01001110010000110101001101010101

4ed3adn0
RIS

Number Systems

ECGR2181
Lecture Notes 1A

1.525 x 27

‘Wor: UNC CHARLOTTE LOgiC System Design | 1A-1

These are all different interpretations of the same bit string.

Unsigned Integers

Non-positional notation
— could represent a number (“5”) with a string of ones (“111117)
— problems?

Weighted positional notation
— like decimal numbers: “329”
— “3” is worth 300, because of its position, while “9” is only worth 9

MOSE = . P — least
3 2 9 significant 10 1 significant
VA BN VA BN
102 10! 10° 22 21 20
3x100 + 2x10 + 9x1 = 329 1x4 +0x2 + 1x1 =5
‘\‘\\”/',' UNC CHARLOTTE Logic System Design I 1A-2

“—

Problems with non-positional: (1) large numbers require lots of bits, (2) arithmetic is not easy.

Positional: compact, simple arithmetic.

Unsigned Binaa Arithmetic

Base-2 addition — just like base-10!
— add from right to left, propagating carry

carry

) YY)

10010 10010 1111

+ 1001 + 1011 + 1
11011 11101 10000

e
<

/% UNC CHARLOTTE Logic System Design I 1A-3

—

Unsigned Bina[x Arithmetic Practice

Base-2 addition — just like base-10!
— add from right to left, propagating carry

10111 10111
+ 1111 - 1111

Subtraction, multiplication, division,...

I
&
“_?" UNC CHARLOTTE Logic System Design T

1A-4

100110

Odometer numbers

Consider an odometer of a car at a location on a street:

0/0{1f{3] Go 3 miles in reverse and itreads: 010]1]0

€ Same as “subtracting 3” or “adding -3”
€ What happens when...

0/0/0]10|/ Go 3 miles in reverse and it reads: 1919197

¢ As far as the odometer is concerned, 9997 = -3

® Note that fixed-width binary is very similar to
odometer numbers in its limitations

4 Can the same representation be used?
0 0000,-0001,=1111,” or -1
¢ 0000,-0011,=%1101,” or -3

€ This is called “2’s complement”

L J
‘1_5'; UNC CHARLOTTE Logic System Design | 1A-5

Two’s Comelement

Two’s complement representation developed to make
circuits easy for arithmetic.

— for each positive number (X), assign value to its negative (-X),
such that X + (-X) = 0 with “normal” addition, ignoring carry out

00101 (5) 01001 (9)
+ 11011 (-5) + (-9)
00000 (0) 00000 (O)

e
<

/% UNC CHARLOTTE Logic System Design I 1A-6

—

To add sign-magnitude numbers:

(1) if signs are the same, just add magnitudes and preserve sign (ignoring overflow for now)

(2) if signs are different, subtract smaller magnitude from larger and set sign according to larger
To add one’s complement:

Add normally, then increment by carry-out.

Two’s ComEIement ReEresentation

If number is positive or zero,
— normal binary representation, zeroes in upper bit(s)

If number is negative,
— start with positive number
— flip every bit (i.e., take the one’s complement)
— then add one

00101 (5) 01001 (9)
€

11010 (1's comp (1’'s comp)
+ 1 + 1
11011 (-5) (-9)
‘\‘\\.’/',' UNC CHARLOTTE Logic System Design I 1A-7

“—

Common mistake: I say, “What is the two’s complement representation of +57”

Student takes the two’s complement of +5 (00101) and tells me “11011”.

23 22 21 20
0O 0 0 O
O 0 0 1
O 0 1 O
o 0 1 1
O 1 0 O
o 1 0 1
o 1 1 0
o 1 1 1

<

/7 UNC CHARLOTTE

“—

Two’s Complement Signed Integers

MS bit is sign bit — it has weight -2,
Range of an n-bit number: -2"1 through 2™1 - 1.
— The most negative number (-2™') has no positive counterpart.

