Digital Dasign

with RTL Dasign, VHDL, and Verilag

Digital Design

Chapter 1: Introduction

Slides to accompany the textbook Digital Design, with RTL Design, VHDL, and
Verilog, 2nd Edition,
by Frank Vahid, John Wiley and Sons Publishers, 2010.
http://www.ddvahid.com

Copyright © 2010 Frank Vahid

Instructors of courses requiring Vahid's Digital Design textbook (published by John Wiley and Sons) have permission to modify and use these slides for customary course-related activities, subject to keeping this copyright notice in place and unmodified. These slides may be posted as unanimated pdf versions on publicly-accessible course websites.. PowerPoint source (or pdf with animations) may not be posted to publicly-accessible websites, but may be posted for students on internal protected sites or distributed directly to students by other electronic means. Instructors may make printouts of the slides available to students for a reasonable photocopying charge, without incurring royalties. Any other use requires explicit permission. Instructors may obtain PowerPoint source or obtain special use permissions from Wiley - see http://www. ddvahid.com for information.

Why Study Digital Design?

- Look "under the hood" of computers
- Solid understanding --> confidence, insight, even better programmer when aware of hardware resource issues
- Electronic devices becoming digital
- Enabled by shrinking and more capable chips
- Enables:
- Better devices: Sound recorders, cameras, cars, cell phones, medical devices,...
- New devices: Video games, PDAs, ...
- Known as "embedded systems"
- Thousands of new devices every year
- Designers needed: Potential career direction

Satellites			DVD players	Video recorders		Musical instruments	
music players		Cell phones		Cameras		TVs	???
1995	1997	1999	2001	2003	2005	2007	
	-	Years shown ab - (Not the fir	ove indica irst year tha	e when digital a digital versio	version beg n appeared)	to dom	

What Does "Digital" Mean?

- Analog signal
- Infinite possible values

- Digital signal
- Finite possible values
- Ex: button pressed on a keypad

Digital Signals with Only Two Values: Binary

- Binary digital signal -- only two possible values
- Typically represented as 0 and 1
- One binary digit is a bit
- We'll only consider binary digital signals
- Binary is popular because

- Transistors, the basic digital electric component, operate using two voltages (more in Chpt. 2)
- Storing/transmitting one of two values is easier than three or more (e.g., loud beep or quiet beep, reflection or no reflection)

Example of Digitization Benefit

- Analog signal (e.g., audio, video) may lose quality
- Voltage levels not saved/copied/transmitted perfectly
- Digitized version enables near-perfect save/cpy/tran.
- "Sample" voltage at particular rate, save sample using bit encoding
- Voltage levels still not kept perfectly
- But we can distinguish 0s from 1s

Let bit encoding be:
1 V : "01"
2 V: "10"
3 V: "11"

Digitization Benefit: Can Store on Digital Media

Digitized Audio: Compression Benefit

- Digitized audio can be compressed
- e.g., MP3s
- A CD can hold about 20 songs uncompressed, but about 200 compressed
- Compression also done on digitized pictures (jpeg), movies (mpeg), and more
- Digitization has many other benefits too

Example compression scheme:
00 means 0000000000
01 means 1111111111
1X means X

How Do We Encode Data as Binary for Our Digital

 System?

- Some inputs inherently binary
- Button: not pressed (0), pressed (1)
- Some inputs inherently digital
- Just need encoding in binary
- e.g., multi-button input: encode red=001, blue $=010$,
- Some inputs analog
- Need analog-to-digital conversion
- As done in earlier slide -sample and encode with bits

How to Encode Text: ASCII, Unicode

- ASCII: 7- (or 8-) bit encoding of each letter, number, or symbol
- Unicode: Increasingly popular 16-bit encoding
- Encodes characters from various world languages

Encoding	Symbol
0100000	$<$ space>
0100001	$!$
0100010	$"$
0100011	$\#$
0100100	$\$$
0100101	$\%$
0100110	$\&$
0100111	\vdots
0101000	$($
0101001	$)$
0101010	$*$
0101011	+
0101100	,
0101101	-
0101110	$;$
0101111	i

Encoding	Symbol	Encoding	Symbol
1000001	A	1001110	N
1000010	B	1001111	O
1000011	C	1010000	P
1000100	D	1010001	Q
1000101	E	1010010	R
1000110	F	1010011	S
1000111	G	1010100	T
1001000	H	1010101	U
1001001	I	1010110	V
1001010	J	1010111	W
1001011	K	1011000	X
1001100	L	1011001	Y
1001101	M	1011010	Z

Encoding	Symbol
1100001	a
1100010	b
\ldots	
1111001	y
1111010	z
0110000	0
0110001	1
0110010	2
0110011	3
0110100	4
0110101	5
0110110	6
0110111	7
0111000	8
0111001	9

Question:
What does this ASCII bit sequence represent? 1010010100010110100111010100

How to Encode Numbers: Binary Numbers

- Each position represents a quantity; symbol in position means how many of that quantity
- Base ten (decimal)
- Ten symbols: 0, 1, 2, ..., 8, and 9
- More than 9 -- next position
- So each position power of 10
- Nothing special about base 10 -used because we have 10 fingers
- Base two (binary)
- Two symbols: 0 and 1
- More than 1 -- next position
- So each position power of 2

Using Digital Data in a Digital System

- A temperature sensor outputs temperature in binary
- The system reads the temperature, outputs ASCII code:
- "F" for freezing (0-32)
- "B" for boiling (212 or more)
- "N" for normal
- A display converts its ASCII input to the corresponding letter

