
Single Pile (Move Size) Dynamic Blocking Nim

Abstract: Several authors have written papers dealing with a class of combina-

torial games consisting of one-pile counter pickup games for which the maximum

number of counters that can be removed on each move is a function of the number

of counters that was removed on the last move, see [1], [2], · · ·. These authors have

been able to consolidate a massive number of games into one general theorem. The

purpose of this paper is to add a new feature to this class of games in which on

each turn before the moving player moves the opposing player can block some of his

moves. We will analyze in detail one example of such a blocking game. We will then

state without proof some lemmas concerning another more complicated example.

This second game, which appears to be only slightly more complex than the first

game, nevertheless has a much stranger and wilder set of safe positions.

All of this leads us to believe that there are endless examples of these dynamic

blocking games that can be brought under control. Also, the methods used to

accomplish this are analogous to the methods used in this paper. However, we

believe that these blocking games must mostly be analyzed ad-hoc on a case by case

basis and that very little of the massive consolidation that was accomplished with

the non-blocking version can be achieved with the blocking version.

Rules of First Game: Two players alternate subtracting positive whole numbers

from a given initial positive integer and then replacing the integer on each turn by
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the new smaller integer that results, observing the following rules. An ordered pair

(N, X), where N is an integer and X is a positive integer, is called a position. The

number N represents the integer that we are dealing with and X represents the

greatest whole number that can be subtracted from N on the next move. We allow

X < N,X = N, X > N . Of course, initially N is positive.

The function f(n) = 2n is also given which determines the maximum size of the

next move in terms of the current move. Thus a move in the game is an ordered pair

of positions (N, X) → (N−K, f(k)) = (N−k, 2k), where 1 ≤ k ≤ X, subject to the

second rule. Note that we are allowing the moving player to overshoot N = 0. The

second rule states that on each turn before the moving player moves, the opposing

player can block up to two of his moves. He can do this in any way that he chooses

including the option of blocking less than two moves. The game ends as soon as one

of the following things happen to (N, X) :

1. N is non-positive

2. X ≤ 2.

The winner is the one who makes the last move in the game. If the game starts

with (N, X) where 1 ≤ X ≤ 2, we agree that the second moving player is the winner

since the first blocking player can prevent the first moving player from moving. The

reader might note that if the game does not start with X = 1 then it is impossible

for f(n) = 2n to ever equal 1.
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Base: Let us define the sequence (a1, b1, c1), (a2, b2, c2), (a3, b3, c3), · · · as follows.

We call this the base of the game.

1. ∀i, bi = ai + 1, ci = bi + 1.

2. (a1, b1, c1) = (1, 2, 3), (a2, b2, c2) = (4, 5, 6),

(a3, b3, c3) = (7, 8, 9), (a4, b4, c4) = (12, 13, 14)

3. ∀i ≥ 5, ai = ci−1 + ai−2.

Thus a few more terms are

(a5, b5, c5) = (21, 22, 23)

(a6, b6, c6) = (35, 36, 37)

((a7, b7, c7) = (58, 59, 60), · · ·.

Obviously, a1 < b1 < c1 < a2 < b2 < c2 < a3 < b3 < c3 < a4 < b4 < c4 < · · ·.

Lemma 1: Suppose ci < N < ai+1) where N is an integer, then N − ci < ai−1.

Proof: If i ≤ 3, the only two possibilities are i = 3, ci = c3 = 9, ai+1 = a4 =

12, N = 10 or 11.

Obviously, N − ci ∈ {1, 2}, and N − ci ≤ 2 < ai−1 = a2 = 4. So assume i ≥ 4.

Now since i ≥ 4, ai+1 = ci + ai−1.

Algorithm: ∀ positive integer N , we will express N in the above base by the

following recursive algorithm. Of course, the algorithm does this uniquely. We

express N = 1 in the base by N = a1 = 1. Suppose we have expressed 1, 2, 3, · · · ,

N − 1 in the base by the algorithm where N − 1 ≥ 1, we now wish to express N in

3



the base.

If N = ai or N = bi or N = ci for some i, we agree that N is already expressed

in the base. Otherwise suppose ci < N < ai+1 for some i.

