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Introduction
• Sequential circuit

– Output depends not just on present inputs (as in 
combinational circuit), but on past sequence of inputs

• Stores bits, also known as having “state”
– Simple example: a circuit that counts up in binary

• This chapter will:
– Design a new building block, a flip-flop, to store one bit
– Combine flip-flops to build multi-bit storage – register
– Describe sequential behavior with finite state machines
– Convert a finite state machine to a controller –

sequential circuit with a register and combinational logic

3.1

Combinational
digital circuit

1
a

b

1
F0

1
a

b
? F0

Must know 
sequence of 

past inputs to 
know output

Sequential
digital circuit

Note: Slides with animation are denoted with a small red "a" near the animated items
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Storing One Bit – Flip-Flops
Example Requiring Bit Storage

• Flight attendant call button
– Press call: light turns on

• Stays on after button released
– Press cancel: light turns off

• Stays off after button released
– Logic gate circuit to implement this?

QCall
Cancel

Doesn’t work. Q=1 when Call=1, but 
doesn’t stay 1 when Call returns to 0

Need some form of “feedback” in the circuit

a

a

3.2

Bit
Storage

Blue lightCall
button

Cancel
button

1. Call button pressed – light turns on

Bit
Storage

Blue lightCall
button

Cancel
button

2. Call button released – light stays on

Bit
Storage

Blue lightCall
button

Cancel
button

3. Cancel button pressed – light turns off

1

1

0
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First attempt at Bit Storage

• Need some sort of feedback
– Does circuit on the right do what we want?

• No: Once Q becomes 1 (when S=1), Q stays 1 
forever – no value of S can bring Q back to 0

QS

t

0
t

0 QS
0

1
0

1
0

1
0Q

t

S

0
t

1 QS
0 0

t

1 QS
1

1
t

1 QS
1

1
t

0 QS
1

a
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0

0

1

R=1

S=0 t

Q

1
0
1
0

R

S

1
0

t

1
0

Q

Bit Storage Using an SR Latch

Q

S (set) SR latch

R (reset)

• Does the circuit to the right, with cross-coupled 
NOR gates, do what we want?
– Yes! How did someone come up with that circuit? 

Maybe just trial and error, a bit of insight...

1

0 0

10

1

t

Q

S=0

R=0

t

Q

S=1

R=0

0

1

1

t

Q

R=0

S=0

1

01

0

0
0

1

1
X

0

Recall NOR…

a
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Example Using SR Latch for Bit Storage
• SR latch can serve as bit 

storage in previous example 
of flight-attendant call button
– Call=1 : sets Q to 1

• Q stays 1 even after Call=0
– Cancel=1 : resets Q to 0

• But, there’s a problem...
R

S

Q

Call
button

Blue light

Cancel
button

Bit
Storage

Blue lightCall
button

Cancel
button

1

01

a
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Problem with SR Latch
• Problem

– If S=1 and R=1 simultaneously, we don’t know what value Q will take

R=1

S=1

0

0

0

0

t

Q

R=0

S=0

0

0

1

1

t

Q

R=0

S=0

1

1

0

0

t

Q

0

1

0

1

0

1

0

1

S

R

Q

t

1
t

0
1

Q
0

Q may oscillate. Then, because one path will be 
slightly longer than the other, Q will eventually 
settle to 1 or 0 – but we don’t know which. 
Known as a race condition.

a

a
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Problem with SR Latch
• Designer might try to avoid problem using external circuit

– Circuit should prevent SR from ever being 11
– But 11 can occur due to different path delays

Assume 1 ns delay per gate. The longer path from Call to 
R than from Call to S causes SR=11 for short time –
could be long enough to cause oscillation

1

0

1

0

1

0

1

0

Call

Cncl

S

R

SR = 11

2 ns

R
Cncl

Call S SR latch

Q

Call
button

Cancel
button

External circuit
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Problem with SR Latch
• Glitch can also cause 

undesired set or reset

R
Cncl

Call S SR latch

Q

Call
button

Cancel
button

External circuit

Suppose this wire has 4 ns delay

1

0

1

0

1

0

1

0

Call

Cncl

S

R

SR = 01
(undesired

glitch)

4 ns
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Solution: Level-Sensitive SR Latch
• Add enable input “C” 
• Only let S and R change when C=0

• Ensure circuit in front of SR never sets 
SR=11, except briefly due to path delays

– Set C=1 after time for S and R to be stable
– When C becomes 1, the stable S and R 

value passes through the two AND gates to 
the SR latch’s S1 R1 inputs. 

