Practice Final Exam, Math 6105

- 1. Use the repeated subtraction method to find the base 4 representation of each of the following numbers
 - (a) 83
 - (b) 13.125
- 2. Use the method of repeated multiplication to find a base 4 representation of each of the following numbers
 - (a) 0.375
 - (b) 129/256
- 3. Find the base -4 representation of each of the following numbers
 - (a) 193
 - (b) 117.125
- 4. Find the Fibonacci representation of each of the following numbers
 - (a) 193
 - (b) 280

- 5. You're playing the game $N_d(k)$ and your opponent has just left you the position (200, 6). Do you have a good move? Explain.
- 6. You're playing the game $N_i(k)$ and your opponent has just left you the position (200, 6). Do you have a good move? Explain.
- 7. Consider the game of Bouton's nim with pile sizes 19, 24, 25, 26, 31.
 - (a) Find the binary representation of each pile size.
 - (b) Find the binary configuration of the game. That is, write these binary numbers in a column and compute their nim sum.
 - (c) Notice that the binary configuration is not balanced since the nim sum of the pile sizes is not zero. Find a move which results in a balanced binary configuration. Is there just one such move or are there several?
 - (d) Suppose you made a move which balances the configuration. Assume your opponent takes one counter from the same pile as the one from which you removed counters. What move do you make now?
- 8. Find the number of positive integer divisors of the number 13!. Explain how you got your answer.
- 9. Find the remainder when each of the following numbers is divided by 18.
 - (a) 123,456,789,101,112
 - (b) 5^{2004}
 - (c) $3^{2001} \cdot 5^{2004} \cdot 7^{2005}$
- 10. Find all the divisors of the number $N = 2^5 3^4 5$. How many even divisors does N have? How many of N's divisors are multiples of 6?
- 11. Let $\mathcal{U} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ be the universal set. Let $S = \{1, 2, 3, 4, 5\}$ and $T = \{4, 5, 6, 7, 8\}$.
 - (a) How many four-element subsets A of \mathcal{U} satisfy $|A \cap S| = 2$ and $|A \cap T| = 2$?
 - (b) Let D denote the set of all four-digit numbers that can be built using the elements of S as digits and allowing repetition of digits. What is |D|?

- (c) How many elements of D have four different digits?
- (d) How many elements of D have exactly three different digits?
- (e) How many even numbers belong to D?
- 12. Prove that geometrical progression is increasing faster than perfect squares. Specifically: prove that for appropriate $n_0 > 0$ and any $n \ge n_0$

 $2^n > n^2.$

- 13. Solve the decanting problem for containers of sizes 139 and 149; that is find integers x and y satisfying 139x + 149y = d where d is the GCD of 139 and 149.
- 14. Find a relation R on the set $S = \{1, 2, 3\}$ satisfying each of the following conditions. Find one relation for each part.
 - (a) R_1 has exactly 3 ordered pairs members and is transitive.
 - (b) R_2 has exactly 3 ordered pairs members and is not transitive.
 - (c) R_3 is symmetric and has exactly 5 ordered pairs members.
 - (d) R_4 is an equivalence relation with exactly 5 ordered pairs members.
 - (e) R_5 is a partially ordered set with exactly 4 ordered pairs members.