Let us now write N−ci +(N−ci). By lemma 1, we know that i ≤ N−ci < ai−1.

Now by induction we know that the recursive algorithm has expressed N − ci =

φi2 +φi3 +· · ·+φi4 where i−1 > i2 > i3 > · · · > i4 and where each φij ∈
{
aij , bij , cij

}
.

Calling ci = φi1 , we have N = φi1 + φi2 + · · ·φit , where i1 > i2 > i3 > · · · > it and

where each φij ∈
{
aij , bi1j

, cij

}
. The reader can note that φit ∈ {ait, bit, cit}. However

all of the other φ′
ijS must equal cij . We now prove a second lemma for the base of

the game (a1, b1, c1), (a2, b2, c2), (a3, b3, c3),· · ·.

Lemma 2: ∀i ≥ 3, it is true that

1. 2 · ai ≥ ci+1 and

2. 2 · ci−1 < ci+1.

Proof: Obviously, this is true for i = 3. Therefore, suppose i ≥ 4. Since

i ≥ 4, ai+1 = ci + ai=1. Therefore, ai+1 = ai + ai−1 + 2 and ci+1 = ai + ai−1 + 4.

Now 2ai ≥ ci+1 is true if 2ai ≥ ai + ai−1 + 4 if ai ≥ ai−1 + 4, which is true since

i ≥ 4.

Now 2ci−1 < ci+1 is true if 2 · (ai−1 + 2) < ai + ai−1 + 4 if ai−1 < ai, which is

always true.

Safe and unsafe positions:
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For all positive integers N, X, the position (N, X) is determined to be safe or

unsafe by the following rules.

First, express N = Qi1 +Qi2 + · · ·+Qi4 , where i1 > i2 > i3 > · · · it, by the above

algorithm,

1. If Qit = a1 = 1, then (N, X) is unsafe if x ≥ 3 and safe if 1 ≤ X ≤ 2.

2. If Qit = b1 = 2, then (N, X) is unsafe if X ≥ 3 and safe if 1 ≤ X ≤ 2.

3. If Qit = c1 = 3 then (N, X) is unsafe if X ≥ 4 and safe if 1 ≤ X ≤ 3.

4. If Qit = a2 = 4, then (N, X) is unsafe if X ≥ 5 and safe if 1 ≤ X ≤ 4.

5. if Qit = b2 = 5, then (N, X) is unsafe if X ≥ 6 and safe if 1 ≤ X ≤ 5.

6. If Qit ∈ {c2, a3, b3, c3, a4, b4, c4,a5, b5, c5, · · ·} , then (N, X) is unsafe if X ≥ Qit

and safe if 1 ≤ X ≤ Qit − 1.

Remark: Note that we have only stated the safe and unsafe positions of the

game. We have not stated the strategy of the game. The strategy of the game will

be studied after the proof of the safe and unsafe positions.

Proof of safe and unsafe positions: Let us first plot the ordered pairs (N, X),

where N ∈ {−3− 1, 0, 1, 2, 3, · · ·} and X ∈ {1, 2, 3, · · ·} , as Cartesian co-ordinates

in the usual way with N plotted as the abscissa and X plotted as the ordinate. Note

that X is being plotted vertically.

For each such pair (N, X), we will assign (N, X) the value of F (N, X) ∈ {0, 1} ,

where F (N, X) = 0 if (N, X) is a safe position and F (N, X) = 1 if (N, X) is an
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unsafe position.

All (−2, X)′s, (−1, X)′s, (0, X)′s, (N, 1)′s and (N, 2)′s will be assigned the value

of 0 since by the rules of the game they will be safe terminal positions. These will

be the only terminal positions that we will need to include in order to completely

analyze the game.

Now when N ≥ 1, X ≥ N + 2 we know that F (N, X) = 1. This is because the

first moving player can subtract at least one of N + 2, N = 1, N from N and win

since the first blocking player can only block two of these three moves.