R1

S1S

C

R

Level-sensitive SR latch

Q

S

C
Q’

Q
R

Level-sensitive 
SR latch symbol

a

R1

S1
S

Call

Cncl

C
Clk

R

Level-sensitive SR latch

Q
Glitch on R (or S) 
doesn’t affect R1 (or 
(S1)

0
1

0
1

S1

R1

Correct
values when

enabled

1

0

1

0

1
0

1

0

Call

Cncl

S

R

1
0

C
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Level-Sensitive D Latch
• SR latch requires careful design to 

ensure SR=11 never occurs
• D latch relieves designer of that 

burden
– Inserted inverter ensures R always 

opposite of S

D Q’

QC

D latch symbol

R1

S1
D

C

D latch

Q

S

R

1

0
D

C

S1

R1

Q

1

0

1

0

1

0

1

0

a

a



Digital Design 2e
Copyright © 2010
Frank Vahid

12

Problem with Level-Sensitive D Latch
• D latch still has problem (as does SR latch)

– When C=1, through how many latches will a signal travel?
– Depends on how long C=1

• Clk_A – signal may travel through multiple latches
• Clk_B – signal may travel through fewer latches

D1 Q1 D2 Q2 D3 Q3 D4

C4C3C2C1

Q4Y

Clk

Clk_A Clk_B

1 1? 1? 1?
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Problem with Level-Sensitive D Latch

R2

S2
D2

C2

D latch

Q2

D4

C4

Q4

R1

S1D1

C1

Clk

D latch

Q1

0–>1 0–>1
0–>1

1–>0

0–>1

1–>00–>1

(a)

D3

C3

Q3

(b)

Clk

D1

Q1/D2
S2

R2
Q2 2nd latch set

(c)

Clk

D1

Q1/D2

S2

R2
Q2

Short clock

Q1 doesn't change a

Long clock

0–>1

a
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D Flip-Flop
• Flip-flop: Bit storage that stores on clock edge
• One design – master-servant

– Clk = 0 – master enabled, loads D, appears at Qm. 
Servant disabled.

– Clk = 1 – Master disabled, Qm stays same. Servant 
latch enabled, loads Qm, appears at Qs. 

– Thus, value at D (and hence at Qm) when Clk 
changes from 0 to 1 gets stored into servant  

Clk

rising edges

Note: 
Hundreds 
of different 
flip-flop 
designs 
exist

D latch

master

D latch

servant

D Dm Ds

Cs

Qm Qs′

Qs Q

Q′

Cm

Clk

D flip-flop Clk

D/Dm

Qm/Ds

Cm

Cs

Qs

a

Can we design bit 
storage that only 
stores a value on 
the rising edge of a 
clock signal?
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D Flip-Flop
• Solves problem of not knowing through how many latches a signal 

travels when C=1 
– In figure below, signal travels through exactly one flip-flop, for Clk_A or 

Clk_B
– Why? Because on rising edge of Clk, all four flip-flops are loaded 

simultaneously – then all four no longer pay attention to their input, until the 
next rising edge. Doesn’t matter how long Clk is 1. 

Two latches inside 
each flip-flop

D1 Q1 D2 Q2 D3 Q3 D4 Q4Y

Clk

Clk_A Clk_B

1 1
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D Flip-Flop

D Q’

Q

Q’D

Q

Symbol for rising-edge
triggered D flip-flop

Symbol for falling-edge
triggered D flip-flop

Clk

rising edges

Clk

falling edges

Internal design: Just 
invert servant clock 
rather than masterThe triangle 

means edge-
triggered clock 
input
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D Latch vs. D Flip-Flop
• Latch is level-sensitive

– Stores D when C=1
• Flip-flop is edge triggered

– Stores D when C changes from 0 to 1
• Saying “level-sensitive latch” or “edge-triggered flip-flop” is 

redundant
• Comparing behavior of latch and flip-flop: 

Clk

D

Q (D latch)

Q (D flip-flop) 10

87

654

9

3

1 2

Latch follows D 
while Clk is 1
Flip-flop only loads D 
during Clk rising edge

a
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Clock Signal

• Flip-flop Clk inputs typically connect to one clock signal
– Coming from an oscillator component
– Generates periodic pulsing signal

• Below: "Period" = 20 ns, "Frequency" = 1/20 ns = 50 MHz
• "Cycle" is duration of 1 period (20 ns); below shows 3.5 cycles

Osc.
Clk

0 nsTime:

Clk

10 ns 20 ns 30 ns 40 ns
000

0

1

0111
50 ns 60 ns

Period/Freq shortcut: Remember 1 ns  1 GHz

100 GHz
10 GHz
1 GHz

100 MHz
10 MHz

0.01 ns
0.1 ns

1 ns
10 ns

100 ns

PeriodFreq.
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Flight-Attendant Call Button Using D Flip-Flop
• D flip-flop will store bit
• Inputs are Call, Cancel, and present value 

of D flip-flop, Q
• Truth table shown below

Preserve value: if 
Q=0, make D=0; if 
Q=1, make D=1

Cancel -- make 
D=0

Call -- make D=1

Let’s give priority 
to Call -- make 
D=1

Circuit derived from truth table, 
using Chapter 2 combinational 

logic design process

D Q’

QClk

Call
but ton

Cancel
but ton

Blue
light

Call

Cancel

Q

D Q ′

QClk

Call
button

Cancel

button

Blue

light
Comb.

