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Abstract Each of n teams numbered 1, 2, · · · , n play each of the other n − 1 teams

exactly t times. Thus, each team plays t (n− 1) games, and the total number of games

is tcn
2 = tn(n−1)

2
. Each game {a, b} produces a win for one team and a loss for the other

team. Define ai, i = 1, 2, · · · , n, to be the win records for the n teams. That is, for each

i = 1, 2, · · · , n, team i wins a total of ai games where 0 ≤ ai ≤ t (n− 1). Of course,
n∑

i=1

ai = tn(n−1)
2

.

Suppose ai, i = 1, 2, · · · , n, are arbitrarily specified win records for the teams 1, 2, · · · , n

subject only to the two conditions (1) 0 ≤ ai ≤ t (n− 1) and (2)
n∑

i=1

ai = tn(n−1)
2

.

In this paper, we prove necessary and sufficient conditions that ai, i = 1, 2, · · · , n, must

satisfy so that ai, i = 1, 2, · · · , n, is realizable. In [1] we solved this problem for the special

case t = 1, and in this paper we solve the general case by reducing it to this special case

t = 1. We have not come even remotely close to solving the general case by modifying the

proof given in [1].

1. Finding necessary conditions on ai, i = 1, 2, · · · , n.

Suppose for 1 ≤ k ≤ n we choose any combination {n1, n2, · · · , nk} of k teams from the

collection of n teams. Now these k teams play t ·Ck
2 = tk(k−1)

2
games among themselves.

Therefore, the total number of wins among themselves for these k teams equals tk(k−1)
2

.

Also, each of the k teams plays each of the n − k remaining teams t times for a total

of tk (n− k) games. Therefore, (3′) is a necessary condition. (3′). For each 1 ≤ k ≤ n,

any combination of k teams {n1, n2, · · · , nk} must satisfy
k∑

i=1

ani
≤ tk(k−1)

2
+tk (n− k) =

tk
2

(2n− k − 1) .

If we agree to write t (n− 1) ≥ a1 ≥ a2 ≥ · · · ≥ an ≥ 0, then the above necessary

condition (3′) is equivalent to the following (3).

(3). ∀k ∈ {1, 2, · · · , n} ,
k∑

i=1

ai ≤ tk
2

(2n− k − 1) .
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Note 1 The following condition (3∗) is also obviously necessary. However, condition

(3∗) is not used in this paper, and we leave it as an easy exercise for the reader to prove

that conditions {(1), (2), (3∗)} are equivalent to conditions {(1), (2), (3′)} .

(3∗) ∀k ∈ {1, 2, · · · , n} ,∀ {n1, n2, · · · , nk} ⊆ {1, 2, · · · , n} tck
2 = tk(k−1)

2
≤

k∑
i=1

ani

2. Stating the necessary and sufficient conditions on ai, i = 1, 2, · · · , n. In this paper, we

prove that the conditions developed in section 1 are both necessary and sufficient for

ai, i = 1, 2, · · · , n, to be realizable.

Writing t (n− 1) ≥ a1 ≥ a2, · · · ,≥ an ≥ 0, this means that we prove the following

conditions (1), (2), (3) are both necessary and sufficient for ai, i = 1, 2, · · · , n, to be

realizable.

1. 0 ≤ ai ≤ t (n− 1) , i = 1, 2, · · · , n.

2.
n∑

i=1

ai = tn(n−1)
2

.

3. ∀k ∈ {1, 2, · · · , n}
k∑

i=1

ai ≤ tk
2

(2n− k − 1)

As stated in section 1, (3) is equivalent to (3′) which we write as (3)↔ (3′).

(3′) ∀k ∈ {1, 2, · · · , n} ,∀ {n1, n2, · · · , nk} ⊆ {1, 2, · · · , n} ,
k∑

i=1

ani
≤ tk

2
(2n− k − 1)

3. Plan for proving the if and only if conditions on ai, i = 1, 2, · · · , n.

In the paper [2], we proved that (1), (2), (3) are necessary and sufficient for ai, i =

1, 2, · · · , n, to be realizable when t = 1. At this time, it seems to us to be a hopeless

task to modify the proof given in [2] to take care of the general case where t is arbitrary.

So we will solve the general case by breaking up the general case in such a way that

we can use the solution for t = 1 that is given in [2] to solve the general case. This

means that we need to solve the following problem.

