch

Q2

D4

C4

Q4

R1

S1D1

C1

Clk

D latch

Q1

0–>1 0–>1
0–>1

1–>0

0–>1

1–>00–>1

(a)

D3

C3

Q3

(b)

Clk

D1

Q1/D2
S2

R2
Q2 2nd latch set

(c)

Clk

D1

Q1/D2

S2

R2
Q2

Short clock

Q1 doesn't change a

Long clock

0–>1

a

Digital Design 2e
Copyright © 2010
Frank Vahid

14

D Flip-Flop
• Flip-flop: Bit storage that stores on clock edge
• One design – master-servant

– Clk = 0 – master enabled, loads D, appears at Qm.
Servant disabled.

– Clk = 1 – Master disabled, Qm stays same. Servant
latch enabled, loads Qm, appears at Qs.

– Thus, value at D (and hence at Qm) when Clk
changes from 0 to 1 gets stored into servant

Clk

rising edges

Note:
Hundreds
of different
flip-flop
designs
exist

D latch

master

D latch

servant

D Dm Ds

Cs

Qm Qs′

Qs Q

Q′

Cm

Clk

D flip-flop Clk

D/Dm

Qm/Ds

Cm

Cs

Qs

a

Can we design bit
storage that only
stores a value on
the rising edge of a
clock signal?

Digital Design 2e
Copyright © 2010
Frank Vahid

15

D Flip-Flop
• Solves problem of not knowing through how many latches a signal

travels when C=1
– In figure below, signal travels through exactly one flip-flop, for Clk_A or

Clk_B
– Why? Because on rising edge of Clk, all four flip-flops are loaded

simultaneously – then all four no longer pay attention to their input, until the
next rising edge. Doesn’t matter how long Clk is 1.

Two latches inside
each flip-flop

D1 Q1 D2 Q2 D3 Q3 D4 Q4Y

Clk

Clk_A Clk_B

1 1

Digital Design 2e
Copyright © 2010
Frank Vahid

16

D Flip-Flop

D Q’

Q

Q’D

Q

Symbol for rising-edge
triggered D flip-flop

Symbol for falling-edge
triggered D flip-flop

Clk

rising edges

Clk

falling edges

Internal design: Just
invert servant clock
rather than masterThe triangle

means edge-
triggered clock
input

Digital Design 2e
Copyright © 2010
Frank Vahid

17

D Latch vs. D Flip-Flop
• Latch is level-sensitive

– Stores D when C=1
• Flip-flop is edge triggered

– Stores D when C changes from 0 to 1
• Saying “level-sensitive latch” or “edge-triggered flip-flop” is

redundant
• Comparing behavior of latch and flip-flop:

Clk

D

Q (D latch)

Q (D flip-flop) 10

87

654

9

3

1 2

Latch follows D
while Clk is 1
Flip-flop only loads D
during Clk rising edge

a

Digital Design 2e
Copyright © 2010
Frank Vahid

18

Clock Signal

• Flip-flop Clk inputs typically connect to one clock signal
– Coming from an oscillator component
– Generates periodic pulsing signal

• Below: "Period" = 20 ns, "Frequency" = 1/20 ns = 50 MHz
• "Cycle" is duration of 1 period (20 ns); below shows 3.5 cycles

Osc.
Clk

0 nsTime:

Clk

10 ns 20 ns 30 ns 40 ns
000

0

1

0111
50 ns 60 ns

Period/Freq shortcut: Remember 1 ns 1 GHz

100 GHz
10 GHz
1 GHz

100 MHz
10 MHz

0.01 ns
0.1 ns

1 ns
10 ns

100 ns

PeriodFreq.

Digital Design 2e
Copyright © 2010
Frank Vahid

19

Flight-Attendant Call Button Using D Flip-Flop
• D flip-flop will store bit
• Inputs are Call, Cancel, and present value

of D flip-flop, Q
• Truth table shown below

Preserve value: if
Q=0, make D=0; if
Q=1, make D=1

Cancel -- make
D=0

Call -- make D=1

Let’s give priority
to Call -- make
D=1

Circuit derived from truth table,
using Chapter 2 combinational

logic design process

D Q’

QClk

Call
but ton

Cancel
but ton

Blue
light

Call

Cancel

Q

D Q ′

QClk

Call
button

Cancel

button

Blue

light
Comb.

Circuit

Call

Cncl

Q

D

L

a

Digital Design 2e
Copyright © 2010
Frank Vahid

20

Bit Storage Summary

• We considered increasingly better bit storage until we arrived at the
robust D flip-flop bit storage

S1

R1

D

Q

C

D latch D flip-flop

D latch

master

D latch

servant

Dm Qm

Cm

DsD

Clk

Qs¢

Cs Qs

Q¢

Q

S1

R1

S

Q

C

R

Level-sensitive SR latch

R (reset)

S (set)

Q

SR latch

Feature: S=1
sets Q to 1, R=1
resets Q to 0.
Problem:
SR=11 yields
undefined Q,
other glitches
may set/reset
inadvertently.

