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Modular Arithmetic

0.1 Integer Division

We all know very well how to divide one positive integer by another. For example, if
you were asked to compute 41/9, you might write 9|41 and proceed to carry out the
division algorithm. Of course in doing this you would rely heavily on your knowledge
of multiplication. It comes as no surprise to us that division requires some guesswork
followed by multiplication to check the guesswork. Thus, you would say 9 goes into
41 4 times with 5 left over. We can express this as

41 = 9 · 4 + 5.

In this equation, the number 41 is called the dividend, 9 is the divisor, 4 is the
quotient, and 5 is the remainder. So, in general, we have

dividend = divisor · quotient + remainder .

Using the letters D for dividend, d for divisor, q for quotient, and r for remainder,
we write D = d · q + r. Notice that our remainder 5 is in the range 0, 1, 2, 3, 4 . . . , 8.
Why can we insist that this always happens when we are dividing by 9? What would
a remainder larger than 9 mean? What would a negative remainder mean? If we
insist, as we shall from here on that the remainder r be in the range 0, 1, 2, . . . , d−1,
we may then assert the division algorithm:

Division Algorithm Given any integer D and any nonzero integer d, there
exist unique integers q and r satisfying both

a. D = d · q + r and

b. 0 ≤ r ≤ |d| − 1.

Note that in case r = 0, we call d a divisor of D. Notice also that neither D
nor d is required to be positive. When either or both is negative, the equations and
uniqueness still hold. For example, when D = −31 and d = 9, we get

−31 = 9(−4) + 5.

You’ll see that this is very important when we use the division algorithm to
find the representation of a positive or negative integer when the base number is
negative.

Look at the two examples, 41 = 9 · 4 + 5, and −31 = 9(−4) + 5. In both cases
we can say that q is the largest number such that 9q is less than D. Geometrically,
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think of marking of segments of length 9 units to the right if D > 0, and to the left
if D < 0 until we get to the multiple of 9 that is 8 or fewer units to the left of D.

see pics here. There is a nice way to write q and r in terms of D and d. To
explore this, define the floor function bxc of a number x as the largest integer that
is not bigger than x. This useful function has a companion function, the ceiling
function, dxe which is the smallest integer that is not less than x. Another function
we will need to know about is the fractional part function 〈x〉 which is defined as
follows: 〈x〉 = x− bxc. See the exercises and those in the module that covers place
value.

1. For each of the real numbers x listed, find 〈x〉, bxc and dxe.

(a) x = 3.14

(b) x = −3.14

(c) x = 4.216

(d) x = −4.216

2. Sketch the graphs of the three functions on the cartesian coordinate system.

3. For each of the pairs D and d listed, find q and r using the formulas q = bD/dc
and r = D−bD/dc ·d. Notice that your graphing calculator has the functions
〈x〉, bxc and dxe built in.

(a) D = 77, d = 5

(b) D = −77, d = 5

(c) D = 77, d = −5

(d) D = −77, d = −5

0.2 Modulo 9 congruence

Now we see that both 41 and −31 are 5 units larger than some multiple of 9. Note
that their difference 41 − (−31) = 72 is a multiple of 9. Of course this happens for
any two numbers D1 and D2 whenever the remainders, upon division by 9, are the
same. To prove this, suppose r is that remainder. Then

D1 = 9 · q1 + r and D2 = 9 · q2 + r.
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Then

D1 −D2 = 9 · q1 + r − (9 · q2 + r)

= 9 · q1 + r − (9 · q2 + r)

= 9 · q1 − 9 · q2 + r − r

= 9 · (q1 − q2).

On the other hand, the converse is also true: If two numbers D1 and D2 differ by a
multiple of 9, upon division by 9, the remainders are the same. To see this, suppose
D1 = 9 · q1 + r1 and D2 = 9 · q2 + r2. Since D1 − D2 is a multiple of 9, we can
write D1 − D2 = 9 · q1 + r1 − (9 · q2 + r2) = 9k, for some integer k. We can solve
this for r1 − r2 to get r1 − r2) = 9k − (9 · q1 − 9 · q2) = 9(k − q1 + q2), so r1 − r2 is a
multiple of 9. Since both r1 and r2 are in the set {0, 1, 2, 3, 4, 5, 6, 7, 8}, the largest
they could differ by is 8 and the least they could differ by is −8. The only multiple
of 9 in that range is 0, so r1 − r2 = 0, which is what we wanted to prove.

We encounter two integers D1 and D2 that have this relationship often enough
to give the relationship a special name: modular congruence. Two numbers that
differ by a multiple of 9 are said to be congruent modulo 9, and we write D1 ≡ D2

(mod 9).
Of course there is nothing special about the number 9 except that it is positive.

