
Concepts Language Idioms Writing VHDL Fixed Point

Basic VHDL for FPGA Design
Minimal Getting Started Guide

Brian Woods

University of North Carolina at Charlotte

(Standalone Lecture)

1/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Concepts

2/ 50

Concepts Language Idioms Writing VHDL Fixed Point

VHDL for FPGA Design

Quick introduction to language for FPGA design
This does NOT...

describe the whole language
describe all of its uses
discuss simulation

Just the minimum to write your first FPGA core

3/ 50

Concepts Language Idioms Writing VHDL Fixed Point

VHDL

VHDL is a Hardware Description Language (HDL)
Lots of others exist...

Verilog
SystemC
SystemVerilog
BlueSpec
JHDL

4/ 50

Concepts Language Idioms Writing VHDL Fixed Point

VHDL Basics

VHDL is NOT a software language
VHDL is NOT a software language
Not all legal VHDL can be synthesized, only a subset
Verbose and strongly typed
Statements are parallel with the exception of inside processes
Looks a lot like ADA ... but that probably doesn’t help you

5/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Terms
entity — interface of a hardware building block

top-level entity — blocks are organized in a hierarchy with the top-level

being the root

6/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Terms

architecture — used to describe the behavior of an entity

configuration — there can be more than one architecture per entity; a

configuration binds one an component instance to an entity-architecture pair

package — a collection of data types and function/procedure

7/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Libraries

Entity, architectures, and packages are compilable units in VHDL
A library is a storage location for compiled units
Libraries explicitly creates a namespace for compiled units
the use command imports the namespace
If you don’t specify a library; the default is called work

8/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Constraints

Top-level entities usually have inputs and outputs; i.e.
clock
reset
application inputs
application outputs

Constraints are used for a lot of things, but first, we use them to associate
top-level I/O with external pins on FPGA chip

9/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Coding Styles

data flow — assignment statements

structural — instantiate components

behavioral — sequential semantics describes what the hardware should
do

10/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Data Flow Example

n1 <= (a1 and b1) or c1;
m1 <= (c1 or d1) and a1;
z1 <= n1 or not(m1);

11/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Stuctural Example

inst1: comp1 port map(a_internal => a_external1, b => b1, c => c1);
inst2: comp1 port map(a_internal => a_external2, b => b2, c => c2);
inst3: combine port map(c1 => c1, c2 => c2, out1 => out1);

12/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Behavioral Example

out1 <=
"0001" when (in1 = "00") else
"0010" when (in1 = "01") else
"0100" when (in1 = "10") else
"1000";

13/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Language

14/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Language Basics

Lexigraphical symbols include
Keywords (ARCHITECTURE, IF, PORT, etc.)
Literals (0, 1, 2, ’Z’, "1010")
Operators (+, −, AND, <=)
Whitespace (space, tab, newline)

VHDL is NOT case sensitive but probably should be!

15/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Typical File
library ieee;
use ieee.std_logic_1164.all;

entity fsm_2 is
port (clk, reset, x1 : IN std_logic;

outp : OUT std_logic);
end entity;

architecture beh1 of fsm_2 is
variables
signals
component declaration

begin
assignments
instantiations
processes

end beh1;

16/ 50

Concepts Language Idioms Writing VHDL Fixed Point

More Terms

signals — define wires in a design

only one driver per signal
used with assignment statement <=

Conventional language constructs

variables

assignment

if/then/else - when/else - case - for-loop

functions and procedures

17/ 50

Concepts Language Idioms Writing VHDL Fixed Point

HDL Specific

inside an architecture begin/end
’Event — true when signal changes
<= — parallel assignment
name : comp — creates an instance of comp named name
Process begin/end — creates sequentially interpreted block of code
Sensitivity list

18/ 50

Concepts Language Idioms Writing VHDL Fixed Point

if then else example

ifexample: process (in1, in2)
begin

if (in1=’1’ and in2=’1’) then
out1 <= ’0’;

elsif (in1=’1’ or in2=’1’) then
out1 <= ’1’;

else
out1 <= ’0’;

end if;
end process ifexample;

19/ 50

Concepts Language Idioms Writing VHDL Fixed Point

When Else Example

out1 <= "01" when (in1=’1’ and in2=’1’) else
"01" when (in1=’1’ and in2=’0’) else
"10" when (in1=’0’ and in2=’1’) else
"00";

20/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Case Example

caseexample:process (in3bit)
begin

case int3bit is
when "001" => out1 <= ’1’;
when "010" => out1 <= ’1’;
when "100" => out1 <= ’1’;
when others => out1 <= ’0’;

end case;
end process caseexample;