Feature: S and R only
have effect when C=1.
An external circuit can
prevent SR=11 when
C=1.
Problem: avoiding
SR=11 can be a burden.

Feature: SR can’t be 11.
Problem: C=1 for too long
will propagate new values
through too many latches;
for too short may not
result in the bit being
stored.

Feature: Only loads D value
present at rising clock edge,
so values can't propagate to
other flip-flops during same
clock cycle. Tradeoff: uses
more gates internally, and
requires more external gates
than SR—but transistors today
are more plentiful and cheaper.

S

R

Digital Design 2e
Copyright © 2010
Frank Vahid

21

Basic Register
• Typically, we store multi-bit items

– e.g., storing a 4-bit binary number
• Register: multiple flip-flops sharing clock signal

– From this point, we’ll use registers for bit storage
• No need to think of latches or flip-flops
• But now you know what’s inside a register

D
Q

D
Q

D
Q

D
Q

I2I3

Q2Q3 Q1 Q0

I1 I0

clk

4-bit register

I3 I2 I1 I0

Q3 Q2 Q1 Q0
reg(4)

Digital Design 2e
Copyright © 2010
Frank Vahid

22

Example Using Registers: Temperature Display
• Temperature history display

– Sensor outputs temperature as 5-bit binary number
– Timer pulses C every hour
– Record temperature on each pulse, display last three recorded values

a4x4
x3
x2
x1
x0

C

a3 a2 a1 a0

timer

Display

Present

b4 b3 b2 b1 b0

Display

TemperatureHistoryStorage

1 hour ago

c4 c3 c2 c1 c0

Display

2 hours ago

18
21

24

a

Temperature
sensor

Digital Design 2e
Copyright © 2010
Frank Vahid

23

Example Using Registers: Temperature Display
• Use three 5-bit registers

15 18 20

0

0

0

18

0

0

21

18

0

24

21

18

25

24

21

26

25

24

27

26

25

21 21 22 24 24 24 25 25 26 26 26 27 27 27 27x4...x0

C

Ra

Rb

Rc

Q4

C

x4
x3
x2
x1
x0

Q3
Q2
Q1
Q0

Ra Rb

I4
I3
I2
I1
I0

Q4

a4 a3 a2 a1 a0

Q3
Q2
Q1
Q0

I4
I3
I2
I1
I0

Rc

Q4

b4 b3 b2 b1 b0

Q3
Q2
Q1
Q0

I4
I3
I2
I1
I0

c4 c3 c2 c1 c0

TemperatureHistoryStorage

a

18
21

24

a

Note that registers
only loaded on rising
clock edges

Digital Design 2e
Copyright © 2010
Frank Vahid

24

Finite-State Machines (FSMs) and Controllers
• Want sequential circuit with

particular behavior over time
• Example: Laser timer

– Pushing button causes x=1 for
exactly 3 clock cycles

• Precisely-timed laser pulse
– How? Let’s try three flip-flops

• b=1 gets stored in first D flip-
flop

• Then 2nd flip-flop on next
cycle, then 3rd flip-flop on
next

• OR the three flip-flop outputs,
so x should be 1 for three
cycles

3.3

Controller
x

b

clk

laser

patient

D Q D Q D Q

clk

b

x

1
0

0

a

1

Bad job – what if button
pressed a second time during
those 3 cycles?

a

Digital Design 2e
Copyright © 2010
Frank Vahid

25

Need a Better Way to Design Sequential Circuits

• Also bad because of ad hoc design process
– How create other sequential circuits?

• Need
– A way to capture desired sequential behavior
– A way to convert such behavior to a sequential circuit

Step Description

Step 1:
Capture
behavior

Capture the
function

Create a truth table or equations, whichever is
most natural for the given problem, to describe
the desired behavior of each output of the
combinational logic.

2A: Create
equations

This substep is only necessary if you captured the
function using a truth table instead of equations. Create
an equation for each output by ORing all the minterms
for that output. Simplify the equations if desired.

2B: Implement
as a gate-
based circuit

For each output, create a circuit corresponding
to the output’s equation. (Sharing gates among
multiple outputs is OK optionally.)

