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Introduction. In this paper, two players alternate removing a positive number of

counters from one of n piles of counters, and the choice of which pile he removes from

can change on each move. On his initial move, the player moving first can remove

from one pile of his choice at most t counters. On each subsequent move, a player

can remove from one pile of his choice at most f(x) counters, where x is the number

of counters removed by his opponent on the proceeding move. The game ends when

the total number of counters remaining does not exceed k, k being specified in the

beginning, and the winner is the player who moves last. We initially studied the

strategy for k arbitrary but fixed, f(x) = x and n = 2. We then generalized the

strategy arising from this (k, f, n) = (k, x, 2) game in a straightforward way to arrive

at what we call the “ideal” theorem. This ideal theorem specifies the strategy for an

arbitrary triple (k, f, n). Of course, this ideal theorem is not always true, and this

led us to pose the problem of finding all triples (k, f, n) for which the conclusion of

the ideal theorem is true. This paper will give the complete solution to this problem.

In [4] we solved the single pile game.

Notation. Z is the set of all integers, Z+ is the set of positive integers, and

B = {1, 2, 4, 8, 16, 32, · · · } is the set of integer powers of 2.

Definition 1. For all integers N, g(N) is the highest power of 2 that divides N ,

and g(0) = ∞. Thus g(1) = 1, g(−24) = 8.

Definition 2. Let m ∈ Z+ be fixed. For all integers N, g2m(N) is the highest

power of 2 that divides N , unless 2m|N.

If 2m|N , then g2m(N) = ∞. Thus g2m(0) = ∞, g2m(3 ·2m−1) = 2m−1, g2m(−1) =

1, and g2m(−5 · 2m+1) = ∞.

Definition 3. A function f : Z+ → Z+ is called suitable if it satisfies the two

conditions:

1. ∀N ∈ Z+, g(N) ≤ f(N) and

2. ∀N ∈ B, f(N) < 2N.

We will now play our n-pile Dynamic Nim game using any fixed k ∈ Z+ ∪ {0}
with any suitable function f . Of course, f(N) = N, f(N) = 2N − 1 are two such

functions.

Definition 4. If A1, A2, · · ·An are the n pile sizes, a position can be denoted as

(A1, A2, . . . , An). For every position (A1, A2, . . . , An), we define g(A1, A2, . . . , An)

to be the smallest winning move size. This means that a winning move is to re-

move g(A1, A2, . . . , An) from one of the piles; however, g(A1, A2, . . . , An) by itself

would not necessarily tell the player from which piles it is permissible to remove
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g(A1, A2, . . . , An) from. Also, of course, if x < g(A1, A2, · · ·An), then the removal

of x counters must be a losing move no matter from which of the n piles x counters

is removed. Especially note that g(A1, A2, . . . , An) = ∞ means that all moves are

losing moves.

Definition 5. (Z+ ∪ {0},⊕) is defined as follows. Suppose U, V ∈ Z+ ∪ {0}.
First, we write U, V in binary, and then we add the two numbers digitwise using the

following digit table
⊕ 0 1

0 0 1

1 1 0

.

For example, 38⊕ 21 = 51 since
38 = 100110

21 = ⊕ 10101

51 = 110011

.

Of course, (Z+ ∪ {0},⊕) is an Abelian group. We will now state the “ideal”

theorem that we would like to be true for any (k, f, n), k, n ∈ Z+, where f is suitable.

This “ideal” theorem is just a straight forward generalization of the 2-pile strategy

for f(x) = x. We will deal with k = 0 separately.

Ideal Theorem. Let f : Z+ → Z+ be suitable and k ∈ Z+. Using (k, f), we

play the n-pile dynamic game. Let us define m ∈ Z+ by 2m−1 ≤ k < 2m. For every

position (A1, A2, . . . , An), where k ≤ A1 +A2 + · · ·+An, g(A1, A2, . . . , An) is defined

as the smallest winning move size and is computed by the following rule.

First, define non-negative integers ai, ai, i = 1, 2, · · · , n, such that ∀i, 1 ≤ i ≤
n,Ai = ai + 2mai, 0 ≤ ai < 2m. Then g(A1, A2, . . . , An) = g(a1 + 2ma1, · · · , an +

2man) = min(g2m(a1 + a2 + · · ·+ an− k), g((2ma1)⊕ · · · ⊕ (2man))). Also, a winning

move is to remove g(A1, A2, . . . , An) from any pile Ai satisfying g(A1, A2, . . . , An) ≤
Ai.