Hence we have the following definition.
Congruence Modulo m Let m be a positive integer. Two numbers D1 and D2

are congruent modulo m, and we write D1 ≡ D2 (mod m) if D1 − D2 is a multiple
of m.

The definition of congruence, which has nothing to do with the same word used
in geometry, is due to Carl Gauss. Gauss noticed that the relationship that two
numbers D1 and D2 have the same remainder upon division by another number m
kept turning up in his examples and proofs. For example, the set of even numbers
are those which yield a zero remainder when divided by 2. Thus congruence modulo
2 means that the two integers are either both even or both odd. This is a good time
to practice with congruences.

0.3 Properties of Modular Congruence

In this section, we discuss three important properties of modular congruence and
in the next section, two more. The first three are the properties required for an
equivalence relation. An equivalence relation is a binary relation that satisfies the
three properties of reflexivity, symmetry, and transitivity, defined below. In the
Discrete Math course, you will learn all about binary relations. However, we do not
assume here that you are familiar with the properties of binary relations.
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1. Congruence modulo m is a reflexive relation. That is, for every integer u,
u ≡ u (mod m). This is clearly true because u− u = 0 is a multiple on m.

2. Congruence modulo m is a symmetric relation. This means that if u and v
are integers satisfying u ≡ v (mod m), then v ≡ u (mod m). This property
follows from the fact that the negative of a multiple of m is also a multiple of
m.

3. Congruence modulo m is a transitive relation. This means that for any three
integers u, v and w satisfying u ≡ v (mod m) and v ≡ w (mod m), it is
also true that u ≡ w (mod m). To prove this, let u, v and w satisfy the
hypothesis. Then u − v = km and v − w = lm, where k and l are integers.
Now u− w = u− v + v − w = km + lm = (k + l)m. In other words, u− w is
a multiple of m.

Of course you recognize that equality (=) satisfies all three of these, and indeed,
modular congruence is a relation very much like equality. Besides discrete math,
you might see equivalence relations in the course that develops the number system
and in the abstract algebra course. Relations satisfying properties 1, 2, and 3, that
is, equivalence relations, above are common in mathematics. The most important
property of equivalence relations is that each one gives rise to a partition of the set
on which it is defined. The sets in the partition are called the cells of the relation.
See theorem 1 below.

In discussing the next two properties, we’ll consider again the special case m = 9.
Although the properties are true for any positive integer m, we are going use the
case m = 9 repeatedly in the problems, and the proofs are simplified a tiny bit using
the 9 where we otherwise use m.

0.4 Definition of Cells

Recall that we are discussing the relation that has a pair (u, v) (or u is related to v)
provided u ≡ v (mod 9), or equivalently, u− v is a multiple of 9. For each integer k,
the sell of k, denoted k is the set of integers n to which k is related. Symbolically,
k = {n | k ≡ n (mod 9)}. Thus, for example,

0 = {n | 0 ≡ n (mod 9)} = {0,±9,±18, . . .}

and
1 = {n | 1 ≡ n (mod 9)} = {1,−8, 10,−17, 19, . . .}.

Notice that 0 = 9 because any number that 0 is congruent to, 9 is also congruent
to. To be a little more formal about about it, take an arbitrary member n of 0.
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Then 0 ≡ n (mod 9). Since 9 ≡ 0 (mod 9) and congruence modulo 9 is known
to be transitive (see property 3 above), we see that the pair 9 ≡ 0 (mod 9) and
0 ≡ n (mod 9) implies 9 ≡ n (mod 9). So we have proved that if n ∈ 0 then n ∈ 9,
which in set terms means 0 ⊆ 9. Similarly, we can prove that 9 ⊆ 0. But these two
set inequalities are together equivalent to saying 0 = 9.

0.5 The Partition of an Equivalence Relation

In this section we state and prove the theorem mentioned above on partitions induced
by equivalence relations. Although a much more general theorem on equivalence
relations is provable here, we will simply use the congruence modulo m on the set
Z of integers. We proved Theorem 1 in section 3.

Theorem 1. Let m be a positive integer. Congruence mod m is an equivalence
relation.

Theorem 2. Let m be a positive integer. For each integer u let [u] denote the
cell of u. If [u] and [v] are two cells, modulo m, then either [u] and [v] are disjoint
or identical.

Proof. These cells are also called equivalence classes. To see that two cells
[u] and [v] are identical if have any integers in common, note that if w belongs to
both [u] and [v], then u ≡ w (mod m) and v ≡ w (mod m), by the definition of
cell. By symmetry w ≡ v (mod m) and by transitivity u ≡ v (mod m). Then again
symmetry by transitivity, any integer z in [u] satisfies z ≡ u (mod m) and hence
z ≡ v (mod m), so z belongs to [v] .