Step 2:
Convert
to circuit

Like we had for
designing
combinational
circuits

Digital Design 2e
Copyright © 2010
Frank Vahid

26

Capturing Sequential Circuit Behavior as FSM
• Finite-State Machine (FSM)

– Describes desired behavior of
sequential circuit

• Akin to Boolean equations for
combinational behavior

• List states, and transitions
among states

– Example: Toggle x every clock
cycle

– Two states: “Lo” (x=0), and “Hi”
(x=1)

– Transition from Lo to Hi, or Hi to
Lo, on rising clock edge (clk^)

– Arrow points to initial state
(when circuit first starts)

Lo Hi Lo Hi Lo Hi Lo Hi

cycle 1 cycle 2 cycle 3 cycle 4
clk

Lo LoHi Histate

x

Outputs:

Outputs: x

HiLo

x=0 x=1

clk^

clk^

aLo Hi

Lo Hi

or

Depicting multi-
bit or other info
in a timing
diagram

Digital Design 2e
Copyright © 2010
Frank Vahid

27

FSM Example: Three Cycles High System

• Want 0, 1, 1, 1, 0, 1, 1, 1, ...
– For one clock cycle each

• Capture as FSM
– Four states: 0, first 1, second

1, third 1
– Transition on rising clock

edge to next state

Off OffOn1On1On2 On2On3 On3Off

clk

x

State

Outputs:

Outputs: x

On1Off On2 On3

clk^

clk^

clk^x=1x=1x=0 x=1clk^

a

a

Digital Design 2e
Copyright © 2010
Frank Vahid

28

Three-Cycles High System with Button Input
• Four states
• Wait in “Off” while b is 0

(b’*clk^)
• When b is 1 (b*clk^),

transition to On1
– Sets x=1
– Next two clock edges,

transition to On2, then On3

• So x=1 for three cycles after
button pressed

Off OffOn1Off Off Off On2On3Off

clk

State

Outputs:

Inputs:

x

b

Inputs: b Outputs: x

On2On1 On3

Off

clk^

clk^

x=1x=1x=1

x=0

clk^

b'*clk^

b*clk^

Digital Design 2e
Copyright © 2010
Frank Vahid

29

FSM Simplification: Rising Clock Edges Implicit
• Every edge ANDed with rising

clock edge
• What if we wanted a transition

without a rising edge
• We don’t consider such

asynchronous FSMs – less
common, and advanced topic

• Only consider synchronous
FSMs – rising edge on every
transition

Note: Transition with no associated condition
thus transistions to next state on next clock cycle On2On1 On3

Off

x=1x=1x=1

x=0

b’

b

Inputs: b; Outputs: x

On2On1 On3

Off

x=1x=1x=1

x=0

b’

clk^

clk^

^clk

*clk̂

*clk^b

Inputs: b; Outputs: x

a

Digital Design 2e
Copyright © 2010
Frank Vahid

30

FSM Definition
• FSM consists of

– Set of states
• Ex: {Off, On1, On2, On3}

– Set of inputs, set of outputs
• Ex: Inputs: {b}, Outputs: {x}

– Initial state
• Ex: “Off”

– Set of transitions
• Each with condition
• Describes next states
• Ex: Has 5 transitions

– Set of actions
• Sets outputs in each state
• Ex: x=0, x=1, x=1, and x=1

Inputs: b; Outputs: x

On2On1 On3

Off

x=1x=1x=1

x=0

b’

b

We often draw FSM graphically,
known as state diagram

Can also use table (state table), or
textual languages

Digital Design 2e
Copyright © 2010
Frank Vahid

31

FSM Example: Secure Car Key

• Many new car keys include
tiny computer chip
– When key turned, car’s computer

(under engine hood) requests
identifier from key

– Key transmits identifier
• Else, computer doesn’t start car

• FSM
– Wait until computer requests ID

(a=1)
– Transmit ID (in this case, 1 1 0 1)

K1 K2 K3 K4

r=1 r=1 r=0 r=1

Wait
r=0

Inputs: a; Outputs: r

a’a

Digital Design 2e
Copyright © 2010
Frank Vahid

32

FSM Example: Secure Car Key (cont.)
• Nice feature of FSM

– Can evaluate output behavior
for different input sequence

– Timing diagrams show states
and output values for different
input waveforms

K1 K2 K3 K4

r=1 r=1 r=0 r=1

Wait
r=0

Inputs: a; Outputs: r

a’a

Wait Wait K1 K2 K3 K4 Wait Wait

clk

Inputs

Outputs

State

a

r

clk
Inputs

a

Wait Wait K1 K2 K3 K4 Wait

Output

State

r

K1

Q: Determine states and r value for
given input waveform:

a

Digital Design 2e
Copyright © 2010
Frank Vahid

33

Ex: Earlier Flight-Attendant Call Button
• Previously built using SR latch,

then D flip-flop
• Capture desired bit storage

behavior using FSM instead
– Clear and precise description of

desired behavior
– We’ll later convert to a circuit

Bit
Storage

Blue lightCall
button

Cancel
button

Inputs: Call, Cncl Outputs: L

LightOnLightOff

L=0 L=1

Cncl*Call'

Call

Call'
(Cncl*Call')'

Digital Design 2e
Copyright © 2010
Frank Vahid

34

How To Capture Desired Behavior as FSM

• List states
– Give meaningful names, show initial state
– Optionally add some transitions if they help

• Create transitions
– For each state, define all possible transitions leaving that state.