Remark. From definition 2, it is obvious by the definition that g2m(a1 + a2 +

· · ·+ an − k) ∈ {∞} ∪ {1, 2, 4, · · · , 2m−1}.
Unfortunately, this “ideal” theorem is not always true because of just one prob-

lem. Sometimes the g(A1, A2, . . . , An) computed by the theorem is finite, and yet

there is no pile size Ai such that g(A1, A2, . . . , An) ≤ Ai.

When k = 1, this problem cannot occur no matter what n is. Also, we will show

later than when n ∈ {1, 2}, this problem cannot occur no matter what k is. Also, if

at least one pile size Ai satisfies 2m ≤ Ai, this problem does not occur.

We now state a companion condition.

Companion Condition. Let k, n be positive integers. Let m be a positive integer
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satisfying 2m−1 ≤ k < 2m. We say that (k, n) satisfies the companion condition if

for each position (a1, a2, · · · , an) satisfying (a), (b) and (c) below, there is an integer

i satisfying 1 ≤ i ≤ n such that g2m(a1 + a2 + · · ·+ an − k) ≤ ai.

(a) 0 ≤ ai < 2m,∀i, 1 ≤ i ≤ n,

(b) k ≤ a1 + a2 + · · ·+ an,

(c) g2m(a1 + a2 + · · ·+ an − k) 6= ∞.

Remark. Later, we will find all (k, n) satisfying the companion condition.

Theorem 1. Suppose k, n ∈ Z+ and f is suitable. Then the “ideal” theorem

is true for (k, f, n) if and only if (k, n) satisfies the companion condition. We also

preview Theorem 4.

Theorem 4. If k, n ∈ Z+ and f :Z+ → Z+ are arbitrary, the “ideal” theorem is

true for (k, f, n) if and only if (k, n) satisfies the companion condition and f satisfies

definition 3.

Proof of Theorem 1. Obviously, the companion condition on (k, n) is a neces-

sary condition. Otherwise, the ideal theorem would not even make sense for some

positions.

We will now show that the companion condition on (k, n) is sufficient for the

ideal theorem to be true for (k, f, n). The proof is by induction on the total

number of counters. First, suppose A1 + A2 + · · · + An = k. Then ∀i, 1 ≤ i ≤
n, Ai = Ai + 0 · 2m since 0 ≤ Ai ≤ k < 2m. Since (A1, A2, · · · , An) is a termi-

nal position, g (A1, A2, · · · , An) = ∞. Also, by the Theorem, g(A1, A2, · · · , An) =

min(g2m(0), g(0⊕ · · · ⊕ 0)) = min(∞,∞) = ∞.

So the induction is started. Let us now consider a position (A1, A2, · · · , An),

where k < A1 + A2 + · · · + An. Let us define (A1, A2, · · · , An) = (a1 + 2ma1, a2 +

2ma2, · · · , an + 2man),∀i, 1 ≤ i ≤ n, 0 ≤ ai < 2m. The theorem requires g(a1 +

2ma1, · · · , an + 2man) = min(g2m(a1 + an + · · ·+ an − k), g((2ma1)⊕ · · · ⊕ (2man))).

It is now easy to see from definition 2 that if 2m|a1 + a2 + · · · + an − k, then

g2m(a1 + a2 + · · · + an − k) = ∞, and the theorem requires g(a1 + 2ma1, · · · , an +

2man) = g((2ma1)⊕(2ma2)⊕· · ·⊕(2man)). On the other hand, if 2m does not divide

a1 + a2 + · · · + an − k, then g2m(a1 + a2 + · · · + an − k) ∈ {1, 2, 4, · · · , 2m−1}, and

the theorem requires g(a1 + 2ma1, · · · , an + 2man) = g2m(a1 + a2 + · · ·+ an − k).

We will consider these two cases separately.

Case 1. 2m|a1+a2+· · ·+an−k. We must show that g(a1+2ma1, · · · , an+2man) =

g((2ma1)⊕ · · · ⊕ (2man)). We will consider two subcases of this.

(a) (2ma1)⊕ · · · ⊕ (2man) 6= 0
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(b) (2ma1)⊕ · · · ⊕ (2man) = 0.

Subcase a. Define X = g((2ma1) ⊕ · · · ⊕ (2man)). Now X is the highest power

of 2 that divides (2ma1)⊕ · · · ⊕ (2man). Therefore, 2m ≤ X and X ∈ B.