The Arithmetic of Congruences In order to build a mathematical structure
using cells as ”numbers”, we have to be sure that addition and multiplication are
well-defined operations. The method for defining the sum ⊕ and the product �
of two cells is pretty clear. For example, if [x] and [y] are cells modulo 6 we want
[x] ⊕ [y] to be [x + y] and [x] � [y] to be [x · y]. But we must be sure that these
operations are well-defined. That is, ⊕ and � must deliver unique values.

Theorem 3. Let x and y be integers and [x] and [y] their cells modulo m.
Suppose a ∈ [x] and b ∈ [y]. Then a + b ∈ [x + y]. In other words, no matter which
representatives of [x] and [y] we choose, the sum is always the cell [x + y] .

Proof. To say a ∈ [x] means that x ≡ a (mod m). Likewise, y ≡ b (mod m) .
Now x + y − (a + b) = (x− a) + (y − b) is the sum of two multiples of m, and

therefore is itself a multiple of m. In other words a + b ∈ [x + y], as we set out to
prove.

Here is a nice application of Theorem 3.
Problem Find the units digit of the Fibonacci number F2000.
Solution: Recall that the Fibonacci numbers are defined by F1 = F2 = 1 and

Fn+2 = Fn+1 + Fn. Since the units digit of Fn is the remainder when Fn is divided
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by 10, we can solve the problem by finding the cells modulo 10 of the Fn’s.
Theorem 3 makes this easy. It says that the units digit of the sum of two F ’s is

the units digit of the sum of the units digits of those F ’s. The table below shows the
units digits of the first 60 Fibonacci numbers in groups of 10. The first 30 entries
are given by

1 1 2 3 5 8 3 1 4 5
9 4 3 7 0 7 7 4 1 5
6 1 7 8 5 3 8 1 9 0

Notice that the next 30 entries are

9 9 8 7 5 2 7 9 6 5
1 6 7 3 0 3 3 6 9 5
4 9 3 2 5 7 2 9 1 0

We are now in position to build the table for ⊕ modulo m . Let’s choose m = 6
again. In the exercises you’ll get to do this for m = 7. Since division by 6 produces
the 6 remainders 0,1,2,3,4, and 5, we use these numbers as names of cells. What
is [3] ⊕ [5]? To see this, divide 3 + 5 by 6, getting a remainder of 2, so [3] ⊕ [5] =
[3 + 5] = [2] .

⊕ [0] [1] [2] [3] [4] [5]

[0] [0] [1] [2] [3] [4] [5]
[1] [1] [2] [3] [4] [5] [0]
[2] [2] [3] [4] [5] [0] [1]
[3] [3] [4] [5] [0] [1] [2]
[4] [4] [5] [0] [1] [2] [3]
[5] [5] [0] [1] [2] [3] [4]

Theorem 4. Let x only be integers and [x] and [y] their cells modulo m.
Suppose a ∈ [x] and b ∈ [y] . Then a · b ∈ [x · y]. In other words [x] � [y] = [x, y] is
a well-defined binary operation.

Proof. As before, the hypothesis means that x − a and y − b are multiples of
m. Let’s say x − a = km and y − b = lm. Then xy − ab = xy − ay + ay − ab =
(x− a) y + a (y − b) = kmy + alm = m (ky + al) which, of course, is a multiple of
m since ky + al is an integer.

We can now build the � for any positive integer m. Again we use m = 6.
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� [0] [1] [2] [3] [4] [5]

[0] [0] [0] [0] [0] [0] [0]
[1] [0] [1] [2] [3] [4] [5]
[2] [0] [2] [4] [0] [2] [4]
[3] [0] [3] [0] [3] [0] [3]
[4] [0] [4] [2] [0] [4] [2]
[5] [0] [5] [4] [3] [2] [1]

The next theorem follows easily from Theorem 4. We’ll use it to find remainders
when the nth power of an integer k is divided by another integer m.

Theorem 5. If a ≡ b (mod m) then, for every positive integer n, an ≡ bn (mod m) .
The proof is by mathematical induction on n. Skip ahead if you need to, to see

how proofs by induction work. First note that a′ ≡ b′ (mod m), the base case, is
the hypothesis. Next, suppose an−1 ≡ b−1 (mod m). Now apply Theorem 2 with
x ≡ b and y = bn−1. Then a ≡ b (mod m) and an−1 ≡ bn−1 (mod m). Therefore
a · an−1 ≡ b · bn−1 (mod m), and we are done.

The next example is of the type promised just before Theorem 5. Problem Find
the remainder when 72009 is divided by 5.