Remember, the games is over as soon as the integer N becomes non-positive and

the winner is the one who makes the last move in the game. So we can imagine that

all ordered pairs (N, X), N,X ∈ {1, 2, 3, · · ·} , X ≥ N+2, have already been assigned

the value of 1 in addition to the (−2, X)′s, (−1, X)′s, (0, X)′s, (N, 1)′s and (N, 2)′s

which have already been assigned the value of 0. We must now compute F (N, X)

for the other (N, X)′s. We will compute F (N, X), where N ≥ 2, 3 ≤ X ≤ N + 1,

recursively as follows. (XXX)F (N, X) = 1 when the list F (N − 1, 2), F (N −

2, 4), F (N − 3, 6), · · ·F (N −X, 2X) contains at least three 0′s. It must contain at

least three 0′s because otherwise the blocking player can block all moves that go to

two or fewer 0′s. F (N, X) = 0 when this list contains at most two 0′s. We compute

the F (2, X)′s, X = 1, 2, 3, 4, · · ·, first. Then we compute the F (3, X)′s, then the

F (4, X)′s, etc.
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Note that for a fixed N ∈ {1, 2, 3, · · ·} and a variable X ∈ {1, 2, 3, · · ·}, the

infinite sequence F (N, 1) = 0, F (N, 2) ≤ 0, F (N, 3), F (N, 4), · · · always consists of a

finite string of consecutive 0′s followed by an infinite string of consecutive 1′s. This

is true by (XXX) because once this sequence first switches from 0 to 1 it must

always retain the value of 1 thereafter. For each fixed N ∈ {1, 2, 3, · · ·}, let us define

g(N) to be the smallest X ∈ {1, 2, 3, · · ·} such that F (N, X) = 1. Since F (N, 2) = 0

and F (N, N +2) = 1, we know that 3 ≤ g(N) ≤ N +2. We note that once we know

the value of g(N) then by the definition of g(N) we know that F (N, X) = 0 when

1 ≤ X ≤ g(N)− 1 and F (N, X) = 1 when g(N) ≤ X.

For any N ∈ {1, 2, 3, · · ·}, it is easy to see that g(N) is the smallest positive

integer having the property that exactly three members of the following list have

a value of 0: F (N − 1, 2), F (N − 2, 4), F (N − 3, 6), · · · , F (N − g(N), 2g(N)). We

will now prove lemma 3 for the base (a1, b1, c1), (a2, b2, c2), (a3, b3, c3), · · ·. This will

complete the proof of the safe and unsafe positions.

Lemma 3: 1. g(a1) = g(1) = 3, g(b1) = g(2) = 3,

g(c1) = g(3) = 4, g(a2) = g(4) = 5,

g(b2) = g(5) = 6,

g(c2) = g(6) = 6.

2. ∀i ≥ 3, g(ai) = ai, g(bi), g(ci)− ci

3. ∀N ∈ {1, 2, 3, 4, · · ·} \ {a1b1b1a2b2c2a3b3c3, · · ·}, (i.e. ∀ positive
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integer N that is not a member of the base), 3 ≤ g(N) < N .

4. ∀ positive integer N , if ci < N < ai+1, then N − ci + (N − ci),

where 1 ≤ N − ci < ai−1, and g(N) = g(N − ci).

Remark: Once we have proved Lemma 3, the proof of the safe and unsafe

positions follows readily. Remember, ∀ positive integer N , we write N = φi1 +

φi2 + φi3 + · · · + φit , where the φ′
ij
s are determined by the algorithm and where

i1 > i2 > i3 > · · · it. Remember, all φ′
ij
S equal cijexcept possibly φit which

can equal either ait , bit , cit . Now from condition 4 of lemma 3 and from the way

the algorithm specified the φ′
ij
s, we see that g(N) = g(φi1 + (φi2 + · · · + φit)) =

g(φi2 + (φi3 + · · · + φit)) = g(φi3 , (φi4 + · · · + φit)) = · · · = g(φit). using conditions

1, 2 of lemma 3 with g(φit) along with the definition of g completes the proof of the

safe and unsafe positions.

Proof of Lemma 3: Note at the start that Lemma 1 takes care of the statement

in condition 4 that 1 ≤ N − ci < ai−1.In Fig.2, we have computed the value of

F (N, X) for a few values of N.

Note that conditions 1,2,3,4 of Lemma 3 are obviously true for the N ′s in Fig.