Circuit

Call

Cncl

Q

D

L

a
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Bit Storage Summary

• We considered increasingly better bit storage until we arrived at the 
robust D flip-flop bit storage

S1

R1

D

Q

C

D latch D flip-flop

D latch

master

D latch

servant

Dm Qm

Cm

DsD

Clk

Qs¢

Cs Qs

Q¢

Q

S1

R1

S

Q

C

R

Level-sensitive SR latch

R (reset)

S (set)

Q

SR latch

Feature:   S=1
sets Q to 1, R=1
resets Q to 0.
Problem:
SR=11 yields
undefined Q,
other glitches
may set/reset
inadvertently.

Feature: S and R only
have effect when C=1.
An external circuit can
prevent SR=11 when
C=1.
Problem: avoiding
SR=11 can be a burden.

Feature:  SR can’t be 11.
Problem: C=1 for too long
will propagate new values
through too many latches;
for too short may not
result in the bit being
stored.

Feature:  Only loads D value
present at rising clock edge,
so values can't propagate to
other flip-flops during same
clock cycle. Tradeoff: uses
more gates internally, and
requires more external gates
than SR—but transistors today
are more plentiful and cheaper.

S

R
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Basic Register
• Typically, we store multi-bit items

– e.g., storing a 4-bit binary number
• Register: multiple flip-flops sharing clock signal

– From this point, we’ll use registers for bit storage
• No need to think of latches or flip-flops
• But now you know what’s inside a register

D
Q

D
Q

D
Q

D
Q

I2I3

Q2Q3 Q1 Q0

I1 I0

clk

4-bit register

I3 I2 I1 I0

Q3 Q2 Q1 Q0
reg(4)
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Example Using Registers: Temperature Display
• Temperature history display

– Sensor outputs temperature as 5-bit binary number
– Timer pulses C every hour
– Record temperature on each pulse, display last three recorded values 

a4x4
x3
x2
x1
x0

C

a3 a2 a1 a0

timer

Display

Present

b4 b3 b2 b1 b0

Display

TemperatureHistoryStorage

1 hour ago

c4 c3 c2 c1 c0

Display

2 hours ago

18
21

24

a

Temperature 
sensor
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Example Using Registers: Temperature Display
• Use three 5-bit registers

15 18 20

0

0

0

18

0

0

21

18

0

24

21

18

25

24

21

26

25

24

27

26

25

21 21 22 24 24 24 25 25 26 26 26 27 27 27 27x4...x0

C

Ra

Rb

Rc

Q4

C

x4
x3
x2
x1
x0

Q3
Q2
Q1
Q0

Ra Rb

I4
I3
I2
I1
I0

Q4

a4 a3 a2 a1 a0

Q3
Q2
Q1
Q0

I4
I3
I2
I1
I0

Rc

Q4

b4 b3 b2 b1 b0

Q3
Q2
Q1
Q0

I4
I3
I2
I1
I0

c4 c3 c2 c1 c0

TemperatureHistoryStorage

a

18
21

24

a

Note that registers 
only loaded on rising 
clock edges
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Finite-State Machines (FSMs) and Controllers
• Want sequential circuit with 

particular behavior over time
• Example: Laser timer

– Pushing button causes x=1 for 
exactly 3 clock cycles

• Precisely-timed laser pulse
– How? Let’s try three flip-flops

• b=1 gets stored in first D flip-
flop

• Then 2nd flip-flop on next 
cycle, then 3rd flip-flop on 
next

• OR the three flip-flop outputs, 
so x should be 1 for three 
cycles

3.3

Controller
x

b

clk

laser

patient

D Q D Q D Q

clk

b

x

1
0

0

a

1

Bad job – what if button 
pressed a second time during 
those 3 cycles? 

a
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Need a Better Way to Design Sequential Circuits

• Also bad because of ad hoc design process
– How create other sequential circuits? 

• Need
– A way to capture desired sequential behavior
– A way to convert such behavior to a sequential circuit

Step Description

Step 1:
Capture
behavior

Capture the 
function 

Create a truth table or equations, whichever is 
most natural for the given problem, to describe 
the desired behavior of each output of the 
combinational logic.

2A: Create
equations

This substep is only necessary if you captured the 
function using a truth table instead of equations. Create 
an equation for each output by ORing all the minterms
for that output. Simplify the equations if desired.

2B: Implement
as a gate-
based circuit

For each output, create a circuit corresponding 
to the output’s equation. (Sharing gates among 
multiple outputs is OK optionally.) 