21/ 50

Concepts Language Idioms Writing VHDL Fixed Point

For (Generate) Example

-- for generates need to be named
addergen: for i in 0 to 3 generate
begin

nbitadder: adder port map(
in0 => a(i),
in1 => b(i),
cin => carry(i),
out => y(0),
cout => carry(i+1)

);
end generate addergen;
carry(0) <= cin;
cout <= carry(3+1);

22/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Components and Instantiation

Way to use other entities/architectures
Must declare a component before instantiation
Declare a component and instantiation in the architecture

Component goes before the begin
Instantiation goes after

Can instantiate it multiple time
Each instantiation must have a unique name

23/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Component/Instantiation Example

architecture example of slides
component adder is
port(in0, in1, cin: in std_logic;

out, cout: out std_logic)
end component;

begin
adder1: adder port map(
in0 => a,
in1 => b,
cin => cin,
out => y,
cout => cout

);
...
end example;

24/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Idioms

25/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Coding Idioms

If you write behavioral code using idioms or templates, the synthesis tool will
infer macros or optimized netlists for the technology
For example,

a small code change, big change in hardware
resulting code uses resources more efficiently

26/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Three-Input AND Gate

library ieee;
use ieee.std_logic_1164.all;
entity and_3 is
port(X, Y, Z : in std_logic;

F : out std_logic);
end and_3;
architecture imp of and_1 is
begin
F <= X AND Y AND Z;

end imp;

Z

Y

X

F

27/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Flip-Flop With Positive-Edge Clock

library ieee;
use ieee.std_logic_1164.all;
entity registers_1 is
port(C, D : in std_logic;

Q : out std_logic);
end registers_1;
architecture archi of registers_1 is
begin
process (C)
begin

if (C’event and C=’1’) then
Q <= D;

end if;
end process;

end archi;

28/ 50

Concepts Language Idioms Writing VHDL Fixed Point

FF W/Neg-Edge CLK and Async RST
library ieee;
use ieee.std_logic_1164.all;
entity registers_2 is
port(C, D, CLR : in std_logic;

Q : out std_logic);
end registers_2;
architecture archi of registers_2 is
begin
process (C, CLR)
begin

if(CLR = ’1’)then
Q <= ’0’;

elsif (C’event and C=’0’)then
Q <= D;

end if;
end process;

end archi;

29/ 50

Concepts Language Idioms Writing VHDL Fixed Point

4-Bit Register
library ieee; use ieee.std_logic_1164.all;
entity registers_5 is
port(C, CE, PRE : in std_logic;

D : in std_logic_vector (3 downto 0);
Q : out std_logic_vector (3 downto 0));

end registers_5;
architecture archi of registers_5 is
begin
process (C, PRE)
begin

if (PRE=’1’) then
Q <= "1111";

elsif (C’event and C=’1’)then
if (CE=’1’) then
Q <= D;

end if;
end if;

end process;
end archi; 30/ 50

Concepts Language Idioms Writing VHDL Fixed Point

4-to-1 1b MUX
library ieee; use ieee.std_logic_1164.all;
entity multiplexers_1 is
port (a, b, c, d : in std_logic;

s : in std_logic_vector (1 downto 0);
o : out std_logic);

end multiplexers_1;
architecture archi of multiplexers_1 is
begin
process (a, b, c, d, s)
begin
if (s = "00") then o <= a;
elsif (s = "01") then o <= b;
elsif (s = "10") then o <= c;
else o <= d;
end if;

end process;
end archi;

31/ 50

Concepts Language Idioms Writing VHDL Fixed Point

State Machines
In theory, composed of

next state combinational function
state memory (FF or RAM)
output combinational function

Moore-type: outputs only depend on current state
Mealy-type: outputs depends on inputs and state

32/ 50

Concepts Language Idioms Writing VHDL Fixed Point

State Machines
With VHDL, can be coded with...

one process — compact but error prone
two processes — probably best choice
three processes — longer not necessarily clearer

Example:

33/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Two Process State Machine

library ieee; use ieee.std_logic_1164.all;
entity fsm_2 is
port (clk, reset, x1 : IN std_logic;

outp : OUT std_logic);
end entity;
architecture beh1 of fsm_2 is
type state_type is (s1,s2,s3,s4);
signal state, next_state: state_type ;

begin

process 1 (next slide)

process 2 (slide after next)

end beh1;