Problem 1 t and n are arbitrary but fixed positive integers and a1 ≥ a2, · · · ,≥ an ≥ 0 are

non-negative integers that satisfy the following conditions.

1. ∀i ∈ {1, 2, · · · , n} , 0 ≤ ai ≤ t (n− 1) .

2.
n∑

i=1

ai = t · Cn
2 = tn(n−1)

2
.

3. ∀k ∈ {1, 2, · · · , n} ,
k∑

i=1

ai ≤ tF (k) where F (k) = k
2
(2n− k − 1) .
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Using this hypothesis, we wish to find t. Sequences aθ1, aθ2, · · · , aθn, θ = 1, 2, · · · , t, of

non-negative integers that satisfy condition (4) as well as conditions (1), (2), (3′).

It turns out that it is not convenient to require aθ1 ≥ aθ2 ≥ · · · ≥ aθn ≥ θ, and this is the

reason that we will be using (3′) instead of (3) in the list below.

4. ∀i ∈ {1, 2, · · · , n} ,
t∑

θ=1

aθi = ai.

(1) ∀θ ∈ {1, 2, · · · , t} ,∀i ∈ {1, 2, · · · , n} , 0 ≤ aθi ≤ n− 1.

(2) ∀θ ∈ {1, 2, · · · , t} ,
n∑

i=1

aθi = Cn
2 = n(n−1)

2
.

(3′) ∀θ ∈ {1, 2, · · · , t} ,∀k ∈ {1, 2, · · · , n} ,∀ {n1, n2, · · · , nk} ⊆ {1, 2, · · · , n} ,
k∑

i=1

aθ,ni
≤

F (k) = k
2
(2n− k − 1) .

Of course, each of these t sequences aθi, i = 1, 2, · · · , n, satisfies the hypothesis (1),

(2), (3)↔(3′) of this paper when t = 1, and the paper [1] shows that (1), (2), (3)↔(3′)

are necessary and sufficient conditions for each win sequence aθi, i = 1, 2, · · · , n, to be

realizable when t = 1. After, we use [1] to deal with each sequence aθ1, aθ2, · · · , aθn, θ ∈
{1, 2, · · · , t}, we use condition (4) to put all of these t sequences together which solves

the main problem of this paper.

4 Lemmas needed to solve Problem 1.

We first prove Lemma 1. Lemma 1, however, is not very convenient for solving Problem

1 since it requires the rearranging of terms.

We then prove the trivial Lemma 2. Lemma 2 then allows us to state Lemma 1 as Lemma

3. Lemma 3 does not require the rearranging of terms, and this is very convenient when we

solve Problem 1. For completeness, we also state the trivial companion Lemma 3. Lemmas

3, 3′ will be the main machinery that we use to solve Problem 1.

Lemma 2 Suppose 2 ≤ t̄ ≤ n are fixed positive integers, and k is a variable positive integer

that satisfies 1 ≤ k ≤ t− 1. As always, define F (k) = k
2
(2n− k − 1) .

Suppose a1, a2, · · · , at ≥ 0 are non-negative integers.

Also, ∀k ∈
{
1, 2, · · · , t− 1

}
,

k∑
i=1

ai ≤ F (k) and
t∑

i=1

ai < F
(
t
)
.

Define a∗
t

= at + 1. Also define {a1, a2, · · · , at} =
{
a1, a2, · · · , at−1, a

∗
t

}
with a1 ≥ a2 ≥

· · · ≥ at. Then (a) ∀k ∈
{
1, 2, · · · , t

}
,

k∑
i=1

ai ≤ F (k) .

Proof. Of course, if a1 ≥ a2 · · · ≥ at−1 ≥ a∗
t

= at + 1, then there is nothing to prove

since ai = ai, i = 1, 2, · · · , t− 1, at = a∗
t

= at + 1 and
t∑

i=1

ai < F
(
t
)
.
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Therefore, suppose that a1 ≥ a2 ≥, · · · ,≥ ar−1 > ar = ar+1 = ar+2 = · · · = at−1 = at

where 1 ≤ r ≤ t− 1.

Let us call ar = ar+1 = ar+2 = · · · = at−1 = at = w.