Step 2:
Convert
to circuit

Like we had for 
designing 
combinational 
circuits
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Capturing Sequential Circuit Behavior as FSM
• Finite-State Machine (FSM)

– Describes desired behavior of 
sequential circuit

• Akin to Boolean equations for 
combinational behavior

• List states, and transitions 
among states

– Example: Toggle x every clock 
cycle

– Two states: “Lo” (x=0), and “Hi” 
(x=1)

– Transition from Lo to Hi, or Hi to 
Lo, on rising clock edge (clk^)

– Arrow points to initial state 
(when circuit first starts)

Lo Hi Lo Hi Lo Hi Lo Hi

cycle 1 cycle 2 cycle 3 cycle 4
clk

Lo LoHi Histate

x

Outputs:

Outputs: x

HiLo

x=0 x=1

clk^

clk^

aLo Hi

Lo Hi

or

Depicting multi-
bit or other info 
in a timing 
diagram
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FSM Example: Three Cycles High System

• Want 0, 1, 1, 1, 0, 1, 1, 1, ...
– For one clock cycle each

• Capture as FSM
– Four states: 0, first 1, second 

1, third 1
– Transition on rising clock 

edge to next state

Off OffOn1On1On2 On2On3 On3Off

clk

x

State

Outputs:

Outputs: x

On1Off On2 On3

clk^

clk^

clk^x=1x=1x=0 x=1clk^

a

a
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Three-Cycles High System with Button Input
• Four states
• Wait in “Off” while b is 0 

(b’*clk^) 
• When b is 1 (b*clk^), 

transition to On1
– Sets x=1
– Next two clock edges, 

transition to On2, then On3

• So x=1 for three cycles after 
button pressed

Off OffOn1Off Off Off On2On3Off

clk

State

Outputs:

Inputs:

x

b

Inputs: b Outputs: x

On2On1 On3

Off

clk^

clk^

x=1x=1x=1

x=0

clk^

b'*clk^

b*clk^
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FSM Simplification: Rising Clock Edges Implicit
• Every edge ANDed with rising 

clock edge
• What if we wanted a transition 

without a rising edge
• We don’t consider such 

asynchronous FSMs – less  
common, and advanced topic

• Only consider synchronous
FSMs – rising edge on every
transition

Note: Transition with no associated condition 
thus transistions to next state on next clock cycle On2On1 On3

Off

x=1x=1x=1

x=0

b’

b

Inputs: b; Outputs: x

On2On1 On3

Off

x=1x=1x=1

x=0

b’

clk^

clk^

^clk

*clk̂

*clk^b

Inputs: b; Outputs: x

a
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FSM Definition
• FSM consists of

– Set of states
• Ex: {Off, On1, On2, On3}

– Set of inputs, set of outputs
• Ex: Inputs: {b}, Outputs: {x}

– Initial state
• Ex: “Off”

– Set of transitions
• Each with condition
• Describes next states
• Ex: Has 5 transitions

– Set of actions
• Sets outputs in each state
• Ex: x=0, x=1, x=1, and x=1

Inputs: b; Outputs: x

On2On1 On3

Off

x=1x=1x=1

x=0

b’

b

We often draw FSM graphically, 
known as state diagram

Can also use table (state table), or 
textual languages
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FSM Example: Secure Car Key

• Many new car keys include 
tiny computer chip
– When key turned, car’s computer 

(under engine hood) requests 
identifier from key

– Key transmits identifier
• Else, computer doesn’t start car

• FSM
– Wait until computer requests ID 

(a=1)
– Transmit ID (in this case, 1 1 0 1)

K1 K2 K3 K4

r=1 r=1 r=0 r=1

Wait
r=0

Inputs: a; Outputs: r

a’a
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FSM Example: Secure Car Key (cont.)
• Nice feature of FSM

– Can evaluate output behavior 
for different input sequence

– Timing diagrams show states 
and output values for different 
input waveforms

K1 K2 K3 K4

r=1 r=1 r=0 r=1

Wait
r=0

Inputs: a; Outputs: r

a’a

Wait Wait K1 K2 K3 K4 Wait Wait

clk

Inputs

Outputs

State

a

r

clk
Inputs

a

Wait Wait K1 K2 K3 K4 Wait

Output

State

r

K1

Q: Determine states and r value for 
given input waveform:

a
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Ex: Earlier Flight-Attendant Call Button
• Previously built using SR latch, 

then D flip-flop
• Capture desired bit storage 

behavior using FSM instead
– Clear and precise description of 

desired behavior
– We’ll later convert to a circuit 

Bit
Storage

Blue lightCall
button

Cancel
button

Inputs: Call, Cncl     Outputs: L

LightOnLightOff

L=0 L=1

Cncl*Call'

Call

Call'
(Cncl*Call')'
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How To Capture Desired Behavior as FSM

• List states
– Give meaningful names, show initial state
– Optionally add some transitions if they help

• Create transitions
– For each state, define all possible transitions leaving that state.