Solution: Note that 7 ≡ 2 (mod 5). Theorem 3 implies that 72 ≡ 22 (mod 5).
Now 22 = 4 ≡ −1 (mod 5). Putting all this together we have 74 ≡ (22)

2 ≡ (−1)2 ≡
1 (mod 5) . Thus, 72009 ≡ 72008+1 ≡ 74.502+1 ≡ 74.502 ·7 ≡ (74)

502 ·7 ≡ 1502 ·7 ≡ 1 ·7 ≡
2 (mod 5) . So the remainder is 2.

0.6 Divisibility by 9, 3 and 11

The aim of this section is to demonstrate an easy method for finding the cell of a
positive integer written in decimal notation modulo 3 or 9 or 11. by the way, the
cell is often referred to as the residue class of the number. For example, we could
say that the residue class of 101 modulo 9 is 2 because you get a remainder of 2
when you divide 101 by 9.

First we’ll take an example. What is the residue class of 3742 modulo 9? Notice
that 1000 ≡ 999 + 1 ≡ 0 + 1 ≡ 1(mod 9). Likewise, 100 ≡ 99 + 1 ≡ 0 + 1 ≡ 1(mod
9). Of course 10 ≡ 1(mod 9) also. Using the language of modular arithmetic, we
have 3742 ≡ 3000+700+40+2 ≡ 3 ·1000+7 ·100+4 ·10+2 ≡ 3 ·1+7 ·1+4 ·1+2
≡ 3 + 7 + 4 + 2 ≡ 7(mod 9). Thus 3742 is congruent modulo 9 to the sum of its
digits.

Theorem 6. Every positive integer n is congruent modulo 9 to the sum of its
decimal digits.

Proof. Recall that the decimal representation of a number is a sum of multiples
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of powers of 10. Thus

n = (ak . . . a0)10

= ak

99 . . . 9︸ ︷︷ ︸
k 9’s

+ 1

 + ak−1

 9 . . . 9︸ ︷︷ ︸
(k-1) 9’s

+ 1

 + . . . + a1 (9 + 1) + a0

= ak

99 . . . 9︸ ︷︷ ︸
k 9’s

 + ak−1

 9 . . . 9︸ ︷︷ ︸
(k-1) 9’s

 + . . . + a1 (9) + (ak + ak−1 + · · · a0)

= 9M +

ak + ak−1 + · · ·+ a0︸ ︷︷ ︸
sum of digits

 .

Notice that the very same reasoning works for congruence modulo 3. Modulo
11 work is a bit more complicated. Note that 1 ≡ 1(mod 11), 10 ≡ −1(mod
11), 100 = 102 ≡ (−1)2 ≡ 1(mod 11). In general 10n ≡ (−1)n(mod 11). Thus
3742 ≡ 2 − 4 + 7 − 3 ≡ 2(mod 11). In other words, when we divide 3742 by 11, we
get a remainder of 2. The sum 2− 4 + 7− 3 is called the alternating sum of digits.

0.7 Problems and Exercises

1. Find the congruence class of each of the integers given modulo 9.

(a) 12345

(b) 637228195

(c) 12345678910111213 . . . 99 obtained by writing down the positive integers
from 1 to 99 next to one another.

2. Find the congruence class of each of the integers given modulo 3.

(a) 12345

(b) 637228195

(c) 12345678910111213 . . . 99 obtained by writing down the positive integers
from 1 to 99 next to one another.

3. Find the congruence class of each of the integers given modulo 11.

(a) 12345
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(b) 637228195

(c) 12345678910111213 . . . 99 obtained by writing down the positive integers
from 1 to 99 next to one another.

4. Find the congruence class of each of the integers given modulo 99.

(a) 12345

(b) 637228195

(c) 12345678910111213 . . . 99 obtained by writing down the positive integers
from 1 to 99 next to one another.

5. Find the congruence class of each of the integers given modulo 66.

(a) 12345

(b) 637228195

(c) 12345678910111213 . . . 99 obtained by writing down the positive integers
from 1 to 99 next to one another.

6. Build the ⊕ and � tables for the congruence classes modulo 7. The mathe-
matical system we get is denoted (Z7,⊕,�) .

(a) show that (Z7,⊕) is a group.

(b) show that (Z7, {[0]} ,�) is a group.

(c) (Z7,⊕,�) has the other properties (field axioms). This proves that
(Z7,⊕,�) is a field. You’ll study structures like this in the abstract
algebra course.

(d) Solve the linear congruences.

[2]� [x] + [1] = [0]

(some texts would write this 2x + 1 = 0.)

7. Among the integers 1, 2, . . . , 1997, what is the maximum number of integers
that can be selected such that the sum of any two selected number is not a
multiple of 7.
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