Then a1 = a1, a2 = a2, · · · , ar−1 = ar−1, ar = w + 1 and ar+1 = ar+2 = · · · = at = w.

We must show that ∀θ ∈
{
r, r + 1, · · · , t

}
, (∗)

(
θ∑

i=1

ai

)
+ 1 =

θ∑
i=1

ai ≤ F (θ) .

Now by hypothesis we know that (∗) is true when θ = t since
t∑

i=1

ai < F
(
t
)

and, of

course,
t∑

i=1

ai =

(
t∑

i=1

ai

)
+ 1 ≤ F

(
t
)
.

Therefore, we must show that (∗) is true for r ≤ θ ≤ t− 1.

We do this by showing that ∀r ≤ θ ≤ t − 1, it is impossible for all of (1), (2), (3) to be

true. (1), (3) are true by hypothesis,

1.
θ−1∑
i=1

ai ≤ F (θ − 1) .

2.
θ∑

i=1

ai = F (θ) .

3.
t∑

i=1

ai < F
(
t
)
.

Of course, we know by hypothesis that
θ∑

i=1

ai ≤ F (θ). So if
θ∑

i=1

ai < F (θ) is true, then

we know that (∗) is true. This is why we are assuming that (2) is true.

Now (2) is equivalent to

(
θ−1∑
i=1

ai

)
+ w = F (θ) .

Therefore, using (1), we see that (a) w = F (θ)−
(

θ−1∑
i=1

ai

)
≥ F (θ)− F (θ − 1) .

Also, (3) is equivalent to

(
θ∑

i=1

ai

)
+

(
t∑

i=θ+1

ai

)
< F

(
t
)

which is equivalent to F (θ) +(
t− θ

)
w < F

(
t
)
.

This is equivalent to (b)
(
t− θ

)
w < F

(
t
)
− F (θ) .

Using (a) and copying (b) we see that (c)
(
t− θ

)
(F (θ)− F (θ − 1)) ≤

(
t− θ

)
w <

F
(
t
)
− F (θ) .

We show that (c) is impossible by showing that (d) F
(
t
)
−F (θ) ≤

(
t− θ

)
(F (θ)− F (θ − 1))

when r ≤ θ ≤ t− 1 ≤ n− 1.

Using the definition of F , we see that (d) is true if and only if t
2

(
2n− t− 1

)
− θ

2
(2n− θ − 1) ≤(

t− θ
) [

θ
2
(2n− θ − 1)−

(
θ−1
2

)
(2n− θ)

]
.

This is true if and only if t
(
2n− t− 1

)
− θ (2n− θ − 1) ≤

(
t− θ

)
(2n− 2θ). This is true

if and only if 2nt− t
2 − t− 2nθ + θ2 + θ ≤ 2nt− 2θt− 2nθ + 2θ2 which is true if and only if

0 ≤ t
2
+ t + θ2 − θ − 2θt.
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Now θ ≤ t − 1 means that t = θ + 1 + φ, where φ ≥ 0. Therefore, we show that

0 ≤ (θ + 1 + φ)2 + (θ + 1 + φ) + θ2 − θ − 2θ (θ + 1 + φ). This is true if and only if 0 ≤
θ2 + 1 + φ2 + 2θ + 2φ + 2θφ + θ + 1 + φ + θ2 − θ − 2θ2 − 2θ − 2θφ.

This is true if and only if 0 ≤ φ2 + 3φ + 2 which is true.

Lemma 3 Suppose a1 ≥ a2 ≥ · · · ≥ at ≥ 0 are non-negative integers.

Then the following two conditions are equivalent.

(a) ∀k ∈
{
1, 2, · · · , t

}
,

k∑
i=1

ai ≤ F (k) .

(b) ∀k ∈
{
1, 2, · · · , t

}
,∀ {n1, n2, · · · , nk} ⊆

{
1, 2, · · · , t

}
,

k∑
i=1

ani
≤ F (k) .

Proof. (b) obviously implies (a). Also (a) implies (b) since a1 ≥ a2 ≥ · · · ≥ at implies
k∑

i=1

ani
≤

k∑
i=1

ai.