• Refine the FSM
– Execute the FSM mentally and make any needed improvements. 
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FSM Capture Example: Code Detector
• Unlock door (u=1) only 

when buttons pressed 
in sequence: 
– start, then red, blue, 

green, red
• Input from each button: 

s, r, g, b
– Also, output a

indicates that some 
colored button 
pressed

• Capture as FSM
– List states

• Some transitions 
included

Start

Red
Green

Blue

s

r
g
b
a

Door
lock

u

Code
detector

a

ab ag ar
Red1

u=0

Blue

u=0

Green

u=0

Red2

u=1

Inputs: s,r,g,b,a
Outputs: u

Wait

s'u=0 s

Wait for start button

ar

Start
u=0

Wait for first coloredbutton
a

1
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FSM Capture Example: Code Detector
• Capture as FSM

– List states
– Create transitions

Start

Red
Green

Blue

s

r
g
b
a

Door
lock

u

Code
detectora

Wait

Start

Red1 Red2GreenBlue

s'

a'

ar'

ab ag ar

u=0

u=0 ar

u=0 s

u=0 u=0 u=1

Inputs: s,r,g,b,a
Outputs: u

a
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FSM Capture Example: Code Detector
• Capture as FSM

– List states
– Create transitions

• Repeat for remaining 
states

– Refine FSM
• Mentally execute
• Works for normal 

sequence
• Check unusual cases
• All colored buttons 

pressed
– Door opens!
– Change conditions: 

other buttons NOT 
pressed also

Start

Red
Green

Blue

s

r
g
b
a

Door
lock

u

Code
detectora

Wait

Start

Red1 Red2GreenBlue

s'

a'

ar' ab' ag' ar'

a'

ab ag ar

a' a'
u=0

u=0 ar

u=0 s

u=0 u=0 u=1

Inputs: s,r,g,b,a
Outputs: u
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FSM Capture Example: Code Detector
Start

Red
Green

Blue

s

r
g
b
a

Door
lock

u

Code
detectora

Wait

Start

Red1 Red2GreenBlue

s'

a' a(r
b'g

')'
a(

br
'g'

)'

a'

abr'g' agr'b' arb'g'

a' a'
u=0

u=0
arb'g'

u=0 s

u=0 u=0 u=1

Inputs: s,r,g,b,a
Outputs: u

a(
gr

'b
')'

a(
rb

'g
')'
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Controller Design
• Converting FSM to sequential circuit

– Circuit called controller
– Standard controller architecture

• State register stores encoding of 
current state

– e.g., Off:00, On1:01, On2:10, On3:11
• Combinational logic computes outputs 

and next state from inputs and current 
state

• Rising clock edge takes controller to 
next state

3.4

Combinational
logic

State register

s1 s0

n1

n0

xb

clk

FSM
inputs

FSM
outputs

Laser timer controller

Inputs: b; Outputs: x

On2On1 On3

Off

x=1x=1x=1

x=0

b’

b

Combinational
logic

S
m

m

N

OI

clk

FSM
inputs

FSM
outputs

m-bit
state register

Controller

Controller for laser timer FSM

Laser timer FSM

General 
form

a



Digital Design 2e
Copyright © 2010
Frank Vahid

40

Controller Design Process
Step Description

Step 1:
Capture
behavior

Capture the 
FSM 

Create an FSM that describes the desired behavior 
of the controller.

2A: Set up
architecture

Use state register of appropriate width and combinational 
logic. The logic’s inputs are the state register bits and the 
FSM inputs; outputs are next state bits and the FSM outputs.

2B: Encode
the states

Assign unique binary number (encoding) to each state. 
Usually use fewest bits, assign encoding to each state by 
counting up in binary.Step 2:

Convert
to circuit 2C: Fill in

the truth table

Translate FSM to truth table for combinational logic such that 
the logic will generate the outputs and next state signals for 
the given FSM. Ordering the inputs with state bits first makes 
the correspondence between the table and the FSM clear. 

2D: Implement
combinational 
logic

Implement the combinational logic using any method.
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Controller Design: Laser Timer Example
• Step 1: Capture the FSM

– Already done

• Step 2A: Set up architecture
– 2-bit state register (for 4 states)
– Input b, output x
– Next state signals n1, n0

• Step 2B: Encode the states
– Any encoding with each state  

unique will work

x=1 x=1 x=1

x=0

b

b’

01

00

10 11On2On1

Off

On3

a

a

Inputs: b; Outputs: x

Combinational
logic

State register

s1 s0

n1

n0

xb

clk
FS

M
in

pu
ts

FS
M

ou
tp

ut
s
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Controller Design: Laser Timer Example (cont)
• Step 2C: Fill in truth table

x=1 x=1 x=1

x=0

b

b’