• Refine the FSM
– Execute the FSM mentally and make any needed improvements.

Digital Design 2e
Copyright © 2010
Frank Vahid

35

FSM Capture Example: Code Detector
• Unlock door (u=1) only

when buttons pressed
in sequence:
– start, then red, blue,

green, red
• Input from each button:

s, r, g, b
– Also, output a

indicates that some
colored button
pressed

• Capture as FSM
– List states

• Some transitions
included

Start

Red
Green

Blue

s

r
g
b
a

Door
lock

u

Code
detector

a

ab ag ar
Red1

u=0

Blue

u=0

Green

u=0

Red2

u=1

Inputs: s,r,g,b,a
Outputs: u

Wait

s'u=0 s

Wait for start button

ar

Start
u=0

Wait for first coloredbutton
a

1

Digital Design 2e
Copyright © 2010
Frank Vahid

36

FSM Capture Example: Code Detector
• Capture as FSM

– List states
– Create transitions

Start

Red
Green

Blue

s

r
g
b
a

Door
lock

u

Code
detectora

Wait

Start

Red1 Red2GreenBlue

s'

a'

ar'

ab ag ar

u=0

u=0 ar

u=0 s

u=0 u=0 u=1

Inputs: s,r,g,b,a
Outputs: u

a

Digital Design 2e
Copyright © 2010
Frank Vahid

37

FSM Capture Example: Code Detector
• Capture as FSM

– List states
– Create transitions

• Repeat for remaining
states

– Refine FSM
• Mentally execute
• Works for normal

sequence
• Check unusual cases
• All colored buttons

pressed
– Door opens!
– Change conditions:

other buttons NOT
pressed also

Start

Red
Green

Blue

s

r
g
b
a

Door
lock

u

Code
detectora

Wait

Start

Red1 Red2GreenBlue

s'

a'

ar' ab' ag' ar'

a'

ab ag ar

a' a'
u=0

u=0 ar

u=0 s

u=0 u=0 u=1

Inputs: s,r,g,b,a
Outputs: u

Digital Design 2e
Copyright © 2010
Frank Vahid

38

FSM Capture Example: Code Detector
Start

Red
Green

Blue

s

r
g
b
a

Door
lock

u

Code
detectora

Wait

Start

Red1 Red2GreenBlue

s'

a' a(r
b'g

')'
a(

br
'g'

)'

a'

abr'g' agr'b' arb'g'

a' a'
u=0

u=0
arb'g'

u=0 s

u=0 u=0 u=1

Inputs: s,r,g,b,a
Outputs: u

a(
gr

'b
')'

a(
rb

'g
')'

Digital Design 2e
Copyright © 2010
Frank Vahid

39

Controller Design
• Converting FSM to sequential circuit

– Circuit called controller
– Standard controller architecture

• State register stores encoding of
current state

– e.g., Off:00, On1:01, On2:10, On3:11
• Combinational logic computes outputs

and next state from inputs and current
state

• Rising clock edge takes controller to
next state

3.4

Combinational
logic

State register

s1 s0

n1

n0

xb

clk

FSM
inputs

FSM
outputs

Laser timer controller

Inputs: b; Outputs: x

On2On1 On3

Off

x=1x=1x=1

x=0

b’

b

Combinational
logic

S
m

m

N

OI

clk

FSM
inputs

FSM
outputs

m-bit
state register

Controller

Controller for laser timer FSM

Laser timer FSM

General
form

a

Digital Design 2e
Copyright © 2010
Frank Vahid

40

Controller Design Process
Step Description

Step 1:
Capture
behavior

Capture the
FSM

Create an FSM that describes the desired behavior
of the controller.

2A: Set up
architecture

Use state register of appropriate width and combinational
logic. The logic’s inputs are the state register bits and the
FSM inputs; outputs are next state bits and the FSM outputs.

2B: Encode
the states

Assign unique binary number (encoding) to each state.
Usually use fewest bits, assign encoding to each state by
counting up in binary.Step 2:

Convert
to circuit 2C: Fill in

the truth table

Translate FSM to truth table for combinational logic such that
the logic will generate the outputs and next state signals for
the given FSM. Ordering the inputs with state bits first makes
the correspondence between the table and the FSM clear.

2D: Implement
combinational
logic

Implement the combinational logic using any method.