First, we will show that X is a winning move size. Since Ai = ai + 2mai, i =

1, 2, · · · , n, from the definitions of X and ⊕, it follows that X ≤ Ai for some 1 ≤
i ≤ n. By symmetry suppose X ≤ A1. We will show that the removal of X from

A1 is a winning move.

Of course, this means that a winning move is to remove X from any pile having

this amount in it.

Removing X from A1 gives a new position (A1, A2, · · · , An) = (A1−X, A2, · · · , An).

Now since X ∈ B and 2m ≤ X, we know that A1 = a1 + 2ma1, A1 = a1 + 2ma∗1, 0 ≤
a1 < 2m. Note that a1 is the same in both A1and A1. Now if A1 +A2 + · · ·+An ≤ k,

there is nothing to prove. So suppose A1 + A2 + · · · + An > k. Now since

a1 +a2 + · · ·+an−k remains unchanged in the new position (A1, A2, · · · , An), by in-

duction the Theorem states that g(A1, A2, · · · , An) = g((2ma∗1)⊕· · ·⊕(2man)) ≥ 2X.

Note that g(A1, A2, · · · , An) ≥ 2X follows from (1) the definition of subtraction

in binary, (2) the definitions of X and⊕, (3) the fact the X ∈ B, and (4) the fact that

g((2ma∗1)⊕· · ·⊕ (2man)) is the highest power of 2 that divides (2ma∗1)⊕· · ·⊕ (2man).

This also includes the possibility that g(A1, A2, · · · , An) = ∞. Since X ∈ B and

f is suitable, f(X) < 2X. This means the next player, who can remove up to

f(X), is confronting a losing position. Next, we show that the removal of Y , where

1 ≤ Y < X, is a losing move no matter from which pile Y is removed from. By

symmetry suppose Y is removed from A1 to give a new pile size A1 = A1 − Y .

There is no loss of generality in assuming that A1 + A2 + · · · + An ≥ k since if

0 ≤ A1 + A2 + · · ·+ An < k, the moving player could easily adjust his move so that

A1 + A2 + · · ·+ An = k, and still win. Let us now write Y = y + 2my, 0 ≤ y < 2m.

Note that g(Y ) = g(y) when y 6= 0, and g(Y ) = 2mg(y) when y = 0. Now A1 =

(a1 + 2ma1)− (y + 2my). Therefore, A1 = (a1 − y) + 2m(a1 − y), 0 ≤ a1 − y < 2m or

A1 = (2m + a1 − y) + 2m(a1 − y − 1), 1 ≤ 2m + a1 − y < 2m.

We use the first form of A1 when 0 ≤ y ≤ a1 and the second form of A1 when

a1 < y. Now (A1, A2, · · · , An) is the new position, and by induction the theorem

states that g(A1, A2, · · · , An) = min(g2m(a1 +a2 + · · ·+an−y−k), g((2m(a1−y))⊕
(2ma2)⊕ · · · (2man))) or g(A1, A2, · · · , An) = min(g2m(a1 + a2 + · · ·+ an + 2m − y−
k), g((2m(a1 − y − 1))⊕ (2ma2)⊕ · · · (2man))).

Now 0 ≤ y < 2m. First, suppose y 6= 0. Then since 2m|a1 + a2 + · · · + an − k,

we see that 2m does not divide a1 + a2 + · · · + an − y − k and 2m does not divide

a1 + a2 + · · · + an + 2m − y − k. Therefore, if y 6= 0, we see by induction that
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g(A1, A2, · · · , An) = g2m(a1 + a2 + · · ·+ an − y − k) = g(y) or g(A1, A2, · · · , An) =

g2m(a1+a2+· · ·+an+2m−y−k) = g(y). Now when y 6= 0, g(Y ) = g(y+2my) = g(y).

Therefore, when y 6= 0, g(A1, A2, · · · , An) = g(Y ). Since f is suitable, g(Y ) ≤ f(Y ).

Therefore, g(A1, A2, · · · , An) ≤ f(Y ). This means the next player, who can remove

up to f(Y ), is in a winning position.

Next, suppose y = 0. Therefore, Y = 2my. Therefore, A1 = a1+2m(a1−y). Now

by induction, the theorem states g(A1, A2, · · · , An) = min(g2m(a1 + a2 + · · ·+ an −
k), g((2m(a1−y))⊕(2ma2)⊕· · ·⊕(2man))) = g((2m(a1−y))⊕(2ma2)⊕· · ·⊕(2man)).