01

00

10 11On2On1

Off

On3

Inputs: b; Outputs: x

Combinational
logic

State register

s1 s0

n1

n0

xb

clk

FS
M

in
pu

ts FSM
outputs

a
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Controller Design: Laser Timer Example (cont)
• Step 2D: Implement 

combinational logic Combinational
logic

State register

s1 s0

n1

n0

xb

clk

FS
M

in
pu

ts FSM
outputs

a

x = s1 + s0 (note that x=1 if s1=1 or s0=1)

n1 = s1’s0b’ + s1’s0b + s1s0’b’ + s1s0’b
n1 = s1’s0 + s1s0’

n0 = s1’s0’b + s1s0’b’ + s1s0’b
n0 = s1’s0’b + s1s0’
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Controller Design: Laser Timer Example (cont)
• Step 2D: Implement 

combinational logic (cont)
a

x = s1 + s0
n1 = s1’s0 + s1s0’
n0 = s1’s0’b + s1s0’

Combinational
logic

State register

s1 s0

n1

n0

xb

clk

FS
M

in
pu

ts FSM
outputs

n0

s0s1

clk

Combinational Logic

State register

x

n1

b
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Understanding the Controller’s Behavior

s0s1

b x

n1

n0

x=1 x=1 x=1
b

01 10 11On2On1

Off

On3

00

0 0

0

0
0

0

b’

0

0

0

00

x=0

00
0

clk

clk

Inputs:

Outputs:

1

0

10

s0s1

b x

n1

n0

x=1 x=1 x=1

b’

01 10 11On2On1

Off

On3

clk

b

x

00

0 0

x=0

00
0

state=00 state=00

s0s1

b x

n1

n0

x=1 x=1 x=1

x=0

b

b’

01

00

10 11On2On1

Off

On3

1

0

1

1

0

0
0

1
1
0

clk
0 1

01

state=01

a

b

1

0

1
0

0
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Controller Example: 
Button Press Synchronizer

• Want simple sequential circuit that converts button press to 
single cycle duration, regardless of length of time that 
button was actually pressed
– We assumed such an ideal button press signal in earlier example, 

like the button in the laser timer controller

cycle1 cycle2 cycle3 cycle4clk
Inputs:

Outputs:

bi

bo

Button press 
synchronizer

controller

bi bo
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Controller Example: 
Button Press Synchronizer (cont)

A

B

C

s1
0
0
0
0
1
1
1
1

s0
0
0
1
1
0
0
1
1

bi
0
1
0
1
0
1
0
1

Inputs
n1
0
0
0
1
0
1
0
0

n0
0
1
0
0
0
0
0
0

bo
0
0
1
1
0
0
0
0

Outputs
Combinational logic

unused

Step 2C: Fill in truth table

a

Step 1: Capture FSM

A B C
bo=1bo=0 bo=0

bi

bibi’
bi’

bi’
bi

FSM inputs: bi; FSM outputs: bo

Step 2B: Encode states

00 01 10

bo=1bo=0 bo=0
bi

bi
bi’

bi’

bi’
bi

FSM inputs: bi; FSM outputs: bo

Step 2D: Implement 
combinational logic

clk
State register

bo

bi

s1 s0

n1

n0

Combinational logic

n1 = s1’s0bi + s1s0bi
n0 = s1’s0’bi
bo = s1’s0bi’ + s1’s0bi = s1s0

Step 2A: Set up architecture
Combinational

logic

n0
s1 s0

n1

bobi

clk State register

FS
M

in
pu

ts

FS
M

ou
tp

ut
s
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Controller Example: Sequence Generator
• Want generate sequence 0001, 0011, 1100, 1000, (repeat)

– Each value for one clock cycle
– Common, e.g., to create pattern in 4 lights, or control magnets of a “stepper motor”

00

01 10

11A

B

D

wxyz=0001 wxyz=1000

wxyz=0011 wxyz=1100

C

Inputs: none; Outputs: w,x,y,z

Step 2B: Encode states

Step 2C: Fill in truth table
clk State register

w
x

y
z

n0s0s1 n1

Step 2D: Implement combinational logic

w = s1
x = s1s0’
y = s1’s0
z = s1’
n1 = s1 xor s0
n0 = s0’

a

Step 1: Create FSM

A

B

D

wxyz=0001 wxyz=1000

wxyz=0011 wxyz=1100

C

Inputs: none; Outputs: w,x,y,z

Step 2A: Set up architecture

Combinational
logic

n0
s1 s0

n1

clk State register

w
x
y
z
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Controller Example: Secure Car Key
• (from earlier example)

K1 K2 K3 K4

r=1 r=1 r=0 r=1

Wait
r=0

Inputs: a; Outputs: r

a’a

S
te

p 
1

Combinational
logic

s2 s1 s0

n2

ra

n1
n0

clk State register

S
te

p 
2A

a’
a

r=0

r=1 r=1 r=0 r=1

000

001 010 011 100

Inputs:a;Outputs: r

S
te

p 
2B

Step 2C

a

We’ll omit Step 2D
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Converting a Circuit to FSM (Reverse Engineering)

clk State register

y

z

n0

n1

s0s1

x

What does this 
circuit do?