Observation 1 Since Lemma 2 states that (a) and (b) are equivalent, in Lemma 1 we

do not need to rearrange the terms
[
a1, a2, · · · , at−1, a

∗
t

]
to define, {a1, a2, a3, · · · , at} ={

a1, a2, , at−1, a
∗
t

}
with a1 ≥ a2 ≥ a3 ≥ · · · ≥ at. All we have to do is use (b) instead of (a)

and then we do not have to rearrange anything. This becomes much more convenient when

we solve problem 1.

Lemma 1 can bow be stated as Lemma 3. For completeness we also state the trivial

companion Lemma 3′.

Lemma 4 Suppose 2 ≤ t ≤ n are fixed positive integers and k is a variable positive integer

that satisfies 1 ≤ k ≤ t− 1. As always, define F (k) = k
2
(2n− k − 1) .

Suppose a1, a2, · · · , at−1, at are non-negative integers and min {a1, a2, · · · , at−1} ≥ at

where min {} is the smallest member of the set.

Also, suppose (b) ∀k ∈
{
1, 2, · · · , t− 1

}
,∀ {n1, n2, · · · , nk} ⊆

{
1, 2, · · · , t− 1

}
,

k∑
i=1

ani
≤

F (k) .

Also, suppose
t∑

i=1

ai < F
(
t
)

which, of course, is equivalent to

(
t−1∑
i=1

ai

)
+(at + 1) ≤ F

(
t
)
.

Define a1 = a1, a2 = a2, · · · , at−1 = at−1, at = at+1. Then (b′)∀k ∈
{
1, 2, · · · , t

}
,∀ {n1, n2, · · · , nk} ⊆{

1, 2, 3, · · · t
}

,
t∑

i=1

ani
≤ F (k) .

Lemma 3′ Suppose 2 ≤ t ≤ n are fixed positive integers and k is a variable positive

integer that satisfies 1 ≤ k ≤ t− 1. As always, define F (k) = k
2
(2n− k − 1) .

Suppose a1, a2, · · · , at−1, at are non-negative integers and min {a1, a2, · · · , at−1} ≥ at.

Also, suppose (b) ∀k ∈
{
1, 2, · · · , t− 1

}
,∀ {n1, n2, · · · , nk} ⊆

{
1, 2, · · · t− 1

}
,

k∑
i=1

ani
≤

F (k) .
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Also, suppose
t∑

i=1

ai ≤ F (k) .

Then (b′) ∀k ∈
{
1, 2, · · · , t

}
,∀ {n1, n2, · · · , nk} ⊆

{
1, 2, 3, · · · t

}
,

k∑
i=1

ani
≤ F (k) .

Lemmas 3, 3′ along with an inequality (∗ ∗ ∗) that we soon develop will be our main

machinery for solving Problem 1.

5. Solving Problem 1.

Using the hypothesis of Problem 1, let us first observe that the t identical sequences
a1

t
≥ a2

t
≥ a3

t
≥ · · · ≥ an

t
satisfy the following (1), (2), (3), (4).

(1) 0 ≤ ai

t
≤ n− 1, i− 1, 2, · · · , n.

(2)
n∑

i=1

ai

t
= Cn

2 .

(3) ∀k ∈ {1, 2, · · · , n} ,
k∑

i=1

ai

t
≤ F (k) = k

2
(2n− k − 1) .

(4) ∀i ∈ {1, 2, · · · , n} , ai = ai

t
+ ai

t
+ · · ·+ ai

t
(t− time) .

Of course, if ai

t
is an integer for all i = 1, 2, · · · , n then the solution to Problem 1 is

obvious. However, in general not all of the ai

t
’s will be integers. Our plan is to modify

this sequence to form t sequences which together satisfy the 4 conditions required in

Problem 1.

Notation 5 ∀i ∈ {1, 2, · · · , n}, let ai

t
=
[

ai

t

]
+ Ri

t
where bc is the floor function and 0 ≤

Ri < t is an integer. Of course,
⌊

ai

t

⌋
is the quotient and Ri is the remainder when ai is

divided by t. Also, of course,
⌊

a1

t

⌋
≥
⌊

a2

t

⌋
≥ · · · ≥

⌊
an

t

⌋
.

Now ∀k ∈ {1, 2, · · · , n} ,
k∑

i=1

ai

t
=

(
k∑

i=1

⌊
ai

t

⌋)
+

(
k∑

i=1

⌊
Ri

t

⌋)
≤ F (k) .