23 22 21 20
0 1 0 0 O -8
1 1 0 0 1 -7
2 1 0 1 O -6
3 1T 0 1 1 -5
4 1 1 0 O -4
5 1T 1 0 1 -3
6 1T 1 1 0 -2
14 1T 1 1 1 -1

Logic System Design I

1A-8

Two’s ComEIement Practice

Show the two’s complement representation of the decimal
number -0.

|
¢

/% UNC CHARLOTTE Logic System Design | 1A-9

—

Converting Bina[x g2’s C! to Decimal

1.

Assuming 8-bit 2’s complement numbers.

<
=/ UNC CHARLOTTE Logic System Design I

—

If leading bit is one, take two’s complement
to get a positive number. n|2n
2. Add powers of 2 that have “1” in the 01
corresponding bit positions. ; i
3. If original number was negative, 3|8
add a minus sign. 4|16
5|32
6|64
71128
X — OllOlOOOtwo 8| 256
= 26425423 = 64+32+8 9|512
=104, __ (K) 10 | 1024
(M) 20 | 1048576

1A-10

Memorize this table!

10

More ExamEIes

X = 00100111

two

= 22422421420 = 32+4+2+1

2n

— 39ten
X =11100110
-X=00011010
— 26ten
X=-26,_,

= 24423421 = 16+8+42

two

<
=/ UNC CHARLOTTE

—

Assuming 8-bit 2’s complement numbers.

Logic System Design I

O NOoOOOGT A~ WDN=O|3

©

(K) 10
(M) 20

1
2
4

16
32
64
128
256
512
1024

1048576

1A-11

11

Converting Binam 52’3 C! to Decimal Practice

Convert binary 00011111 to decimal:

64
128
256
512
(K) 10 | 1024

(M) 20 | 1048576

O NOoO O~ OWODN-=-O|S
-
(o}

©

|
¢

/% UNC CHARLOTTE Logic System Design | 1A-12

—

Converting Decimal to Binary (2's C)

First Method: Division
1. Divide by two — remainder is least significant bit.

2. Keep dividing by two until answer is zero,
writing remainders from right to left.

3. Append a zero as the MS bit;
if original number negative, take two’s complement.

X=104,_, 104/2 = 52 r0 bit0
52/2 = 26 r0 bitl
26/2 = 13 x0 bit2
13/2 = 6 rl bit3
6/2 = 3 xr0 bit4
3/2 = 1 rl bith
X =01101000.,, 1/2 = 0 rl bit6

<

N/ UNCCHARLOTTE Logic System Design | 1A-13

—

Converting Decimal to Binary (2's C)

Second Method: Subtract Powers of Two
1. Change to positive decimal number.

2. Subtract largest power of two less than or
equal to number.

B

Keep subtracting until result is zero.

5. Append a zero as MS bit; if original was
negative, take two’s complement.

3. Put a one in the corresponding bit position.

X=104,_, 104 - 64 = 40 bit6
40 - 32 = 8 bit 5
8 -8 =0 bit 3
X = 01101000,
‘5\”'; UNC CHARLOTTE Logic System Design I

—

O NOoOOGT A~ OWODN-=- O3

©

(K) 10
(M) 20

64
128
256
512
1024

1048576

1A-14

14

Converting Decimal to Binary Practice

above:

Convert decimal 270 to binary using both methods described

2n

O NOoO O~ OWODN-=-O|S

©

(K) 10
(M) 20

e
<

/% UNC CHARLOTTE Logic System Design I

“—

64
128
256
512
1024

1048576

1A-15

15

More Converting Decimal to Binary Practice

Convert decimal 255 to binary using both methods described
above:
2n

1
2
4

16
32
64
128
256
512
(K) 10 | 1024

O NOoO O~ OWODN-=-O|S

©

(M) 20 | 1048576

¢

/% UNC CHARLOTTE Logic System Design | 1A-16

“—

OEerations: Arithmetic

Recall: a data type includes representation and operations.