2. So we can now use induction on N.

Let us now suppose that conditions 1,2 are true for all ai ∈ {a1, a2, a3, · · · , ak} , bi ∈

{b1, b2, b3, · · · , bk} , ci ∈ {c1, c2, c3, · · · , ck} and conditions 3,4 are true for all.
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N ∈ {1, 2, 3, 4, · · · , ak, bk, ck} \ {a1, b1, c1, · · · , ak, bk, ck} , where k ≥ 4. We now

show that condition 2 is true for a i = ak+1, b i = bk+1, ci = ck+1 and conditions 3,4

are true for all N ∈ {ck + 1, ck + 2, ck + 3, · · · , ak+1 − 1 = ck + ak−1 − 1} .

Note that ak+1 = ck + ak−1 since k ≥ 4. Let us illustrate this in Fig.3. In Fig.3

note first that condition 2 of Lemma 3 is true for ak−1, bk−1, ck−1, ak, bk, ck since k ≥ 4.

Also carefully observe how integer lines A, 1, 2, 3, 4, A′, 1′, 2′, 3′, 4′ are defined in the

drawing. For example, line A is the set of integer points on the upward vertical line

through (0, 0). Line 1 is the set of integer points {(t− 1, 2) , (t− 2, 4) , (t− 36), · · ·} .

Line 2 is the set of integer points {(ak−1 − 1, 2) , (ak−1 − 2, 2) , (ak−1 − 3, 6) , · · ·} .

Let us deal first with N ∈ {ck + 1, ck + 2, · · · , ak+1 − 1 = ck + ak−1 − 1} . For

these N ′s, we need to prove conditions 3,4 of lemma 3. Of course, once we prove

condition 4, condition 3 will immediately follow from this. This is because if N =

ck + (N − ck), where 1 ≤ N − ck < ak−1and g(N) = g(N − ck), then the following

is true. We combine conditions 1,2,3 of lemma 3 with our just mentioned inductive

assumption about k and the fact that 1 ≤ N − ck < ak−1 < ck to see that g(N) =

g(N−ck) ≤ (N−ck)+2 < N . So let us now prove condition 4. Reread the definition

of g(N) before continuing. Since k ≥ 4,we know that g(ak) = ak ≥ a4 = 12, g(bk) =

bk ≥ b4 = 13 and g(ck) = ck ≥ c4 = 14.

From this, it is easy to see from Fig.3 and the definition of g that g(ck + 1) =

g(1) = 3, g(ck + 2) = g(2) = 3, g(ck + 3) = g(3) = 4, g(ck + 4) = g(4) = 5 and
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g(ck + 5) = g(5) = 6. Therefore, suppose we have proved condition 4 for all N ∈

{ck + 1, ck + 2, · · · , ck + t− 1}, where 5 ≤ + − 1 ≤ ak−1 − 2. We now prove that

condition 4 is met for N = ck + t, where 6 ≤ + ≤ ak−1 − 1. This means we know

that g(1) = g(ck + 1), g(2) = g(ck + 2), · · · , g(t− 1) = g(ck + t− 1), and we wish to

prove g(t) = g(ck + t). Now g(t) is the smallest positive integer X such that the list

F (t− 1, 2), F (F2, 4), F (F3, 6), · · · , F (t−X, 2X) contains exactly three 0′s.

Also, g(ck + t) is the smallest positive integer X such that the list F (ck + t −

1, 2), F (ck + t − 2, 4), F (ck + t − 3, 6), · · ·F (ck + t − X, 2X) contains exactly three

0′s.

Now since we are assuming that g(1) = g(ck + 1), g(2) = g(ck + 2), g(3) =

g(ck + 3), · · · , g(t − 1) = g(ck + t = 1), we know that the above two lists must

be identical as long as 1 ≤ X ≤ t − 1. This follows from the definition of g since

g(N) tells us that F (N, X) = 0 when 1 ≤ X ≤ g(N) − 1 and F (N, X) = 1 when

g(N) ≤ X. This is illustrated by line1 and line 1′ in Fig.3.