This implies ∀k ∈ {1, 2, · · · , n} ,

(
k∑

i=1

⌊
ai

t

⌋)
≤ F (k)−

k∑
i=1

Ri

t
.

∀k ∈ {1, 2, · · · , n}, define bk to be the non-negative integer satisfying bk−1 <
k∑

i=1

Ri

t
≤ bk.

Then since F (k) and
k∑

i=1

⌊
ai

t

⌋
are both integers, we see that (∗)

k∑
i=1

⌊
ai

t

⌋
≤ F (k)− bk.

We also easily see that
n∑

i=1

Ri

t
is an integer since Cn

2 =
n∑

i=1

ai

t
=

(
n∑

i=1

ai

t

)
+

(
n∑

i=1

Ri

t

)
and

Cn
2 and

k∑
i=1

⌊
ai

t

⌋
are both integers.

Let us now point out that in set theory a set can be specified in two ways. We can specify

the set explicitly using the language of set theory or we can specify the set by showing the

pattern. Thus, {x : x is a positive integer} = {1, 2, 3, 4, 5, 6, 7, · · · } .
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In this paper, we define our basic algorithm by using the second method since the first

method is very confusing while the second method is not confusing at all.

Let us now start with the following t identical sequences.

1.
⌊

α1

t

⌋
≥
⌊

α2

t

⌋
≥
⌊

α3

t

⌋
≥
⌊

α4

t

⌋
≥ · · · ≥

⌊
αn

t

⌋
.

2.
⌊

α1

t

⌋
≥
⌊

α2

t

⌋
≥
⌊

α3

t

⌋
≥
⌊

α4

t

⌋
≥ · · · ≥

⌊
αn

t

⌋
· · ·

t.
⌊

α1

t

⌋
≥
⌊

α2

t

⌋
≥
⌊

α3

t

⌋
≥
⌊

α4

t

⌋
≥ · · · ≥

⌊
αn

t

⌋
.

We will now increase by 1 some of the members of these sequences 1, 2, · · · , t to befine

t new sequences. We will then use Lemma 3, 3′ and the inequality (∗ ∗ ∗) that we soon

develop to prove that these t new sequences satisfy conditions (1), (2), (3′), (4) of Problem

1. We will add 1’s according to the following pattern, and we illustrate the complete pattern

by using t = 7, n = 6, R1 = 3, R2 = 2, R3 = 3, R4 = 4, R5 = 5, R6 = 4. We observe

that
n=6∑
i=1

Ri

t
= 3+2+3+4+5+4

7
= 3 which is an integer as we know it must be. This illustration

obviously defines the general pattern for arbitrary θ, t, n.

1.
⌊

α1

t

⌋
+ 1

⌊
α2

t

⌋ ⌊
α3

t

⌋
+ 1

⌊
α4

t

⌋ ⌊
αn

t

⌋
+ 1

⌊
αn

t

⌋
2.
⌊

α1

t

⌋
+ 1

⌊
α2

t

⌋ ⌊
α3

t

⌋ ⌊
α4

t

⌋
+ 1

⌊
αn

t

⌋
+ 1

⌊
αn

t

⌋
3.
⌊

α1

t

⌋
+ 1

⌊
α2

t

⌋ ⌊
α3

t

⌋ ⌊
α4

t

⌋
+ 1

⌊
αn

t

⌋
+ 1

⌊
αn

t

⌋
4.
⌊

α1

t

⌋ ⌊
α2

t

⌋
+ 1

⌊
α3

t

⌋ ⌊
α4

t

⌋
+ 1

⌊
αn

t

⌋ ⌊
αn

t

⌋
+ 1

5.
⌊

α1

t

⌋ ⌊
α2

t

⌋
+ 1

⌊
α3

t

⌋ ⌊
α4

t

⌋
+ 1

⌊
αn

t

⌋ ⌊
αn

t

⌋
+ 1

6.
⌊

α1

t

⌋ ⌊
α2

t

⌋ ⌊
α3

t

⌋
+ 1

⌊
α4

t

⌋ ⌊
αn

t

⌋
+ 1

⌊
αn

t

⌋
+ 1

7.
⌊

α1

t

⌋ ⌊
α2

t

⌋ ⌊
α3

t

⌋
+ 1

⌊
α4

t

⌋ ⌊
αn

t

⌋
+ 1

⌊
αn

t

⌋
+ 1

We point out that if Ri = 0, then in column i we don’t add 1 to any of the members of

that column.