Digital Design 2e
Copyright © 2010
Frank Vahid

41

Controller Design: Laser Timer Example
• Step 1: Capture the FSM

– Already done

• Step 2A: Set up architecture
– 2-bit state register (for 4 states)
– Input b, output x
– Next state signals n1, n0

• Step 2B: Encode the states
– Any encoding with each state

unique will work

x=1 x=1 x=1

x=0

b

b’

01

00

10 11On2On1

Off

On3

a

a

Inputs: b; Outputs: x

Combinational
logic

State register

s1 s0

n1

n0

xb

clk
FS

M
in

pu
ts

FS
M

ou
tp

ut
s

Digital Design 2e
Copyright © 2010
Frank Vahid

42

Controller Design: Laser Timer Example (cont)
• Step 2C: Fill in truth table

x=1 x=1 x=1

x=0

b

b’

01

00

10 11On2On1

Off

On3

Inputs: b; Outputs: x

Combinational
logic

State register

s1 s0

n1

n0

xb

clk

FS
M

in
pu

ts FSM
outputs

a

Digital Design 2e
Copyright © 2010
Frank Vahid

43

Controller Design: Laser Timer Example (cont)
• Step 2D: Implement

combinational logic Combinational
logic

State register

s1 s0

n1

n0

xb

clk

FS
M

in
pu

ts FSM
outputs

a

x = s1 + s0 (note that x=1 if s1=1 or s0=1)

n1 = s1’s0b’ + s1’s0b + s1s0’b’ + s1s0’b
n1 = s1’s0 + s1s0’

n0 = s1’s0’b + s1s0’b’ + s1s0’b
n0 = s1’s0’b + s1s0’

Digital Design 2e
Copyright © 2010
Frank Vahid

44

Controller Design: Laser Timer Example (cont)
• Step 2D: Implement

combinational logic (cont)
a

x = s1 + s0
n1 = s1’s0 + s1s0’
n0 = s1’s0’b + s1s0’

Combinational
logic

State register

s1 s0

n1

n0

xb

clk

FS
M

in
pu

ts FSM
outputs

n0

s0s1

clk

Combinational Logic

State register

x

n1

b

Digital Design 2e
Copyright © 2010
Frank Vahid

45

Understanding the Controller’s Behavior

s0s1

b x

n1

n0

x=1 x=1 x=1
b

01 10 11On2On1

Off

On3

00

0 0

0

0
0

0

b’

0

0

0

00

x=0

00
0

clk

clk

Inputs:

Outputs:

1

0

10

s0s1

b x

n1

n0

x=1 x=1 x=1

b’

01 10 11On2On1

Off

On3

clk

b

x

00

0 0

x=0

00
0

state=00 state=00

s0s1

b x

n1

n0

x=1 x=1 x=1

x=0

b

b’

01

00

10 11On2On1

Off

On3

1

0

1

1

0

0
0

1
1
0

clk
0 1

01

state=01

a

b

1

0

1
0

0

Digital Design 2e
Copyright © 2010
Frank Vahid

46

Controller Example:
Button Press Synchronizer

• Want simple sequential circuit that converts button press to
single cycle duration, regardless of length of time that
button was actually pressed
– We assumed such an ideal button press signal in earlier example,

like the button in the laser timer controller

cycle1 cycle2 cycle3 cycle4clk
Inputs:

Outputs:

bi

bo

Button press
synchronizer

controller

bi bo

Digital Design 2e
Copyright © 2010
Frank Vahid

47

Controller Example:
Button Press Synchronizer (cont)

A

B

C

s1
0
0
0
0
1
1
1
1

s0
0
0
1
1
0
0
1
1

bi
0
1
0
1
0
1
0
1

Inputs
n1
0
0
0
1
0
1
0
0

n0
0
1
0
0
0
0
0
0

bo
0
0
1
1
0
0
0
0

Outputs
Combinational logic

unused

Step 2C: Fill in truth table

a

Step 1: Capture FSM

A B C
bo=1bo=0 bo=0

bi

bibi’
bi’

bi’
bi

FSM inputs: bi; FSM outputs: bo

Step 2B: Encode states

00 01 10

bo=1bo=0 bo=0
bi

bi
bi’

bi’

bi’
bi

FSM inputs: bi; FSM outputs: bo

Step 2D: Implement
combinational logic

clk
State register

bo

bi

s1 s0

n1

n0

Combinational logic

n1 = s1’s0bi + s1s0bi
n0 = s1’s0’bi
bo = s1’s0bi’ + s1’s0bi = s1s0

Step 2A: Set up architecture
Combinational

logic

n0
s1 s0

n1

bobi

clk State register

FS
M

in
pu

ts

FS
M

ou
tp

ut
s

Digital Design 2e
Copyright © 2010
Frank Vahid

48

Controller Example: Sequence Generator
• Want generate sequence 0001, 0011, 1100, 1000, (repeat)

– Each value for one clock cycle
– Common, e.g., to create pattern in 4 lights, or control magnets of a “stepper motor”