Work backwards

2D: Circuit to eqns
y=s1’
z = s1s0’
n1=(s1 xor s0)x
n0=(s1’*s0’)x

2C: Truth table 

a

2B: (Un)encode states
Pick any state names you want

A

D

B

C

states

Outputs:y, z

A

D

B

yz=01yz=00

yz=10yz=10

C

states 
with 
outputs

A

D

B

yz=00

yz=01

yz=10

yz=10

C

Inputs: x; Outputs:y, z

x’

x’
x’

x

x

x

states with 
outputs and 
transitions

2A: Set up arch – already done

Step 1: FSM (get from table)
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Reverse Engin. the D-flip-flop Flight Atten. Call Button 

D Q¢

QClk

Call
button

Cancel
button

Blue
light

2D: Circuit to eqns
L = Q
D = Cncl'Q + Call (next state)

Don’t let the way the circuit is drawn 
confuse you; the combinational logic is 
everything outside the register

L

2C: 
Truth 
table

2B: 
(Un)encode 
states

2A: Set up 
arch (nothing 
to do)

Inputs: Call, Cncl     Outputs : L

LightOnLightOff

L=0 L=1

Call'*Cncl

Call

Call'
Cncl'+Call

Step 1: FSM 
(get from table)
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Common Mistakes when Capturing FSMs

• Non-exclusive transitions

a

b
ab=11 –

next state?

a

a’b

a

what if
ab=00?

a

a’b

a’b’

a’b

a

• Incomplete transitions
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Verifying Correct Transition Properties
• Can verify using Boolean algebra

– Only one condition true: AND of each condition pair (for 
transitions leaving a state) should equal 0  proves pair 
can never simultaneously be true

– One condition true: OR of all conditions of transitions 
leaving a state) should equal 1  proves at least one 
condition must be true

– Example
a

a’b

a + a’b
= a*(1+b) + a’b
= a + ab + a’b
= a + (a+a’)b
= a + b
Fails! Might not 
be 1 (i.e., a=0, 
b=0)

a

Q: For shown transitions, prove whether:
* Only one condition true (AND of each pair is always 0)
* One condition true (OR of all transitions is always 1)

a * a’b
= (a * a’) * b
= 0 * b
= 0
OK!

Answer:
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Verifying transition properties
• Recall code detector FSM

– We “fixed” a problem with the 
transition conditions

– Do the transitions obey the two 
required transition properties?

• Consider transitions of state 
Start, and the “only one true” 
property

Wait

Start

Red1 Red2GreenBlue

s’

a’

a’

ab ag ar

a’ a’
u=0

u=0ar

u=0 s

u=0 u=0 u=1

a

ar * a’ a’ * a(r’+b+g) ar * a(r’+b+g) 
= (a*a’)r = 0*r = (a’*a)*(r’+b+g) = 0*(r’+b+g) 

= (a*a)*r*(r’+b+g) = a*r*(r’+b+g) 
= 0 = 0 = arr’+arb+arg 

= 0 + arb+arg 
= arb + arg 
= ar(b+g) 

Fails! Means that two of Start’s 
transitions could be true

Intuitively: press red and blue 
buttons at same time: conditions 
ar, and a(r’+b+g) will both be 
true. Which one should be 
taken?

Q: How to solve? a

A: ar should be arb’g’
(likewise for ab, ag, ar)

Note: As evidence the pitfall is common,
we admit the mistake was not initially intentional. 
A reviewer of an earlier edition of the book caught it.
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Simplifying Notations

• FSMs
– Assume unassigned 

output implicitly 
assigned 0

• Sequential circuits
– Assume unconnected 

clock inputs connected 
to same external clock

clk a

a

a

a=0
b=1
c=0

a=0
b=0
c=1

b=1 b=0
c=1
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Mathematical Formalisms
• Two formalisms to capture behavior thus far

– Boolean equations for combinational circuit design
– FSMs for sequential circuit design

• Not necessary
– But tremendously beneficial

• Structured methodology
• Correct circuits
• Automated design, automated verification, many more advantages
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More on Flip-Flops and Controllers
• Non-ideal flip-flop behavior

– Can’t change flip-flop input too close to clock edge
– Setup time: time D must be stable before edge

• Else, stable value not present at internal latch
– Hold time: time D must be held stable after edge

• Else, new value doesn’t have time to loop around 
and stabilize in internal latch

Setup time violation

Leads to oscillation!

clk

D

clk

D

setup time

hold time

R

S
D

C

u

D latch

Q

Q′
1

2

3 4

5 6

7

C

D

S

u

R

Q′

Q

3.5
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Metastability
• Violating setup/hold time can lead to bad 

situation
– Metastable state: Any flip-flop state other 

than stable 1 or 0
• Eventually settles to either, but we don’t 

know which
– For internal circuits, we can make sure to 

observe setup time
– But what if input is from external 

(asynchronous) source, e.g., button 
press?