The pattern that we have used should now be self-explanatory, and this example should

make the general pattern clear for an arbitrary number of rows, t, an arbitrary number

of columns, n, and for arbitrary integers R1,R2, · · · , Rn subject only to 0 ≤ Ri < t, i =

1, 2, · · · , n, and t|
n∑

i=1

Ri. In this example, let us note in column 3 that we have added 1

to the bottom two
⌊

α3

t

⌋
’s and then we add 1 to the top

⌊
α3

t

⌋
. We have now defined the

following 7 sequences and in general we use this same pattern to define the t sequences

{aθi
: i = 1, 2, · · · , n} as θ varies over θ = 1, 2, · · · , t.

1. a11 a12 a13 a14 a15 a16
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2. a21 a22 a23 a24 a25 a26

3. a31 a32 a33 a34 a35 a36

4. a41 a42 a43 a44 a45 a46

5. a51 a52 a53 a54 a55 a56

6. a61 a62 a63 a64 a65 a66

7. a71 a72 a73 a74 a75 a76

In general it is obvious from the way that the algorithm for adding 1’s has been defined

that the following is true for each row θ ∈ {1, 2, · · · , t}. In row θ, suppose exactly r of the

members
⌊

α1

t

⌋
,
⌊

α2

t

⌋
,
⌊

α3

t

⌋
, · · · ,

⌊
αk

t

⌋
have been increased by 1 where 0 ≤ r ≤ k ≤ n.

Then the only way that this can happen is for (∗∗) r−1 <
n∑

i=1

Ri

t
≤ r+1. To see this, first

note that if
k∑

i=1

Ri

t
< r−1, then in row θ at most r−1 of the members

⌊
α1

t

⌋
,
⌊

α2

t

⌋
,
⌊

α3

t

⌋
, · · · ,

⌊
αk

t

⌋
could have been increased by 1. Also, if r + 1 ≤

k∑
i=1

Ri

t
, then in row θ at least r + 1 of the

members
⌊

α1

t

⌋
,
⌊

α2

t

⌋
,
⌊

α3

t

⌋
, · · · ,

⌊
αk

t

⌋
must have been increased by 1. Using inequality (∗∗)

with inequality (∗), we see that (∗∗) implies
k∑

i=1

⌊
ai

t

⌋
≤ F (k) − r. to see this, note that the

inequality (∗∗) implies that in the hypothesis for inequality (∗) we must have either bk = r

or bk = r + 1.

Applying this to the t sequences {aθi : i = 1, 2, · · · , n} , θ ∈ {1, 2, · · · , t}, we see that

(∗ ∗ ∗)∀θ ∈ {1, 2, · · · , t} , ∀k ∈ {1, 2, · · · , n} ,
k∑

i=1

aθi ≤ F (k). Inequality (∗ ∗ ∗) and Lemmas

3, 3′ will now be our main machinery. We now show that the 7 sequences {aθi : i = 1, 2, · · · , 6} , θ ∈
{1, 2, 3. · · · , 7} and in general that t sequences {aθi : i = 1, 2, · · · , n} , θ ∈ {1, 2, · · · , t}, sat-

isfy the four conditions (1), (2), (3′), (4) required in Problem 1. We first prove condition

(4).

Condition 4. We show (4). ∀i ∈ {1, 2, · · · , n} ,
t∑

θ=1

aθi = ai.

Condition 6 From the general pattern, we note that ∀i ∈ {1, 2, · · · , n} exactly Ri members

of column i have been changed from
⌊

αi

t

⌋
to
⌊

αi

t

⌋
+ 1. Thus, the sum of the t members of

column i goes from t ·
⌊

αi

t

⌋
to t ·

⌊
αi

t

⌋
+ Ri = ai since ai

t
=
⌊

αi

t

⌋
+ Ri

t
. This means that (4)

∀i ∈ {1, 2, · · · , n} ,
t∑

θ=1

aθi = ai.

Condition 1. We show (1). ∀θ ∈ {1, 2, · · · , t} ,∀i ∈ {1, 2, · · · , n} , 0 ≤ aθi ≤ n− 1. We

consider two cases.
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Case 1. Suppose αi

t
is an integer for some i ∈ {1, 2, · · · , n}. Then Ri = 0 which means

that ∀θ ∈ {1, 2, · · · , t} , aθi = ai

t
.