Of course, t /∈ {a1, b1, c1, a2, b2} since t ≥ 6. Now if t /∈ {c2, a3, b3, c3, a4, b4, c4, · · · ak−2, bk−2, ck−2} ,

by the inductive assumption on k we know that g(t) < t, this is condition 3 of lemma

3. This readily tells us that g(t) = g(ck+t). This is because the list F (t−1, 2), F (t−

2, 4), · · · , F (t−X, 2X) will contain three 0′s before X reaches X = t, and this lists

is identical to the second list F (ck + t− 1, 2), F (ck + t− 2, 4), · · · , F (ck + t−X, 2X)

as long as 1 ≤ X ≤ t− 1. Now if t ∈ {c2, a3, b3, c3, a4, b4, c4, · · · , ak−2, bk=2, ck=2} , by
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the inductive assumption on k, we know that g(t) = t from condition 2 of lemma

3 and the fact that g(c2) = c2. Let us now study lines 1 and 1′ in Fig.3. We know

by lemma 2 that ∀i ≥ 3, 2 · ci=1 < ci+1. Therefore, since k ≥ 4, we know that

2 · ck−2 < ck.

If t ∈ {c2, a3, b3, c3, a4, b4, c4, · · · , ak−2, bk=2, ck=2} , then since c2 < a3 < b3 < c3 <

a4 < b4 < c4, < · · · we know that 2t ≤ 2ck−2 and 2ck−2 < ck implies 2t < ck. This

means that line 1′ in Fig.3 will intersect line A′ at a 0F -value the same way that

line 1 intersects line A at a 0F -value. Combining this with the assumption that we

are making on t, we know that the F -values along line 1 and 1′ are identical up to

and including the 0F -values at the intersections of line 1 and A and lines 1′ and A′.

Since g(t) = t, we know that the 0F -value at the intersection of lines 1 and A is

the third 0F -value on line 1′. Therefore, the 0F -value at the intersection of lines 1′

and A′ is the third 0F -value on line 1′. g(ck + t) = g(t) = t must be true by the

definition of g. Of course, g(ck + t) = g(t) is what we wished to prove. Let us now

deal with ak+1, bk+1, ck+1, we wish to prove that condition 2 of lemma 3 is true for

ak+1, bk+1, ck+1. Let us first show that g(ak+1) = ak+1, we know by the inductive

assumption on k that g(ak−1) = ak−1 since k ≥ 4. In Fig.3, the F -values of the

points along line 2 are used to compute g(ak−1). Since g(ak−1) = ak−1, we know

from the definition of g that the 0F -value at the point of g that the 0F -value at the

point of intersection of line 2 and line A must be the third 0 on line 2.
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Now ak+1 = ck + ak−1 means that ak−1 = ak+1 − ck. We know from lemma 2

that 2ak−1 ≥ ck since k ≥ 4. We use the F -values along line 2′ to compute g(ak+1).

Since we have proved g(t) = g(ck + t) for all t = 1, 2, 3, · · · , ak−1 − 1, we know by

the definition of g that the F -values along line 2′ must be identical to the F -values

of the corresponding points along line 2 right up until line 2 intersects line A and

line 2′ intersects line A′. Now since 2ak−1 ≥ ck, ak−1 = ak+1 − ck and g(ck) = ck,

we know that line 2′ intersects line A′ at a 1F -value. This means that line 2′ has

exactly two 0′s on it up to and including the point where it intersects line A′ since

line 2 has exactly three 0′s on it up to and including the point where it intersects

line A. Now as line 2′ continues to rise upward to the left, it will encounter more

1F -values right up until it intersects line A. At the intersection of line 2′ and line

A, we find a third 0F -value on line 2′. Therefore, from the definition of g, we know

that g(ak+1) = ak+1. Next, we will show that g(bk+1) = bk+1. In Fig.3, the F -values

of the points along line 3 are used to compute g(bk−1). We know g(bk−1) = bk−1 since

k ≥ 4. Sinceg(bk−1) = bk−1, we know from the definition of g that the 0F -value at

the point of intersection of line 3 and line A must be the third 0F -value along line

3.

Now bk−1 = bk+1 − ck since ak−1 = ak+1 − ck. Of course, since 2ak−1 ≥ ck, we

know that 2bk−1 ≥ ck. We use the F -values along line 3′ to compute g(bk+1).