This is because g2m(a1 + a2 + · · ·+ an − k) = ∞ since 2m|a1 + a2 + · · ·+ an − k.

Since Y = 2my and Y < X = g((2ma1)⊕· · ·⊕(2man)), we see from the definition

of X and from the properties of binary subtraction and from the definition of ⊕
that g((2m(a1 − y)) ⊕ (2ma2) ⊕ · · · ⊕ (2man)) = 2mg(y). Therefore, when y = 0,

we have Y = 2my, which means that 2mg(y) = g(Y ). This means that when

y = 0, g(A1, A2, · · · , An) = 2mg(y) = g(Y ).

By definition 3, we know that g(Y ) ≤ f(Y ). This means that g(A1, A2, · · · , An) ≤
f(Y ). Therefore, the next player, who can remove up to f(Y ), is in a winning po-

sition.

Subcase b. In subcase b, we have 2m|a1 + a2 + · · · + an − k and (2ma1) ⊕
· · · ⊕ (2man) = 0. The theorem requires g(A1, A2, · · · , An) = g(a1 + 2ma1, a2 +

2ma2, · · · , an +2man) = min(g2m(a1 +a2 + · · ·+an−k), g((2ma1)⊕· · ·⊕ (2man))) =

min(∞,∞) = ∞. This means we must show that all moves are losing moves, and

the proof of this is virtually identical to the second part of subcase a.

Before going into case 2, we review the fact that (A1, A2, · · · , An) = (a1 +

2ma1, a2 + 2ma2, · · · , an + 2man), 0 ≤ ai < 2m,∀i, 1 ≤ i ≤ n.

Case 2. 2m does not divide a1 + a2 + · · · + an − k. As stated previously, from

definition 2 this means that g2m(a1 + a2 + · · ·+ an − k) ∈ {1, 2, 4, · · · , 2m−1}. Also,

as noted previously, it is easy to see that the theorem requires g(A1, A2, · · · , An) =

g(a1 + 2ma1, · · · , an + 2man) = min(g2m(a1 + a2 + · · · + an − k), g((2ma1) ⊕ · · · ⊕
(2man))) = g2m(a1 + a2 + · · ·+ an − k).

Let us now define x = g2m(a1+a2+· · ·+an−k). Of course, x ∈ {1, 2, 4, · · · .2m−1}.
First, we show that x is a winning move size. Now ∀i, 1 ≤ i ≤ n, Ai = ai +2mai, 0 ≤
ai < 2m. Now if 0 ≤ a1 + a2 + · · · + an < k, then since k < A1 + A2 + · · · + An,

we know that for some 1 ≤ i ≤ n, ai 6= 0 must be true. This means that for this

i, x < Ai since x ≤ 2m−1.

Also, if k ≤ a1 +a2 + · · ·+an, then since 2m does not divide a1 +a2 + · · ·+an−k,

we know by the companion condition that for some 1 ≤ i ≤ n it is true that

g2m(a1 + a2 + · · ·+ an − k) = x ≤ ai. This means that there will always be at least
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one pile size Ai such that x ≤ Ai. By symmetry suppose x ≤ A1 = a1 + 2ma1. Now

x = x + 0 · 2m, 1 ≤ x < 2m, since x ∈ {1, 2, 4, · · · , 2m−1}.
Let us now remove x from A1 to give a new position (A1, A2, · · · , An) = (A1 −

x, A2, · · · , An). We will now show that this is a winning move. Of course, ∀i, 1 ≤
i ≤ n, if x ≤ Ai, then the removal of x from Ai would also be a winning move.

We can assume that k < A1 + A2 + · · · + An. Otherwise, there would be nothing

to prove since the moving player has already won. Now (A1, A2, · · · , An) = (a1 −
x + 2ma1, a2 + 2ma2, · · · , an + 2man), 0 ≤ a1 − x < 2m, 0 ≤ ai < 2m,∀i, 2 ≤ i ≤ n

or (A1, A2, · · · , An) = (2m + a1 − x + 2m(a1 − 1), a2 + 2ma2, · · · , an + 2man), 1 ≤
2m + a1 − x < 2m, 0 ≤ ai < 2m,∀i, 2 ≤ i ≤ n.

