Final Exam, Math 6105

July 29, 2004

Your name

Throughout this test you must show your work.

- 1. Use the repeated subtraction method to find the base 4 representation of each of the following numbers
 - (a) 93
 Solution: 1131₄ = 93.
 (b) 17.25
 - **Solution:** $101.1_4 = 17.25$.
- 2. Use the method of repeated multiplication to find a base 4 representation of each of the following numbers
 - (a) 0.275 Solution: $0.10\overline{12}_4 = 0.275$.
 - (b) 29/64Solution: $0.131_4 = 29/64$
- 3. Find the base -4 representation of each of the following numbers
 - (a) 93
 Solution: 13211₋₄ = 93.
 (b) 17.25
 Solution: 102.3₋₄ = 17.25.
- 4. Find the Fibonacci representation of each of the following numbers
 - (a) 93 **Solution:** $93 = 89 + 3 + 1 = 1000000101_f$. (b) 180
 - Solution: $180 = 144 + 34 + 2 = 10010000010_f$.
- 5. You're playing the game $N_d(k)$ and your opponent has just left you the position (93, 6). Do you have a good move? Explain.

Solution: You can assure a win by moving to either (89, 8) or to (92, 2).

- 6. Consider the game of Bouton's nim with pile sizes 19, 24, 25, 27, 35.
 - (a) Find the binary representation of each pile size. Solution: $19 = 10011_2$; $24 = 11000_2$; $25 = 11001_2$; $27 = 11011_2$; and $35 = 100011_2$.

(b) Find the binary configuration of the game. That is, write these binary numbers in a column and compute their nim sum. Solution:

19	=		1	0	0	1	1
24	=		1	1	0	0	0
25	=		1	1	0	0	1
27	=		1	1	0	1	1
35	=	1	0	0	0	1	1
		1	0	1	0	1	0

- (c) Notice that the binary configuration is not balanced since the nim sum of the pile sizes is not zero. Find a move which results in a balanced binary configuration. Is there just one such move or are there several?
 Solution: There is just one winning move, and (19, 24, 25, 27, 35). → (19, 24, 25, 27, 9).
- (d) Suppose you made a move which balances the configuration. Assume your opponent takes one counter from the same pile as the one from which you removed counters. What move do you make now?
 Solution: The three winning moves are (19, 24, 25, 27, 8) → (18, 24, 25, 27, 8); (19, 24, 25, 27, 8) → (19, 24, 24, 27, 8); and (19, 24, 25, 27, 8) → (19, 24, 25, 26, 8)
- 7. Find the number of positive integer divisors of the number 10!. Explain how you got your answer.

Solution: First factor 10! to get $10! = 7 \cdot 5^2 \cdot 3^4 \cdot 2^8$. Therefore, by the divisor counting formula, $|D_{10!}| = 2 \cdot 3 \cdot 5 \cdot 9 = 270$.

- 8. Find the remainder when each of the following numbers is divided by 6.
 - (a) N = 123,456,789,101,112Solution: Since N is both even and a multiple of 3, it follows that $N \equiv 0 \pmod{6}$.
 - (b) $N = 5^{2004}$

Solution: First note that $5 \equiv -1 \pmod{6}$. It follows that $5^{2004} \equiv (-1)^{2004} \equiv 1 \pmod{6}$.

(c) $N = 3^{2001} \cdot 5^{2004} \cdot 7^{2005}$

Solution: N is an odd multiple of 3. Therefore $N \equiv 3 \pmod{6}$.

9. How many of the first 1000 positive integers have an odd number of positive integer divisors? Explain your work.

Solution: We know that a number has an odd number of divisors precisely when it is a perfect square. There are 31 perfect squares in the set $\{1, 2, 3, \ldots, 1000\}$.

10. Look at the four equations below.

(a) Write the next three equations in the sequence. Solution:

 $\begin{array}{rcl} 2+4+6+8+10 & = & 6\cdot 5\\ 2+4+6+8+10+12 & = & 7\cdot 6\\ 2+4+6+8+10+12+14 & = & 8\cdot 7 \end{array}$

(b) If the four equations above correspond to k = 1, 2, 3, and 4, what is the n^{th} equation?

Solution:

 $2+4+6+8\ldots+2n = (n+1)\cdot n$

(c) Prove by mathematical induction that the n^{th} equation is true for all integers $n \ge 1$.

Solution: The base case: $2 = (1+1) \cdot 1$. Assume $P(n) : 2+4+6+8 \ldots + 2n = (n+1) \cdot n$. To prove $P(n+1) : 2+4+6+8 \cdots + 2n+2(n+1) = (n+2) \cdot (n+1)$, start with the left side and replace the sum of the first n terms with the right side of P(n). Thus $2+4+6+8 \cdots + 2n+2(n+1) = (2+4+\cdots + 2n) + 2(n+1) = (n+1) \cdot n + 2(n+1) = (n+1)(n+2)$, which is the right side of P(n+1). By mathematical induction, it follows that P(n) is true for all $n \geq 1$.

11. Solve the decanting problem for containers of sizes 138 and 147; that is find integers x and y satisfying 138x + 147y = d where d is the GCD of 138 and 147.

Solution: By repeated division, x = 16 and y = -15.

12. Find a relation R on the set $S = \{1, 2, 3, 4\}$ satisfying each of the following conditions. Find one relation for each part.

- (a) R_1 has exactly 5 ordered pairs members and is transitive. Solution: Of course there are many correct answers. One is $R_1 = \{(1,1), (2,2), (3,3), (4,4), (1,2)\}.$
- (b) R_2 has exactly 5 ordered pairs members and is not transitive. Solution: Again there are many correct answers. One is $R_1 = \{(1, 1), (4, 4), (3, 3), (2, 1), (1, 2)\}.$
- (c) R_3 is symmetric and has exactly 6 ordered pairs members. Solution: Again there are many correct answers. One is $R_1 = \{(1, 1), (2, 2), (4, 3), (3, 4), (2, 1), (1, 2)\}.$
- (d) R_4 is an equivalence relation with exactly 6 ordered pairs members. Solution: The partition $\{1, 2\}, \{3\}, \{4\}$ induces an equivalence relation with 4 + 1 + 1 = 6 ordered pairs.
- (e) R_5 is a partially ordered set with exactly 9 ordered pairs members. Solution: Consider the poset with 4 maximal, 3 below 4, and 1 and 2 tied below 3. The relation has 9 members.