We have proved that g(1) = g(ck + 1), g(2) = g(ck + 2), · · · g(ak−1 − 1) = g(ck +
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ak−1− 1) = g(ak+1− 1). Also, we know g(ak+1) = ak+1 ≥ 21, since k ≥ 4. From this

we easily see that the F -values of the points along line 3 must be identical to the

F -values of the corresponding points along line 3 right up until line 3 intersects line

A′ and line 3 intersects line A. Now since 2bk−1 > ck, bk−1 = bk+1−ckand g(ck) = ck,

we know that line 3′ intersects line A′ at a 1F -value . Of course, line 3 intersects

line A at a 0F -value which is the third 0F -value on line 3. This means that line

3′ must have exactly two 0F -values on it up to and including the point where line

3′ continues to rise upward to the left, it will encounter more 1F -values until it

intersects line A. At the intersection of line 3 and line A we find the third 0F -value

on line 3′. Therefore, from the definition of g, we know that g(bk+1) = bk+1.

Last, let us show that g(ck+1) = ck+1. In Fig.3, the F -values of the points along

line 4 are used to compute g(ck−1). Since g(ck−1) = ck−1, we know from the definition

of g that the 0F -value at the point of intersection of line 4 and line A must be the

third 0F -value along line 4.

Now ck−1 = ck+1−ck since ak−1 = ak+1−ck. Of course, since 2ak−1 ≥ ck, we know

that 2ck−1 > ck. We use the F -values along line 4′ to compute g(ck+1). We have

proved g(1) = g(ck+1), g(2) = g(ck+2), · · · g(ak−1−1) = g(ck+ak−1−1) = g(ak−1−1)

in addition to g(ak+1) = ak+1 ≥ 21, since k ≥ 4, and g(bk+1) = bk+1 ≥ 22, since

k ≥ 4. Also g(ak−1) = ak−1 ≥ 7, since k ≥ 4, and g(bk−1) = bk−1 ≥ 8, since k ≥ 4.

From this we see that the F -values of the points along line 4 must be identical to
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the F -values of the corresponding points along line 4 right up until line 4′ intersects

line A and line 4 intersects line A. Now since 2ck−1 > ck, ck−1 = ck+1 − ckand

g(ck) = ck, we know that line 4′ intersects line A′ at a 1F -value. Of course, line 4

intersects line A at a 0F -value, which is the third 0F -value on line 4, this means

that line 4 must have exactly two 0F -values on it up to and including the point

where line 4′ intersects line A′. Now as line 4′ continues to rise upward to the left, it

will encounter more 1F -values until it intersects line A. At the intersection of line

4′ and line A we find the third 0F -value on line 4′. Therefore, from the definition

of g we know that g(ck+1) = ck+1.

The next part of this paper deals with the actual strategy. Before, we only dealt

with the safe and unsafe positions but not the strategy.

Definition: Let N be a positive integer. Let us call the following finite sequence

the strategy sequence for N : F (N − 1, 2), F (N − 2, 4), F (N − 3, 6), · · · , F (N −

g(N), 2g(N)). Of course, from the definition of g(N), we know that F (N−g(N), 2g(N)

is the third 0 in this sequence.

The next part of this paper shows how to compute the strategy sequence for each

positive integer N . Once we have the strategy sequences for all N , the strategy (both

moving and blocking) is almost self-evident. Note, as an example that the strategy

sequence for N = 12 is 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0. Suppose (N, X) = (12, 6). Now

this position is a safe position, and before the moving player moves, the blocking
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player will block the subtraction of 1 and 3. He does this because the first two 0′s in

the strategy sequence occupy the first and third positions. This forces the moving

player to move to a 1(or unsafe position). On the other hand, if (N, X) = (12, 13),

we see that (N, X) is an unsafe position and no matter how the blocking player

moves, the moving player can always move to a 0 position in the sequence since the

third 0 in the sequence occupies the 12th position and 12 < 13.

Lemma 4: Suppose ci < N < ai+1, where N is an integer. Of course, from

lemmas 1, 3 we know that 1 ≤ N − ci < ai−1 and g(N) = g(N − ci). We now prove

that the strategy sequence for N is identical to the strategy sequence for N − ci.