We use the first form when x ≤ a1 and the second form when a1 < x. Therefore,

by induction, for the new position (A1, A2, · · · , An) we know that g(A1, A2, · · · , An) =

min(g2m(a1+a2+· · · an−x−k), g((2ma1)⊕(2ma2)⊕· · ·⊕(2man)) or g(A1, A2, · · · , An) =

min(g2m(a1 + a2 + · · ·+ an + 2m − x− k), g((2m(a1 − 1))⊕ (2ma2)⊕ · · · ⊕ (2man))).

Now x ∈ {1, 2, 4, · · · , 2m−1} and x is the highest power of 2 that divides a1 +

a2 + · · ·+ an − k.

It is easy to see that the highest power of 2 that divides a1+a2+· · · an−x−k is no

smaller then 2x. This is true whether a1 +a2 + · · · an−x−k is positive, negative, or

zero. Also, the highest power of 2 that divides a1+a2+· · · an+2m−x−k is no smaller

then 2x. This is true whether a1+a2+· · · an+2m−x−k is positive, negative, or zero.

Now if 2m|a1+a2+· · · an−x−k, we know that g2m(a1+a2+· · · an−x−k) = ∞. Also, if

2m|a1 +a2 + · · · an +2m−x−k, we know that g2m(a1 +a2 + · · · an +2m−x−k) = ∞.

Of course ∞ is bigger than any integer. Also, since x ≤ 2m−1, we know that

2x ≤ g((2ma1)⊕ · · · ⊕ (2man)) and 2x ≤ g((2m(a1 − 1))⊕ 2ma2 ⊕ · · · ⊕ (2man)).

It is now easy to see that no matter how the details play out we are always going

to have g(A1, A2, · · · , An) ≥ 2x. Now since x ∈ B, by definition 3, f(x) < 2x. Since

the next player can remove only up to f(x), this means the next player is confronted

with a losing position. This means the moving player made a winning move.

Next, we show that the removal of y, where 1 ≤ y < x, x = g2m(a1 + a2 +

· · · + an − k), is a losing move no matter from which pile y is removed. Of course,

1 ≤ y < 2m−1 < 2m since x ∈ {1, 2, 4, · · · , 2m−1}.
By symmetry suppose y is removed from A1 to give a new position (A1, A2, · · · , An) =

(A1 − y, A2, · · · , An). We will assume that A1 + A2 + · · ·An ≥ k since if 0 ≤
A1 + A2 + · · ·An < k, the moving player could easily adjust his move so that

A1 + A2 + · · ·An = k and still win.

Now A1 = a1 + 2ma1, 0 ≤ a1 < 2m. Therefore, (A1, A2, · · · , An) = (a1 − y +

2ma1, a2 + 2ma2, · · · , an + 2ma2), 0 ≤ a1 − y < 2m, 0 ≤ ai < 2m,∀i, 2 ≤ i ≤ n
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or (A1, A2, · · · , An) = (2m + a1 − y + 2m(a1 − 1), a2 + 2ma2, · · · , an + 2ma2), 1 ≤
2m + a1 − y < 2m, 0 ≤ ai < 2m,∀i, 2 ≤ i ≤ n. We use the first form when y ≤ a1

and the second form when a1 < y.

Therefore, by induction for the new position (A1, A2, · · · , An) we have g(A1, A2, · · · , An) =

min(g2m(a1+a2+· · ·+an−y−k), g((2ma1)⊕(2ma2)⊕· · ·⊕(2ma2))) or g(A1, A2, · · · , An) =

min(g2m(a1 + a2 + · · ·+ an + 2m − y − k), g((2m(a1 − 1)⊕ (2ma2)⊕ · · · ⊕ (2man))).

Now 2m does not divide a1 + a2 + · · ·+ an − k by the definition of case 2. Also,

x is the highest power of 2 that divides a1 + a2 + · · ·+ an − k, and x ≤ 2m−1. Since

1 ≤ y < x, x ∈ {1, 2, 4, · · · , 2m−1}, it is easy to see that the highest power of 2 that

divides a1 + a2 + · · · + an − y − k is g(y) and the highest power of 2 that divides

a1+a2+· · ·+an+2m−y−k is also g(y). Also, since 1 ≤ y < x, x ∈ {1, 2, 4, · · · , 2m−1},
it is obvious that 1 ≤ g(y) ≤ 2m−2.

From the definitions of g2m and g, it follows from induction that g(A1, A2, · · · , An) =

g(y). Now from definition 3, g(y) ≤ f(y). Therefore, the next player who can re-

move up to f(y), is confronted with a winning position. This means the removal of

y, where 1 ≤ y < x, is a losing move.