• Partial solution
– Insert synchronizer flip-flop for 

asynchronous input
• Special flip-flop with very small setup/hold 

time

a

clk

D

Q

setup time
violation

metastable
state

ai

ai

synchronizer
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Metastability
• Synchronizer flip-flop doesn’t completely prevent metastability

– But reduces probability of metastability in dozens/hundreds of internal flip-
flops storing important values

– Adding more synchronizer flip-flops further reduces probability
• First ff likely stable before next clock; second ff very unlikely to have setup time 

violated
– Drawback: Change on input is delayed to internal flip-flops

• By three clock cycles in below circuit

a

ai

synchronizers

low
very
low

very
very
low

incredibly
low

Probability of flip-flop being
metastable is:



Digital Design 2e
Copyright © 2010
Frank Vahid

60

Example of Reducing Metastability Probability
• Recall earlier secure car key controller

K1 K2 K3 K4

r=1 r=1 r=0 r=1

Wait
r=0

Inputs: a; Outputs: r

a’a

Combinational
logic

s2 s1 s0

n2

ra

n1
n0

clk State register

FSM

inputs

outputs

a

D
flip-flop Combinational

logic

s2 s1 s0

n2

ra

n1
n0

clk State register

Original
a

a

Adding synchronizer flip-flop reduces 
metastability probability in state 
register, at expense of 1 cycle delay
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Flip-Flop Set and Reset Inputs
• Some flip-flops have 

additional reset/set inputs
– Synchronous

• Synch. reset: Clears Q to 0 on 
next clock edge

• Synch. set: Sets Q to 1 on next 
clock edge

• Have priority over D input
– Asynchronous 

• Asynch. reset: Clear Q to 0, 
independently of clock

– Example timing diagram shown
• Asynch. set: set Q to 1, indep. of 

clock

D Q’

Q
R

Q’

AR

D

Q

Q’

AS

AR
D

Q

cycle 1 cycle 2 cycle 3 cycle 4
clk

D

AR

Q
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Initial State of a Controller
• All our FSMs had initial state

– But our sequential circuits did not
– Can accomplish using flip-flops 

with reset/set inputs
• Shown circuit initializes flip-flops to 

01
– Designer must ensure reset-

controller input is 1 during power 
up of circuit

• By electronic circuit design

Inputs: x; Outputs: b

On2On1 On3

Off

x=1x=1x=1

x=0

b’

b

D Q’ Q’

Q
R S

D

Q

State register
clk

reset
controller

s1 s0
n0

n1

b x
Combinational

logic

Controller with reset to initial 
state 01 (assuming state Off 
was encoded as 01). 
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Glitching
• Glitch: Temporary values on outputs that appear soon after 

input changes, before stable new output values
• Designer must determine whether glitching outputs may 

pose a problem
– If so, may consider adding flip-flops to outputs

• Delays output by one clock cycle, but may be OK
• Called registered output

Combinational
logic

State register

s1 s0

n1

n0

xb
D

flip-flop

xr

Laser timer controller with flip-
flop to prevent glitches on x from 
unintentionally turning on laser
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Glitching
• Alternative registered output approach, avoid 1 cycle delay:

– Add extra state register bit for each output
– Connect output directly to its bit
– No logic between state register flip-flop and output, hence no glitches

Combinational
logic

State register

s1 s0

n1
n0

xb

sx

nx

x=1 x=1 x=1

x=0

b

b′

011

000

101 111On2On1

Off

On3

Inputs: b Outputs: x

But, uses more flip-flops, plus more 
logic to compute next state
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Product Profile: Pacemaker
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Product Profile: Pacemaker

Pacemaker

Controller

Timer
(counts down

from 0.8s)

Osc

s

p

Inputs: s, z
Outputs: t, p

ResetTimer

Pace

Wait

t=1, p=0

p=1
t=0

t=0
p=0

s′z′

s′zt z

ra

rv lv

la

s

Basic pacemaker
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Product Profile: Pacemaker

Pacemaker

Controller

Osc

ta za tv zv

TimerA TimerV

sa

sv
pv

pa

right atrium

right
ventricle

left
ventricle

left atrium
Inputs: sa, za, sv, zv
Outputs: pa, ta, pv, tv

ResetTimerA

ResetTimerV

PaceA

WaitA

WaitV

ta=1

tv=1

pa=1

pv=1

sv
sa

sv′*zv′

sv′*zv

sa′*za′

sa′*za

PaceV

Atrioventricular 
pacemaker
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Chapter Summary
• Sequential circuits

– Have state

• Created robust bit-storage device: D flip-flop
– Put several together to build register, which we used to store state

• Defined FSM model to capture sequential behavior
– Using mathematical models – Boolean equations for combinational 

circuit, and FSMs for sequential circuits – is important 

• Defined Capture/Convert process for sequential circuit 
design
– Converted FSM to standard controller architecture

• So now we know how to build the class of sequential 
circuits known as controllers 
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