That is, the following two sequences are identical:

(a) F (N − 1, 2), F (N − 2, 4), F (N − 3, 6), · · · , F (N − g(N), 2g(N))

(b) F (N − ci − 1, 2), F (N − ci − 2, 4), F (N − ci − 3, 6), · · · , F (N − ci − g(N −

ci), 2g(N − ci))

Proof: Basically all we have to do is go through the entire proof of lemma 3

paying special attention to the proof of condition 4.

First, observe in Fig.2 that N = 10, 11 are the only N ′s in Fig.2 that apply to

lemma 4. Of course, c3 = 9 < 10 < 11 < a4 = 12.

Now g(10) = g(1) = 3 and < F (10−1, 2), F (10−2, 4), F (10−3, 6) >=< 0, 0, 0 >

Also, < F (1 − 1, 2), F < 1 − 2, 4), F (1 − 3, 6) >=< 0, 0, 0 >. So the strategy

sequences for 10 and 1 are identical.
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Now g(11) = g(2) = 3′.

Also, < F (11− 1, 2), F (11− 2, 4), F (11− 3, 6) >=< 0, 0, 0 > .

Also, < F (2−1, 2), F (2−2, 4), F (2−3, 6) =< 0, 0, 0 >. So the strategy sequences

for 11 and 2 are identical.

As in lemma 3, this starts the induction. As we continue through the rest of

the proof of lemma 3 with an emphasis on condition 4, we also easily see that the

two strategy sequences (a) and (b) are always identical, especially note lines 1, 1′ in

Fig.3.

Lemma 5: Suppose N is any arbitrary positive integer. Using the previous

algorithm to express N in the base of the game, we have N = φi1 +φi2 +φi3 +· · ·+φit ,

when i1 > i2 > i3 > · · · it.

Recall that φit ∈ {ait , bit , cit}, but φij = cit for the other i′js.

From the way that the algorithm specified the φi′js and from the fact the φi1 =

ci1 , φi2 = ci2 , · · · , φit−1 = cit−1 , φit ∈ {ait , bit , cit}, we see that lemma 4 can be used

over and over to prove that the strategy sequence for N is identical to the strategy

sequence for φit .

Lemma 5 combined with lemma 6 will now complete the computation of the

strategy sequences for the positive integers.

Lemma 6: The strategy sequence for a1 = 1 is 0, 0, 0. The strategy sequence for

b1 = 2 is 0, 0, 0.
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The strategy sequence for c1 = 3 is 0, 1, 0, 0. The strategy sequence for a2 = 4 is

0, 1, 1, 0, 0. The strategy sequence for b2 = 5 is 0, 1, 1, 1, 0, 0. The strategy sequence

for c2 = 6 is 0, 0, 1, 1, 1, 0. ∀i ∈ {4, 6, 8, 10, 12, 14, · · ·}, the strategy sequence for ai

is 010111111 · · · 10. The last 0 in the sequence is the aith member of the sequence,

∀i ∈ {4, 6, 8, 10, 12, 14, · · ·}, the strategy sequence for bi is 0110111111 · · · 10. The

last 0 is the bith member of the sequence. ∀i ∈ {4, 6, 8, 10, 12, 14, · · ·}, the strategy

sequence for ci is 00111111 · · · 10. The last 0 is the cith member of the sequence.

∀i ∈ {3, 5, 7, 9, 11, 13, · · ·}, the strategy sequence for ai is 001111111 · · · 10. The last

0 in the sequence is the aith member of the sequence.∀i ∈ {3, 5, 7, 9, 11, 13, · · ·}, the

strategy sequence for bi is 001111111 · · · 10. The last 0 in the sequence is the bith

member of the sequence. ∀i ∈ {3, 5, 7, 9, 11, 13, · · ·}, the strategy sequence for ci is

001111111 · · · 10. The last 0 is the cith member of the sequence.

Proof: The proof for a1, b1, c1, a2, b2, c2, is trivial and uses Fig.2.

The proof for i ∈ {4, 6, 8, 10, 12, · · ·} and i ∈ {3, 5, 7, 9, 11, · · ·} consists of first

showing that the above strategy sequences are correct for a4, b4, c4 and a3, b3, c3.