Misère. To play the misère game using k ∈ Z+ ∪ {0}, f suitable, let the players

play the regular game using (k+1, f). The winner of the regular (k+1, f) will be the

winner of the misère (k, f) by agreeing not to undershoot k + 1 counters remaining.

Let us next take care of the rather easy game that uses k = 0 and suitable f . The

number of piles, n, is arbitrary.

Theorem 2. For k = 0 and f suitable, the strategy for the n-pile game is as

follows. For every position (A1, A2, · · · , An), g(A1, A2, · · · , An) = g(A1⊕A2⊕ · · · ⊕
An), and the winning move is to remove g(A1, A2, . . . , An) from any pile Ai satisfying

g(A1, A2, . . . , An) ≤ Ai. It is easy to show that such a pile Ai always exists.

Proof. Left to the reader.

When k = 1, it is easy to see that for an arbitrary number of piles, n, (k, n) =

(1, n) satisfies the companion condition. Also, when k = 1, theorem 1 can be cast

in the following form. Theorem 3, of course, is also the solution of the misère game

(k, f, n) = (0, f, n).

Theorem 3. For k = 1 and f suitable, the strategy for the n-pile game is as

follows: ∀ position (A1, A2, · · · , An), g(A1, A2, · · · , An) = g(A1⊕A2⊕+ · · ·⊕An⊕1),

and a winning move is to remove g(A1, A2, · · · , An) from any pile Ai satisfying

g(A1, A2, . . . , An) ≤ Ai. Such a pile always exists.

Theorem 4. If k, n ∈ Z+ and f : Z+ → Z+ are all arbitrary, the ideal theorem

is true for (k, f, n) if and only if (k, n) satisfies the companion condition, and f is

suitable.
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Proof. As in theorem 1, it is obvious that the companion condition on (k, n) is

necessary since, otherwise, the ideal theorem would not even make sense for some

positions.

The only thing that is remaining for us to show is that if (k, n) satisfies the

companion condition and if (k, f, n) satisfies the ideal theorem then it is necessary

that f be suitable.

Now if (k, f, n) satisfies the ideal theorem, it is obvious that (k, f, n) = (k, f, 1)

also must satisfy the ideal theorem since (A1, 0, 0, · · · , 0) is also a position in (k, f, n).

So we will finish the proof by focusing our attention on single pile games. Now all of

the single pile games are essentially the same no matter what k is. For convenience

we can just assume that k = 0. We first show that f satisfies condition 1 of definition

3. Suppose there exists x ∈ Z+ such that f(x) < g(x). We show that this leads

to a contradiction. Consider the position (2ng(x)), where x < 2ng(x). Of course,

g(x) ∈ B and 2ng(x) ∈ B. We can use theorem 2 since we are dealing with a single

pile game with k = 0.

Now by theorem 2, g(2ng(x)) = g(2ng(x)) = 2ng(x). Let us now remove x

counters from the pile of 2ng(x) counters to get a new position (2ng(x) − x). Now

by theorem 2, g(2ng(x) − x) = g(2ng(x) − x) = g(x). This last step is easy to see

since x < 2ng(x) and 2ng(x) ∈ B. Also, f(x) < g(2ng(x) − x) = g(x) is true by

the assumption on x. So removing x is a winning move. But since x < 2ng(x), this

means that g(2ng(x)) = 2ng(x) is not true, which contradicts theorem 2 (which is

equivalent to contradicting the ideal theorem). Therefore the assumption that there

exists x ∈ Z+ such that f(x) < g(x) is false.

Last, we show that f must also satisfy condition 2 of definition 3. Therefore,

suppose there exists x ∈ B such that f(x) ≥ 2x. Consider the single pile position

(3x). Theorem 2 states that g(3x) = g(3x) = g(x) = x. Note that g(3x) = g(x) = x

since x ∈ B.

This means that the removal of x counters from the single pile of 3x counters is

a winning move.

Since the new pile size is 2x, this requires f(x) < g(2x) = g(2x) = 2x, a

contradiction since f(x) ≥ 2x.

Problem. Given (k, n), where k, n ∈ Z+, we would like to determine whether

(k, n) satisfies the companion condition. The following theorems give the complete

solution to this problem.

Theorem 5. If n = 2, then (k, n) = (k, 2) satisfies the companion condition for

all k ∈ Z+.