Converting from Binary to Decimal

- Just add weights
-1_{2} is just $1^{*} 2^{0}$, or 1_{10}.
-110_{2} is $1^{*} 2^{2}+1^{*} 2^{1}+0^{*} 2^{0}$, or 6_{10}. We might think of this using base ten weights: $1 * 4+1 * 2+0 * 1$, or 6 .
-10000_{2} is $1 * 16+0 * 8+0 * 4+0 * 2+0 * 1$, or 16_{10}.
-10000111_{2} is $1 * 128+1 * 4+1 * 2+1 * 1=135_{10}$. Notice this time that we didn't bother to write the weights having a 0 bit.
- 00110_{2} is the same as 110_{2} above - the leading 0's don't change the value.

Useful to know powers of 2 :

$$
\overline{2^{9}} \overline{2^{8}} \overline{2^{7}} \overline{2^{6}} \overline{2^{5}} \overline{2^{4}} \overline{2^{3}} \overline{2^{2}} \overline{2^{1}} \overline{2^{0}}
$$

Practice counting up by powers of 2 :
$\begin{array}{llllllllll}512 & 256 & 128 & 64 & 32 & 16 & 8 & 4 & 2 & 1\end{array}$

Converting from Decimal to Binary

- Put 1 in leftmost place without sum
exceeding number
- Track sum

Converting from Decimal to Binary

- Example using a more compact notation

Example: DIP-Switch Controlled Channel

- Ceiling fan receiver should be set in factory to respond to channel "73"
- Convert 73 to binary, set DIP switch accordingly

Base Sixteen: Another Base Used by Designers

$\overline{16^{4}} \frac{-}{16^{3}} \frac{8}{16^{2}} \quad \frac{\mathrm{~A}}{16^{1}} \frac{\mathrm{~F}}{16^{0}}$

100010101111

hex	binary		hex	binary
0	0000		8	1000
1	0001		9	1001
2	0010		A	1010
3	0011		B	1011
4	0100		C	1100
5	0101		D	1101
6	0110		E	1110
7	0111		F	1111

- Nice because each position represents four base-two positions
- Compact way to write binary numbers
- Known as hexadecimal, or just hex

Q: Convert hex A01 to binary

Decimal to Hex

- Easy method: convert to binary first, then binary to hex

Convert 99 base 10 to hex
First convert to binary:
Then binary to hex:

(Quick check: 6*16 + 3*1 = 96+3 = 99)

Hex Example: RFID Tag

- Batteryless tag powered by radio field
- Transmits unique identification number
- Example: 32 bit id
- 8 -bit province number, 8 -bit country number, 16 -bit animal number
- Tag contents are in binary
- But programmers use hex when writing/reading

(b)

(c) Province: 7 City: 160

Animal: 513
(d) 00000111101000000000001000000001
(e) 07
(f)

Tag ID in hex: 07A00201

Converting To/From Binary by Hand: Summary

Divide-By-2 Method Common in Automatic Conversion

- Repeatedly divide decimal number by 2, place remainder in current binary digit (starting from 1s column)

Note:
Works for any base
N-just
divide by
N instead

Bytes, Kilobytes, Megabytes, and More

- Byte: 8 bits

- Common metric prefixes:
- kilo (thousand, or 10^{3}), mega (million, or 10^{6}), giga (billion, or 10^{9}), and tera (trillion, or 10^{12}), e.g., kilobyte, or KByte
- BUT, metric prefixes also commonly used inaccurately
$-2^{16}=65536$ commonly written as " 64 Kbyte"
- Typical when describing memory sizes
- Also watch out for "KB" for kilobyte vs. "Kb" for kilobit

Implementing Digital Systems: Programming Microprocessors Vs. Designing Digital Circuits

Digital Design: When Microprocessors Aren't Good Enough

- With microprocessors so easy, cheap, and available, why
 design a digital circuit?
- Microprocessor may be too slow
- Or too big, power hungry, or costly

Wing controller computation task:

- 50 ms on microprocessor
- 5 ms as custom digital circuit

If must execute 100 times per second:

- $100 * 50 \mathrm{~ms}=5000 \mathrm{~ms}=5$ seconds
- $100 * 5 \mathrm{~ms}=500 \mathrm{~ms}=0.5$ seconds

Microprocessor too slow, circuit OK.

Digital Design: When Microprocessors Aren't Good Enough

- Commonly, designers partition a system among a microprocessor and custom digital circuits

Sample digital camera task execution times (in seconds) on a microprocessor versus a digital circuit:

Task	Microprocessor	Custom Digital Circuit
Read	5	0.1
Compress	8	0.5
Store	1	0.8

(a)

Q: How long for each implementation option?

$$
5+8+1
$$

$$
=14 \mathrm{sec}
$$

.1+.5+. 8 $=1.4 \mathrm{sec}$
. $1+.5+1$ $=1.6 \mathrm{sec}$

Good compromise

Chapter Summary

- Digital systems surround us
- Inside computers
- Inside many other electronic devices (embedded systems)
- Digital systems use 0s and 1s
- Encoding analog signals to digital can provide many benefits
- e.g., audio—higher-quality storage/transmission, compression, etc.
- Encoding integers as 0s and 1s: Binary numbers
- Microprocessors (themselves digital) can implement many digital systems easily and inexpensively
- But often not good enough—need custom digital circuits