34/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Process1
process1: process (clk,reset)
begin

if (reset =’1’) then state <=s1;
elsif (clk=’1’ and clk’Event) then
case state is
when s1 =>

if x1=’1’ then
state <= s2;

else
state <= s3;

end if;
when s2 => state <= s4;
when s3 => state <= s4;
when s4 => state <= s1;

end case;
end if;

end process process1;

35/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Process2

process2 : process (state)
begin

case state is
when s1 => outp <= ’1’;
when s2 => outp <= ’1’;
when s3 => outp <= ’0’;
when s4 => outp <= ’0’;

end case;
end process process2;

36/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Process1 Ver 2
process1 : process (state, x1)
begin
case state is
when s1 =>

if x1=’1’ then;
next_state <= s2;

else
next_state <= s3;

end if;
outp <= ’1’;

when s2 =>
next_state <= s4;
outp <= ’1’;

when s3 =>
next_state <= s4;
outp <= ’0’;

when s4 =>
next_state <= s1;
outp <= ’0’;

end case;
end process process1;

37/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Process2 Ver 2

process2: process (clk,reset)
begin

if (reset =’1’) then;
state <= s1;

elsif (clk=’1’ and clk’Event) then
state <= next_state;

end if;
end process process2;

38/ 50

Concepts Language Idioms Writing VHDL Fixed Point

State Machines Options

Lots of possible implementations that are controlled with constraints
state: what kind of memory
next state: what kind of encoding

Synthesizer will “guess” but designer might need to provide hints (speed
versus space, etc.)

39/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Other Inferred Macros

Decoders, Priority Decoders
Counters, Accumulators
Various Shift Registers
Tristate Gates
Adders/Subtractors/Comparators
Pipelined Multipliers/Dividers
RAMs and ROMs

40/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Writing VHDL

41/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Before Writing

Does the design need to be partitioned?
Best to keep it conceptually simple per entity
Once simplified enough, visual the hardware
How can VHDL make realizing that easier?

For generates
Buses/arrays
etc

How to write/structure it where it’s easily readable and reusable

42/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Writing

Assign ports
Start with skeleton comments
Fillout code
Use of idioms
Periodically save and check syntax

43/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Writing Example

--carry out, high when all three inputs are high
-- or two are high
co <= (a and b) or (a and ci) or (b and ci);

-- output, high when 1 or 3 inputs are high
o <= a xor b xor ci;

44/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Testbenches

Used to exercise circuit for debugging/testing
Should go through a reasonable amount of cases
Extremely useful in large systems
Make sure to write hardware synthesizable VHDL, other wise simulation and
implementation results could differ

45/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Writing a Testbench

First initize any registers in the test bench
Decide how to best cycle through the input values
Determine what internal signals are needed
Write some form of process(es) that cycle the inputs
Determining time increments

for combinational systems, wait for statements
for clocked systems, use the clock

46/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Fixed Point

47/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Fixed Point Arithmetic

Assume 12.4 means 12 bits before the binary point and 4 after
Multiplication

Is additive on each side
32 ∗ 32 = 64
16 ∗ 8 = 24
12.6 ∗ 4.4 = 16.10
16 ∗ 8.8 = 24.8
(16 ∗ 28) ∗ 8.8 = (16 ∗ 8.8) ∗ 28 = 24.8 ∗ 28 = 32

48/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Fixed Point Arithmetic

Assume 12.4 means 12 bits before the binary point and 4 after
Addition

Add one in general
32 + 32 = 33
16 + 8.8 = 17.8
16.0 + 0.16(positiveonly) = 16.16
16.0 + 1.16 = 17.16

49/ 50

Concepts Language Idioms Writing VHDL Fixed Point

Further Reading

Xilinx http:
//www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/xst.pdf

Synth Works math tricks
http://www.synthworks.com/papers/vhdl_math_tricks_mapld_2003.pdf

VHDL: Program by Example Douglas Perry 4th

Designers Guide Peter Ashendon

Krzysztof Kuchcinski
http://fileadmin.cs.lth.se/cs/Education/EDAN15/Lectures/Lecture4.pdf

Xilinx ftp://ftp.xilinx.com/pub/documentation/misc/examples_v9.zip

50/ 50

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/xst.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/xst.pdf
http://www.synthworks.com/papers/vhdl_math_tricks_mapld_2003.pdf
http://fileadmin.cs.lth.se/cs/Education/EDAN15/Lectures/Lecture4.pdf
ftp://ftp.xilinx.com/pub/documentation/misc/examples_v9.zip

	Concepts
	Language
	Idioms
	Writing VHDL
	Fixed Point