Proof. We recall from the companion condition that 2m−1 ≤ k < 2m, m ∈ Z+.
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Also, (a1, a2) is any position satisfying 0 ≤ a1 < 2m, 0 ≤ a2 < 2m, k ≤ a1 + a2 and

if 2m does not divide a1 + a2 − k. We wish to show that x ≤ a1 or x ≤ a2, where x

is the highest power of 2 that divides a1 + a2 − k.

First, suppose a1 ≤ k. Since 0 < a1 + a2 − k, then x ≤ a1 + a2 − k ≤ a2 is true.

Similarly, if a2 ≤ k then x ≤ a1.

Let us now suppose that k < a1, k < a2. Since 2m−1 ≤ k < 2m, we know that

2m−1 ≤ k < a1 and 2m−1 ≤ k < a2. Since x is the highest power of 2 that divides

a1 + a2 − k, and since 2m does not divide a1 + a2 − k, we know immediately that

x < 2m. This means x ≤ 2m−1 which means x ≤ 2m−1 < a1 and x ≤ 2m−1 < a2.

Theorem 6. (k, n) = (k, 1) satisfies the companion condition for all k ∈ Z+.

Theorem 7. If k ≥ 4, n ≥ 4, then (k, n) does not satisfy the companion condition.

Proof. We need only show that (k, n) = (k, 4) does not satisfy the companion

condition when k ≥ 4.

Since 2m−1 ≤ k < 2m, k ≥ 4, it is obvious that m ≥ 3 must be true. Let us

now define positive integers a1 ≤ a2 ≤ a3 ≤ a4 that satisfy the two conditions

a4 − a1 ∈ {0, 1} and a1 + a2 + a3 + a4 = k + 2m−1. We will now prove the following

properties (a), (b), (c) and (d) for the position (a1, a2, a3, a4). This means the com-

panion condition will not be satisfied for (a1, a2, a3, a4), We prove

(a) (∀i, 1 ≤ i ≤ 4, 0 ≤ ai < 2m). Now the average of a1, a2, a3, a4 is k
4

+ 2m−3 <
2m

4
+ 2m−3 = 3 · 2m−3. This means ∀i, 1 ≤ i ≤ 4, ai ≤ 3 · 2m−3 < 2m,

(b) (k ≤ a1 + a2 + a3 + a4). This is obvious.

(c) (2m does not divide a1 + a2 + a3 + a4 − k, and 2m−1|a1 + a2 + a3 + a4 − k).

Since a1 + a2 + a3 + a4 − k = 2m−1, this is obvious.

(d) (∀i, 1 ≤ i ≤ 4, ai < 2m−1). As in (a), ∀i, 1 ≤ i ≤ 4, ai ≤ 3 · 2m−3, which

means ai < 2m−1.

Theorem 8. If k = 2, (k, n) = (2, n) satisfies the companion condition if and only

if n ∈ {1, 2, 3}.
Proof. Since theorems 5 and 6 take care of n = 1, 2, we show that (k, n) = (2, 3)

satisfies the companion condition. Now 2m−1 ≤ k = 2 < 2m, m ∈ Z+, gives m = 2.

When n = 3, the positions are (a1, a2, a3). Now if g4(a1 + a2 + a3 − 2) 6= ∞, then

g4(a1 + a2 + a3 − 2) ∈ {1, 2}. This means that only positions that could possibly

cause trouble are (1, 1, 1), (1, 1, 0), (1, 0, 0). Since none of these positions cause any

trouble, this part of the proof is complete.

We next show that (k, n) = (2, 4) does not satisfy the companion condition. To

do this, consider (1, 1, 1, 1). Now g4(1 + 1 + 1 + 1 − 2) = 2, which means we have

trouble here.

Theorem 9. If k = 3, (k, n) = (3, n) satisfies the companion condition if and only
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if n ∈ {1, 2, 3, 4).

Proof. Now 2m−1 ≤ k = 3 < 2m, m ∈ Z+, gives m = 2. We will show that

(k, n) = (3, 4) satisfies the companion condition. This will also take care of (k, n) =

(3, 3) since (a1, a2, a3) is the same as (a1, a2, a3, 0). Now if g4(a1+a2+a3+a4−3) 6= ∞,

then g4(a1+a2+a3+a4−3) ∈ {1, 2}. The only positions that could cause trouble are

(1, 1, 1, 1), (1, 1, 1, 0), (1, 1, 0, 0), (1, 0, 0, 0), and none of these positions do. To show

that (k, n) = (3, 5) does not satisfy the companion condition, consider (1, 1, 1, 1, 1).