00

01 10

11A

B

D

wxyz=0001 wxyz=1000

wxyz=0011 wxyz=1100

C

Inputs: none; Outputs: w,x,y,z

Step 2B: Encode states

Step 2C: Fill in truth table
clk State register

w
x

y
z

n0s0s1 n1

Step 2D: Implement combinational logic

w = s1
x = s1s0’
y = s1’s0
z = s1’
n1 = s1 xor s0
n0 = s0’

a

Step 1: Create FSM

A

B

D

wxyz=0001 wxyz=1000

wxyz=0011 wxyz=1100

C

Inputs: none; Outputs: w,x,y,z

Step 2A: Set up architecture

Combinational
logic

n0
s1 s0

n1

clk State register

w
x
y
z

Digital Design 2e
Copyright © 2010
Frank Vahid

49

Controller Example: Secure Car Key
• (from earlier example)

K1 K2 K3 K4

r=1 r=1 r=0 r=1

Wait
r=0

Inputs: a; Outputs: r

a’a

S
te

p
1

Combinational
logic

s2 s1 s0

n2

ra

n1
n0

clk State register

S
te

p
2A

a’
a

r=0

r=1 r=1 r=0 r=1

000

001 010 011 100

Inputs:a;Outputs: r

S
te

p
2B

Step 2C

a

We’ll omit Step 2D

Digital Design 2e
Copyright © 2010
Frank Vahid

50

Converting a Circuit to FSM (Reverse Engineering)

clk State register

y

z

n0

n1

s0s1

x

What does this
circuit do?

Work backwards

2D: Circuit to eqns
y=s1’
z = s1s0’
n1=(s1 xor s0)x
n0=(s1’*s0’)x

2C: Truth table

a

2B: (Un)encode states
Pick any state names you want

A

D

B

C

states

Outputs:y, z

A

D

B

yz=01yz=00

yz=10yz=10

C

states
with
outputs

A

D

B

yz=00

yz=01

yz=10

yz=10

C

Inputs: x; Outputs:y, z

x’

x’
x’

x

x

x

states with
outputs and
transitions

2A: Set up arch – already done

Step 1: FSM (get from table)

Digital Design 2e
Copyright © 2010
Frank Vahid

51

Reverse Engin. the D-flip-flop Flight Atten. Call Button

D Q¢

QClk

Call
button

Cancel
button

Blue
light

2D: Circuit to eqns
L = Q
D = Cncl'Q + Call (next state)

Don’t let the way the circuit is drawn
confuse you; the combinational logic is
everything outside the register

L

2C:
Truth
table

2B:
(Un)encode
states

2A: Set up
arch (nothing
to do)

Inputs: Call, Cncl Outputs : L

LightOnLightOff

L=0 L=1

Call'*Cncl

Call

Call'
Cncl'+Call

Step 1: FSM
(get from table)

Digital Design 2e
Copyright © 2010
Frank Vahid

52

Common Mistakes when Capturing FSMs

• Non-exclusive transitions

a

b
ab=11 –

next state?

a

a’b

a

what if
ab=00?

a

a’b

a’b’

a’b

a

• Incomplete transitions

Digital Design 2e
Copyright © 2010
Frank Vahid

53

Verifying Correct Transition Properties
• Can verify using Boolean algebra

– Only one condition true: AND of each condition pair (for
transitions leaving a state) should equal 0 proves pair
can never simultaneously be true

– One condition true: OR of all conditions of transitions
leaving a state) should equal 1 proves at least one
condition must be true

– Example
a

a’b

a + a’b
= a*(1+b) + a’b
= a + ab + a’b
= a + (a+a’)b
= a + b
Fails! Might not
be 1 (i.e., a=0,
b=0)

a

Q: For shown transitions, prove whether:
* Only one condition true (AND of each pair is always 0)
* One condition true (OR of all transitions is always 1)

a * a’b
= (a * a’) * b
= 0 * b
= 0
OK!

Answer:

Digital Design 2e
Copyright © 2010
Frank Vahid

54

Verifying transition properties
• Recall code detector FSM

– We “fixed” a problem with the
transition conditions

– Do the transitions obey the two
required transition properties?

• Consider transitions of state
Start, and the “only one true”
property

Wait

Start

Red1 Red2GreenBlue

s’

a’

a’

ab ag ar

a’ a’
u=0

u=0ar

u=0 s

u=0 u=0 u=1

a

ar * a’ a’ * a(r’+b+g) ar * a(r’+b+g)
= (a*a’)r = 0*r = (a’*a)*(r’+b+g) = 0*(r’+b+g)

= (a*a)*r*(r’+b+g) = a*r*(r’+b+g)
= 0 = 0 = arr’+arb+arg

= 0 + arb+arg
= arb + arg
= ar(b+g)

Fails! Means that two of Start’s
transitions could be true

Intuitively: press red and blue
buttons at same time: conditions
ar, and a(r’+b+g) will both be
true. Which one should be
taken?

Q: How to solve? a

A: ar should be arb’g’
(likewise for ab, ag, ar)

Note: As evidence the pitfall is common,
we admit the mistake was not initially intentional.
A reviewer of an earlier edition of the book caught it.