We now have a good representation for signed integers,
so let’s look at some arithmetic operations:
— Addition
— Subtraction
— Sign Extension

e
<

/% UNC CHARLOTTE Logic System Design I 1A-17

—

17

Addition

As we’ve discussed, 2’s comp. addition is just binary
addition.
— assume all integers have the same number of bits
— ignore carry out
— for now, assume that sum fits in n-bit 2’s comp. representation

01101000 (104) 11110110 (-10)
+ 11110000 (-16) + (-9)
01011000 (88) (-19)

Assuming 8-bit 2’s complement numbers.
I

<
‘5_’_'5 UNC CHARLOTTE Logic System Design I 1A-18

18

Subtraction

Negate subtrahend (2nd no.) and add.
— assume all integers have the same number of bits
— ignore carry out

— for now, assume that difference fits in n-bit 2’s comp.
representation

01101000 (104) 11110110 (-10)

- 00010000 (16) - (-9)
IS just
01101000 (104) 11110110 (-10)
+ 11110000 (-16) + (9)
01011000 (88) (-1)

Assuming 8-bit 2’s complement numbers.

&
‘5_’_'; UNC CHARLOTTE Logic System Design

1A-19

Could also subtract, with borrows, from left to right.

This way, they only have to learn addition and they're prepared for LC-2, which doesn't have a subtract instruction.

19

Practice

Perform the Two’s Complement operation to the following
decimal numbers: - 56 - 14

|
<
/% UNC CHARLOTTE Logic System Design I

—

1A-20

11001000

11110010 =-14

20

Sign Extension

To add two numbers, we must represent them
with the same number of bits.

If we just pad with zeroes on the left:

4-bit 8-bit
0100 (4) 00000100 (still 4)
1100 (-4) 00001100 (12, not-4)

Instead, replicate the most significant bit -- the sign bit:

4-bit 8-bit
0100 (4) 00000100 (still 4)
1100 (-4) 11111100 (still-4)
‘\{\‘:"J UNC CHARLOTTE Logic System Design I 1A-21

21

Overflow

If operands are too big,
then sum cannot be represented as an n-bit 2’'s comp

number.
01000 (8) 11000 (-8)
+ 01001 (9 +10111 (-9
10001 (-15) 01111 (+15)

We have overflow if:
— signs of both operands are the same, and
— sign of sum is different.

Another test -- easy for hardware:
— carry into MS bit does not equal carry out

L 4
*\{_"'; UNC CHARLOTTE Logic System Design I 1A-22

22

Hexadecimal Notation

It is often convenient to write binary (base-2) numbers
as hexadecimal (base-16) numbers instead.
— fewer digits -- four bits per hex digit
— less error prone -- easy to corrupt long string of 1’s and O’s

Binary Hex Decimal Binary Hex Decimal
0000 0 0 1000 8 8
0001 1 1 1001 9 9
0010 2 2 1010 A 10
0011 3 3 1011 B 11
0100 4 4 1100 C 12
0101 5 5 1101 D 13
0110 6 6 1110 E 14
0111 7 7 1111 F 15

Memorize this table!!!l
*\{\”/'; UNC CHARLOTTE Logic System Design | 1A-23

—

Memorize this table!

23

Converting from Binam < 2> Hexadecimal

Every four bits is a hex digit.
— start grouping from right-hand side

011101010001111010011010111

N

3 A 8 F 4 D 7

Every hex digit is represented by 4-bits.
— start with 15t hex digit from right-hand side

1 F 8 C 5 3 E
S N

1 1111 1000 1100 0101 0011 1100

This is not a hew machine representation, just a convenient way to write the nhumber.

L 4
{_’_/'; UNC CHARLOTTE Logic System Design I 1A-24

24

Converting from Hexadecimal to Decimal

Every hex digit position has a base value
— multiply the value at the position by the base value

8 4 D 7

Vol

8x163 + 4x162 + 13x16! + 7x16°=
8x4096 + 4x256 + 13x16 + 7x1 =
32768 + 1024 + 208 + 7 =|34007

to decimal;

- 84D7h = 1000 0100 1101 0111, =
1+2+4+16+64+128+1024+32768 =| 34007

<

/7 UNC CHARLOTTE Logic System Design I

—

Another method is to convert to binary first (easy) then convert

1A-25

25

<
\/Z UNC CHARLOTTE

Practice Converting from Hex to Decimal

Logic System Design I

1A-26

26