Now g(1 + 1 + 1 + 1 + 1 − 3) = 2, which means we have trouble here. This also

shows that (k, n) = (3, n), n ≥ 5, does not satisfy the companion condition.

Theorem 10. If k ≥ 4 is fixed, we can determine whether (k, n) = (k, 3) satisfies

the companion condition by applying the following rule. First, define m ∈ Z+ by

2m−1 ≤ k < 2m. Of course, m ≥ 3. Then (k, 3) satisfies the companion condition if

and only if k ∈ {2m − 2, 2m − 1)}.
Proof. We must determine necessary and sufficient condition on k so that if

(a1, a2, a3) is any position that satisfies

(a) 0 ≤ ai < 2m, for all 1 ≤ i ≤ 3,

(b) k ≤ a1 +a2 +a3 and (c) 2m does not divide a1 +a2 +a3−k, then at least one

ai will satisfy x ≤ ai, where x is the highest power of 2 that divides a1 +a2 +a3−k.

Of course, x ∈ {1, 2, 4, · · · , 2m−1}.
Let us first suppose (a1, a2, a3) satisfies a1 < 2m−3, a2 < 2m−3, a3 < 2m−3. Since

2m−1 ≤ k and the hypothesis of the companion condition requires k ≤ a1 + a2 + a3,

we would have a contradiction since a1 +a2 +a3 < 3 ·2m−3 < 2m−1 ≤ k. This means

that at least one ai must satisfy 2m−3 ≤ ai if the hypothesis of the companion

condition is satisfied. This also means we only have to deal with x ∈ {2m−2, 2m−1}.
This means we must find necessary and sufficient conditions on k so that (a′) and

(b′) are true.

(a′) If a1 + a2 + a3 > k and 2m−2 is the highest power of 2 that divides a1 + a2 +

a3 − k, then at least one ai ≥ 2m−2.

(b′) If a1 + a2 + a3 > k and 2m−1 is the highest power of 2 that divides a1 + a2 +

a3 − k, then at least one ai ≥ 2m−1.

(a′) Let us assume ai < 2m−2,∀i, 1 ≤ i ≤ 3. Since 2m−1 ≤ k < 2m, this means

a1 +a2 +a3−k < 3 ·2m−2−2m−1 = 2m−2, a contradiction since 2m−2|a1 +a2 +a3−k

would be impossible. This means that (a′) places no restrictions on k at all.

(b′) Now if (a1, a2, a3) is a position that is compatible with the hypothesis and

also at least one ai ≥ 2m−1, this position of course, would place no restrictions at all

on k. So let us now deal with those positions (a1, a2, a3) that are compatible with the

hypothesis and also ai < 2m−1,∀i, 1 ≤ i ≤ 3. For these positions, a1 + a2 + a3 − k <
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3 · 2m−1 − 2m−1 = 2m. Since (b′) assumes that 2m−1 is the highest power of 2

that divides a1 + a2 + a3 − k, this means that for these positions we must have

a1 + a2 + a3 − k = 2m−1. Therefore, a1 + a2 + a3 = k + 2m−1. First, suppose

2m−1 ≤ k ≤ 2m − 3. Then a1 + a2 + a3 = k + 2m−1 ≤ 2m + 2m−1 − 3 = 3 · 2m−1 − 3.

Note that (2m−1−1)+(2m−1−1)+(2m−1−1) = 3·2m−1−3. It is now fairly easy to see

that we can find non-negative integers (a1, a2, a3) such that a1 ≤ a2 ≤ a3, a3 − a1 ∈
{0, 1}, and ∀i, 1 ≤ i ≤ 3, ai ≤ 2m−1 − 1 < 2m−1, and a1 + a2 + a3 = k + 2m−1.

This means that when 2m−1 ≤ k ≤ 2m − 3, the companion condition cannot hold

for (k, n) = (k, 3). On the other hand, suppose 2m − 2 ≤ k ≤ 2m − 1. Then

a1 + a2 + a3 = k + 2m−1 ≥ 2m − 2 + 2m−1 = 3 · 2m−1 − 2. Suppose now that

∀i, 1 ≤ i ≤ 3, ai ≤ 2m−1 − 1. This gives a1 + a2 + a3 ≤ 3 · 2m−1 − 3, a contradiction.

This means that when k ∈ {2m − 2, 2m − 1} the companion condition must hold for

(k, n) = (k, 3).
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