Digital Design 2e
Copyright © 2010
Frank Vahid

55

Simplifying Notations

• FSMs
– Assume unassigned

output implicitly
assigned 0

• Sequential circuits
– Assume unconnected

clock inputs connected
to same external clock

clk a

a

a

a=0
b=1
c=0

a=0
b=0
c=1

b=1 b=0
c=1

Digital Design 2e
Copyright © 2010
Frank Vahid

56

Mathematical Formalisms
• Two formalisms to capture behavior thus far

– Boolean equations for combinational circuit design
– FSMs for sequential circuit design

• Not necessary
– But tremendously beneficial

• Structured methodology
• Correct circuits
• Automated design, automated verification, many more advantages

Digital Design 2e
Copyright © 2010
Frank Vahid

57

More on Flip-Flops and Controllers
• Non-ideal flip-flop behavior

– Can’t change flip-flop input too close to clock edge
– Setup time: time D must be stable before edge

• Else, stable value not present at internal latch
– Hold time: time D must be held stable after edge

• Else, new value doesn’t have time to loop around
and stabilize in internal latch

Setup time violation

Leads to oscillation!

clk

D

clk

D

setup time

hold time

R

S
D

C

u

D latch

Q

Q′
1

2

3 4

5 6

7

C

D

S

u

R

Q′

Q

3.5

Digital Design 2e
Copyright © 2010
Frank Vahid

58

Metastability
• Violating setup/hold time can lead to bad

situation
– Metastable state: Any flip-flop state other

than stable 1 or 0
• Eventually settles to either, but we don’t

know which
– For internal circuits, we can make sure to

observe setup time
– But what if input is from external

(asynchronous) source, e.g., button
press?

• Partial solution
– Insert synchronizer flip-flop for

asynchronous input
• Special flip-flop with very small setup/hold

time

a

clk

D

Q

setup time
violation

metastable
state

ai

ai

synchronizer

Digital Design 2e
Copyright © 2010
Frank Vahid

59

Metastability
• Synchronizer flip-flop doesn’t completely prevent metastability

– But reduces probability of metastability in dozens/hundreds of internal flip-
flops storing important values

– Adding more synchronizer flip-flops further reduces probability
• First ff likely stable before next clock; second ff very unlikely to have setup time

violated
– Drawback: Change on input is delayed to internal flip-flops

• By three clock cycles in below circuit

a

ai

synchronizers

low
very
low

very
very
low

incredibly
low

Probability of flip-flop being
metastable is:

Digital Design 2e
Copyright © 2010
Frank Vahid

60

Example of Reducing Metastability Probability
• Recall earlier secure car key controller

K1 K2 K3 K4

r=1 r=1 r=0 r=1

Wait
r=0

Inputs: a; Outputs: r

a’a

Combinational
logic

s2 s1 s0

n2

ra

n1
n0

clk State register

FSM

inputs

outputs

a

D
flip-flop Combinational

logic

s2 s1 s0

n2

ra

n1
n0

clk State register

Original
a

a

Adding synchronizer flip-flop reduces
metastability probability in state
register, at expense of 1 cycle delay

Digital Design 2e
Copyright © 2010
Frank Vahid

61

Flip-Flop Set and Reset Inputs
• Some flip-flops have

additional reset/set inputs
– Synchronous

• Synch. reset: Clears Q to 0 on
next clock edge

• Synch. set: Sets Q to 1 on next
clock edge

• Have priority over D input
– Asynchronous

• Asynch. reset: Clear Q to 0,
independently of clock

– Example timing diagram shown
• Asynch. set: set Q to 1, indep. of

clock

D Q’

Q
R

Q’

AR

D

Q

Q’

AS

AR
D

Q

cycle 1 cycle 2 cycle 3 cycle 4
clk

D

AR

Q

Digital Design 2e
Copyright © 2010
Frank Vahid

62

Initial State of a Controller
• All our FSMs had initial state

– But our sequential circuits did not
– Can accomplish using flip-flops

with reset/set inputs
• Shown circuit initializes flip-flops to

01
– Designer must ensure reset-

controller input is 1 during power
up of circuit

• By electronic circuit design

Inputs: x; Outputs: b

On2On1 On3

Off

x=1x=1x=1

x=0

b’

b

D Q’ Q’

Q
R S

D

Q

State register
clk

reset
controller

s1 s0
n0

n1

b x
Combinational

logic

Controller with reset to initial
state 01 (assuming state Off
was encoded as 01).

