## Final Exam, Math 6105

## July 29, 2004

Your name
Throughout this test you must show your work.

1. Use the repeated subtraction method to find the base 4 representation of each of the following numbers
(a) 93

Solution: $1131_{4}=93$.
(b) 17.25

Solution: $101.1_{4}=17.25$.
2. Use the method of repeated multiplication to find a base 4 representation of each of the following numbers
(a) 0.275

Solution: $0.10 \overline{12}_{4}=0.275$.
(b) $29 / 64$

Solution: $0.131_{4}=29 / 64$
3. Find the base -4 representation of each of the following numbers
(a) 93

Solution: $13211_{-4}=93$.
(b) 17.25

Solution: $102.3_{-4}=17.25$.
4. Find the Fibonacci representation of each of the following numbers
(a) 93

Solution: $93=89+3+1=1000000101_{f}$.
(b) 180

Solution: $180=144+34+2=10010000010_{f}$.
5. You're playing the game $N_{d}(k)$ and your opponent has just left you the position $(93,6)$. Do you have a good move? Explain.
Solution: You can assure a win by moving to either $(89,8)$ or to $(92,2)$.
6. Consider the game of Bouton's nim with pile sizes 19, 24, 25, 27, 35 .
(a) Find the binary representation ${ }^{1}$ of each pile size.

Solution: $19=10011_{2} ; 24=11000_{2} ; 25=11001_{2} ; 27=11011_{2}$; and $35=100011_{2}$.
(b) Find the binary configuration of the game. That is, write these binary numbers in a column and compute their nim sum.
Solution:

$$
\begin{aligned}
& 19=\begin{array}{lllll}
1 & 0 & 0 & 1 & 1
\end{array} \\
& 24=\begin{array}{lllll}
1 & 1 & 0 & 0 & 0
\end{array} \\
& 25=\begin{array}{lllll}
1 & 1 & 0 & 0 & 1
\end{array} \\
& 27=\begin{array}{lllll}
1 & 1 & 0 & 1 & 1
\end{array} \\
& 35=\begin{array}{llllll}
1 & 0 & 0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 1 & 0
\end{array}
\end{aligned}
$$

(c) Notice that the binary configuration is not balanced since the nim sum of the pile sizes is not zero. Find a move which results in a balanced binary configuration. Is there just one such move or are there several?
Solution: There is just one winning move, and (19, 24, 25, 27, 35). $\mapsto$ (19, 24, 25, 27, 9).
(d) Suppose you made a move which balances the configuration. Assume your opponent takes one counter from the same pile as the one from which you removed counters. What move do you make now?
Solution: The three winning moves are $(19,24,25,27,8) \mapsto(18,24,25,27,8)$; $(19,24,25,27,8) \mapsto(19,24,24,27,8) ;$ and $(19,24,25,27,8) \mapsto(19,24,25,26,8)$
7. Find the number of positive integer divisors of the number 10!. Explain how you got your answer.
Solution: First factor 10 ! to get $10!=7 \cdot 5^{2} \cdot 3^{4} \cdot 2^{8}$. Therefore, by the divisor counting formula, $\left|D_{10!}\right|=2 \cdot 3 \cdot 5 \cdot 9=270$.
8. Find the remainder when each of the following numbers is divided by 6 .
(a) $N=123,456,789,101,112$

Solution: Since $N$ is both even and a multiple of 3 , it follows that $N \equiv 0$ $(\bmod 6)$.
(b) $N=5^{2004}$

Solution: First note that $5 \equiv-1(\bmod 6)$. It follows that $5^{2004} \equiv$ $(-1)^{2004}=1(\bmod 6)$.
(c) $N=3^{2001} \cdot 5^{2004} \cdot 7^{2005}$

Solution: $N$ is an odd multiple of 3 . Therefore $N \equiv 3(\bmod 6)$.
9. How many of the first 1000 positive integers have an odd number of positive integer divisors? Explain your work.
Solution: We know that a number has an odd number of divisors precisely when it is a perfect square. There are 31 perfect squares in the set $\{1,2,3, \ldots, 1000\}$.
10. Look at the four equations below.

$$
\begin{array}{ll}
2 & =2 \cdot 1 \\
2+4 & =3 \cdot 2 \\
2+4+6 & =4 \cdot 3 \\
2+4+6+8 & =5 \cdot 4
\end{array}
$$

(a) Write the next three equations in the sequence.

## Solution:

$$
\begin{array}{ll}
2+4+6+8+10 & =6 \cdot 5 \\
2+4+6+8+10+12 & =7 \cdot 6 \\
2+4+6+8+10+12+14 & =8 \cdot 7
\end{array}
$$

(b) If the four equations above correspond to $k=1,2,3$, and 4 , what is the $n^{\text {th }}$ equation?

## Solution:

$$
2+4+6+8 \ldots+2 n=(n+1) \cdot n
$$

(c) Prove by mathematical induction that the $n^{\text {th }}$ equation is true for all integers $n \geq 1$.
Solution: The base case: $2=(1+1) \cdot 1$. Assume $P(n): 2+4+6+8 \ldots+$ $2 n=(n+1) \cdot n$. To prove $P(n+1): 2+4+6+8 \cdots+2 n+2(n+1)=$ $(n+2) \cdot(n+1)$, start with the left side and replace the sum of the first $n$ terms with the right side of $P(n)$. Thus $2+4+6+8 \cdots+2 n+2(n+1)=$ $(2+4+\cdots 2 n)+2(n+1)=(n+1) \cdot n+2(n+1)=(n+1)(n+2)$, which is the right side of $P(n+1)$. By mathematical induction, it follows that $P(n)$ is true for all $n \geq 1$.
11. Solve the decanting problem for containers of sizes 138 and 147; that is find integers $x$ and $y$ satisfying $138 x+147 y=d$ where $d$ is the GCD of 138 and 147.

Solution: By repeated division, $x=16$ and $y=-15$.
12. Find a relation $R$ on the set $S=\{1,2,3,4\}$ satisfying each of the following conditions. Find one relation for each part.
(a) $R_{1}$ has exactly 5 ordered pairs members and is transitive.

Solution: Of course there are many correct answers. One is $R_{1}=$ $\{(1,1),(2,2),(3,3),(4,4),(1,2)\}$.
(b) $R_{2}$ has exactly 5 ordered pairs members and is not transitive.

Solution: Again there are many correct answers. One is $R_{1}=\{(1,1),(4,4),(3,3),(2,1),(1,2)\}$.
(c) $R_{3}$ is symmetric and has exactly 6 ordered pairs members.

Solution: Again there are many correct answers. One is $R_{1}=\{(1,1),(2,2),(4,3),(3,4),(2,1),(1,2)\}$.
(d) $R_{4}$ is an equivalence relation with exactly 6 ordered pairs members.

Solution: The partition $\{1,2\},\{3\},\{4\}$ induces an equivalence relation with $4+1+1=6$ ordered pairs.
(e) $R_{5}$ is a partially ordered set with exactly 9 ordered pairs members.

Solution: Consider the poset with 4 maximal, 3 below 4, and 1 and 2 tied below 3 . The relation has 9 members.