Now by hypothesis (1) of Problem 1, 0 ≤ ai ≤ t · (n− 1) which implies 0 ≤ ai

t
≤ n− 1.

Case 2. Suppose ai

t
is not an integer for some i ∈ {1, 2, · · · , n} .

Then 1 ≤ Ri < t.

Also, ∀θ ∈ {1, 2, · · · , t} , aθi =
⌊

ai

t

⌋
or aθi

=
⌊

ai

t

⌋
+ 1. Now obviously 0 ≤ aθi. We show

that aθi ≤ n− 1 by showing that
⌊

ai

t

⌋
+ 1 ≤ n− 1.

Now ai ≤ t (n− 1) and ai

t
is not an integers

⌊
ai

t

⌋
< ai

t
≤ n− 1. This implies ai

t
≤ n− 2

which implies
⌊

ai

t

⌋
+ 1 ≤ n− 1.

Condition 2. We show (2). ∀θ ∈ {1, 2, · · · , t} ,
n∑

i=1

aθi = Cn
2 = n(n−1)

2
.

Now since t|
n∑

i=1

Ri, we can see from the algorithm for defining the aθi’s that the following

is true.

In each row θ, θ ∈ {1, 2, · · · , t}, exactly 1
t
·

n∑
i=1

Ri of the members
⌊

ai

t

⌋
, i = 1, 2, · · · , n,

of row θ have been increased by 1. Therefore, ∀θ ∈ {1, 2, · · · , t} ,
n∑

i=1

aθi =

(
n∑

i=1

⌊
ai

t

⌋)
+(

n∑
i=1

Ri

t

)
.

From hypothesis (2) of Problem 1, we see that
n∑

i=1

ai

t
= 1

t
·

n∑
i=1

ai = 1
t
· tCn

2 = Cn
2 .

Now since ∀i ∈ {1, 2, · · · , n} , ai

t
=
⌊

ai

t

⌋
+ Ri

t
, we see that

n∑
i=1

ai

t
=

(
n∑

i=1

⌊
ai

t

⌋)
+

(
n∑

i=1

Ri

t

)
=

Cn
2 .

Therefore,
n∑

i=1

aθi = Cn
2 .

Condition 3′. We show (3′). ∀θ ∈ {1, 2, · · · , t} ,∀k ∈ {1, 2, · · · , n} ,∀ {n1, n2, · · · , nk} ⊆

{1, 2, · · · , n} ,
k∑

i=1

aθ,ni
≤ F (k) = k

2
(2n− k − 1) .

Considering θ ∈ {1, 2, · · · , t} to be arbitrary but fixed, we prove (3′) by proving the

following sequentially for each n = 1, 2, 3, · · · , n. For each n, we show that ∀k ∈ {1, 2, · · · , n}

and ∀ {n1n2, · · · , nk} ⊆ {1, 2, · · · , n} ,
k∑

i=1

aθ,ni
≤ F (k) = k

2
(2n− k − 1) .

We use Lemma 3 or Lemma 3′ at each step, and we also use the fact that ∀θ ∈

{1, 2, · · · , t} ,∀k ∈ {1, 2, · · · , n} , (∗ ∗ ∗)
k∑

i=1

aθi ≤ F (k) .

In the example that we have been using with t = 7, n = 6, R1 = 3, R2 = 2, R3 = 3, R4 =

R5 = 5, R6 = 4, we will now go through the proof for row θ = 3.

We will also explain the general theory at each step which gives the proof for arbitrary t, n.

We recall that
⌊

α1

t

⌋
≥
⌊

α2

t

⌋
≥
⌊

α3

t

⌋
≥ · · · ≥

⌊
αn

t

⌋
. Since each aθi =

⌊
αi

t

⌋
or aθi =

⌊
αi

t

⌋
= 1, we

see that ∀i, j ∈ {1, 2, · · · , n} , if j < i then aθi ≥
⌊

αi

t

⌋
. Therefore, min {aθ1, aθ2, · · · , ai−1} ≥⌊

αi

t

⌋
.