Digital Design 2e
Copyright © 2010
Frank Vahid

63

Glitching
• Glitch: Temporary values on outputs that appear soon after

input changes, before stable new output values
• Designer must determine whether glitching outputs may

pose a problem
– If so, may consider adding flip-flops to outputs

• Delays output by one clock cycle, but may be OK
• Called registered output

Combinational
logic

State register

s1 s0

n1

n0

xb
D

flip-flop

xr

Laser timer controller with flip-
flop to prevent glitches on x from
unintentionally turning on laser

Digital Design 2e
Copyright © 2010
Frank Vahid

64

Glitching
• Alternative registered output approach, avoid 1 cycle delay:

– Add extra state register bit for each output
– Connect output directly to its bit
– No logic between state register flip-flop and output, hence no glitches

Combinational
logic

State register

s1 s0

n1
n0

xb

sx

nx

x=1 x=1 x=1

x=0

b

b′

011

000

101 111On2On1

Off

On3

Inputs: b Outputs: x

But, uses more flip-flops, plus more
logic to compute next state

Digital Design 2e
Copyright © 2010
Frank Vahid

65

Product Profile: Pacemaker

Digital Design 2e
Copyright © 2010
Frank Vahid

66

Product Profile: Pacemaker

Pacemaker

Controller

Timer
(counts down

from 0.8s)

Osc

s

p

Inputs: s, z
Outputs: t, p

ResetTimer

Pace

Wait

t=1, p=0

p=1
t=0

t=0
p=0

s′z′

s′zt z

ra

rv lv

la

s

Basic pacemaker

Digital Design 2e
Copyright © 2010
Frank Vahid

67

Product Profile: Pacemaker

Pacemaker

Controller

Osc

ta za tv zv

TimerA TimerV

sa

sv
pv

pa

right atrium

right
ventricle

left
ventricle

left atrium
Inputs: sa, za, sv, zv
Outputs: pa, ta, pv, tv

ResetTimerA

ResetTimerV

PaceA

WaitA

WaitV

ta=1

tv=1

pa=1

pv=1

sv
sa

sv′*zv′

sv′*zv

sa′*za′

sa′*za

PaceV

Atrioventricular
pacemaker

Digital Design 2e
Copyright © 2010
Frank Vahid

68

Chapter Summary
• Sequential circuits

– Have state

• Created robust bit-storage device: D flip-flop
– Put several together to build register, which we used to store state

• Defined FSM model to capture sequential behavior
– Using mathematical models – Boolean equations for combinational

circuit, and FSMs for sequential circuits – is important

• Defined Capture/Convert process for sequential circuit
design
– Converted FSM to standard controller architecture

• So now we know how to build the class of sequential
circuits known as controllers

	Digital Design
	Introduction
	Storing One Bit – Flip-Flops�Example Requiring Bit Storage
	First attempt at Bit Storage
	Bit Storage Using an SR Latch
	Example Using SR Latch for Bit Storage
	Problem with SR Latch
	Problem with SR Latch
	Problem with SR Latch
	Solution: Level-Sensitive SR Latch
	Level-Sensitive D Latch
	Problem with Level-Sensitive D Latch
	Problem with Level-Sensitive D Latch
	D Flip-Flop
	D Flip-Flop
	D Flip-Flop
	D Latch vs. D Flip-Flop
	Clock Signal
	Flight-Attendant Call Button Using D Flip-Flop
	Bit Storage Summary
	Basic Register
	Example Using Registers: Temperature Display
	Example Using Registers: Temperature Display
	Finite-State Machines (FSMs) and Controllers
	Need a Better Way to Design Sequential Circuits
	Capturing Sequential Circuit Behavior as FSM
	FSM Example: Three Cycles High System
	Three-Cycles High System with Button Input
	FSM Simplification: Rising Clock Edges Implicit
	FSM Definition
	FSM Example: Secure Car Key
	FSM Example: Secure Car Key (cont.)
	Ex: Earlier Flight-Attendant Call Button
	How To Capture Desired Behavior as FSM
	FSM Capture Example: Code Detector
	FSM Capture Example: Code Detector
	FSM Capture Example: Code Detector
	FSM Capture Example: Code Detector
	Controller Design
	Controller Design Process
	Controller Design: Laser Timer Example
	Controller Design: Laser Timer Example (cont)
	Controller Design: Laser Timer Example (cont)
	Controller Design: Laser Timer Example (cont)
	Understanding the Controller’s Behavior
	Controller Example: �Button Press Synchronizer
	Controller Example: �Button Press Synchronizer (cont)
	Controller Example: Sequence Generator
	Controller Example: Secure Car Key
	Converting a Circuit to FSM (Reverse Engineering)
	Reverse Engin. the D-flip-flop Flight Atten. Call Button
	Common Mistakes when Capturing FSMs
	Verifying Correct Transition Properties
	Verifying transition properties
	Simplifying Notations
	Mathematical Formalisms
	More on Flip-Flops and Controllers
	Metastability
	Metastability
	Example of Reducing Metastability Probability
	Flip-Flop Set and Reset Inputs
	Initial State of a Controller
	Glitching
	Glitching
	Product Profile: Pacemaker
	Product Profile: Pacemaker
	Product Profile: Pacemaker
	Chapter Summary