Row θ = 3. The members of row θ = 3 are
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a31 =
⌊

α1

t

⌋
+ 1, a32 =

⌊
α2

t

⌋
,

a33 =
⌊

α3

t

⌋
, a33 =

⌊
α4

t

⌋
+ 1,

a35 =
⌊

α5

t

⌋
+ 1, a36 =

⌊
α6

t

⌋
.

As always, from (∗ ∗ ∗) ,
k=1∑
i=1

a3i = a31 ≤ F (1). Therefore, condition 3′ trivially holds for

all k ∈ {1} and all {n1, n2, · · · , nk} = {n1} ∈ {1} since
k=1∑
i=1

a3i = a31 ≤ F (1).

Now a32 =
⌊

α2

t

⌋
. As always, from (∗ ∗ ∗) , a31+a32 = a31+

⌊
α2

t

⌋
≤ F (2). Now min {a31} =

a31 ≥
⌊

α2

t

⌋
= a32. Therefore, Lemma 3′ shows that condition 3′ holds for all k ∈ {1, 2} and

all {n1, · · · , nk} ⊆ {1, 2} .

Now a33 =
⌊

α3

t

⌋
. As always, from

∫
∗ ∗ ∗, a31 + a32 + a33 = a31 + a32 +

⌊
α3

t

⌋
≤ F (3).

Also, min {a31, a32} ≥
⌊

α3

t

⌋
= a33. Therefore, Lemma 3′ shows that condition 3′ holds

for all k ∈ {1, 2, 3} and all {n1, · · · , nk} ⊆ {1, 2, 3} .

Now a34 =
⌊

α4

t

⌋
+ 1. As always, from (∗ ∗ ∗) , a31 + a32 + a33 + a34 = a31 + a32 + a33 +(⌊

α4

t

⌋
+ 1
)
≤ F (4) .

Therefore. a31 + a32 + a33 +
(⌊

α4

t

⌋)
≤ F (4) .

Also, min {a31 + a32 + a33} ≥
⌊

α4

t

⌋
Therefore, Lemma 3 shows that condition 3′ holds for all k ∈ {1, 2, 3, 4} and all {n1, n2, · · · , nk} ⊆

{1, 2, 3, 4} .

Now a35 =
⌊

α5

t

⌋
+ 1. As always, fro (∗ ∗ ∗) , a31 + a32 + a33 + a34 + a35 = a31 + a32 + a33 +

a34 +
(⌊

α5

t

⌋
+ 1
)
≤ F (5) .

Therefore, a31 + a32 + a33 + a34 +
⌊

α5

t

⌋
< F (5) .

Also, min {a31 + a32 + a33 + a34} ≥
⌊

α5

t

⌋
.

Therefore, Lemma 3 shows that condition 3′ holds for all k ∈ {1, 2, 3, 4, 5} and all

{n1, n2, n3, n4} ⊆ {1, 2, 3, 4, 5} .

Now A36 =
⌊

α6

t

⌋
. As always, from (∗ ∗ ∗) , a31 + a32 + a33 + a34 + a35 + a36 = a31 + a32 +

a33 + a34 + a35 +
⌊

α6

t

⌋
≤ F (6) .

Also, min {a31 + a32 + a33 + a34 + a35} ≥
⌊

α6

t

⌋
= a36.

Therefore, Lemma 3′ shows that condition 3′ holds for all k ∈ {1, 2, 3, 4, 5, 6} and all

{n1, n2, · · · , nk} ⊆ {1, 2, · · · , 6} which is what we wished to prove for the sequence in row

θ = 3.

In the above proof, we observe the following general pattern when a31 =
⌊

αi

t

⌋
we used

Lemma 3′ at that step in the proof. Also, when a3i =
⌊

αi

t

⌋
+ 1, we used Lemma 3 at

that step in the proof. From the inequality (∗ ∗ ∗)
n∑

i=1

aθi ≤ F (n), from the fact that

min {aθ1, aθ2, · · · , aθ,n−1} ≥
⌊

αn

t

⌋
, and from the fact that the induction on n has proved

that condition 3′ is true for {1, 2, · · · , n− 1}, we know in general that Lemma 3 or Lemma

3′ will prove that condition 3′ is true for {1, 2, 3, · · · , n}. This gives the proof for arbitrary

θ, t, n, and this completes the solution to Problem 1.
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