The reader can check this by using Fig.2. The rest of the proof consists of observing

Fig.3 that was used in the proof of lemma 3. We observe in Fig.3 that lines 2, 2′,

lines 3, 3′ and line 4, 4′ are analogous. This means that the F -values along line 2 and

2′ are identical in the beginning. The same is true for 3, 3′ and 4, 4′. Further observe

that lines 2, 3, 4 are associated with ak−1, bk−1, ck−1 while lines 2′, 3′, 4′ are associated
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with ak+1, bk+1, ck+1. Since (k + 1) − (k − 1) = 2, this explains why the strategy

sequences for i ∈ {4, 6, 8, 10, 12, 14, · · ·} are similar and the strategy sequences for

i ∈ {3, 5, 7, 9, 11, · · ·} are similar. This concludes our analysis of the first game.

Rules of Second Game: The rules of the second game are identical to the rules

of the first game with the following changes:

(a) Instead of f(n) = 2n, in this game we use f(n) = 4n. Thus a move in this

game is (N, X) → (N − k, 4k), 1 ≤ k ≤ X, subject to the blocking rule.

(b) On each turn, before the moving player moves, the opposing player can

block up to one of the moving player’s moves including the option of not blocking

any moves at all. In the first game, the blocking player could block up to two moves.

The game ends as soon as N becomes non-positive, and the winner is the one

who makes the last move in the game. If the game starts at (N, X) = (N, 1), we

agree that the second player (i.e. the 2nd moving player) is the winner since by

blocking the subtraction of X = 1 the first blocking player can prevent the first

moving player from moving. We now state without proof lemmas for the second

game that are analogous to the corresponding lemmas for the first game.

Base: Let us define the sequence (a1, b1), (a2, c2, b2), (a3, b3), (a4, a4), (a5, c5, b5), · · ·

as follows, we call this sequence the base of the game.

1. If i ∈ {2, 5, 6, 7, 8, 11, 12, 13, 14, 17, 18, 19, 20, · · ·}, we use (ai, ci, bi) for this i.

2. If i ∈ {1, 3, 4, 9, 10, 15, 16, 21, 22, 27, 28, 33, 34, · · ·}, we use (ai, bi) for this i.
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Note that aside from (ai, bi),(a2, c2, b2), we always have two successive (ai, bi)
′s

followed by four successive (ai, ci, bi)
′s followed by two successive (ai, bi)

′s followed

by four successive (ai, ci, bi)
′s followed by two successive (ai, bi)

′s, etc.

3. In all (ai, bi)
′s, we define bi = ai + 1.

4. In all (ai, ci, bi)
′s, we define ci = ai + 1, bi = ci + 1.

5. (ai, bi) = (1, 2), (a2, c2, b2) = (3, 4, 5),

(a3, b3) = (6, 7), (a4, b4) = (8, 9),

(a5, c5, b5) =)10, 11, 12), (a6, c6, b6) = (13, 14, 15),

(a−1, c−1, b−1) = (17, 18, 19), (a8, c8, b8) = (22, 23, 24),

(a9, b9) = (29, 30).

6. ∀i ≥ 10, ai = bi−1 + ai−6.

Thus a few more terms are

(a10, b10) = (38, 39), (a11, c11, b11) = (49, 50, 51),

(a12, c12, b12) = (64.65.66), (a13, c13, b13) = (83, 84, 85) · · ·

Obviously a1 < b1 < a2 < b2 < a3 < b3 < · · ·.

Lemma 1′: Suppose bi < N < ai+1, where N is an integer, then N − bi < ai−4.

Also if i ≥ 8 then N − bi < ai−5.

The proof of this is easy to see.

Lemma 2′:

1. ∀i ≥ 3, it is true that 49i ≥ bi+5.
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2. ∀i ≥ 2, it is true that 49i−1 ≥ bi+5.

The definition of g in the second game is the same as in the first game.

Definition: Suppose for some i we have (ai, ci, bi), (ai+1, ci+1, bi+1), (ai+2, ci+2, bi+2), (ai+3, ci+3, bi+3).

Remember, the triples occur in foursomes. We say that (ai, ci, bi) is the 1st member

of its foursome, (ai+1, ci+1, bi+1) is the 2nd member of its foursome, (ai+2, ci+2, bi+2)

is the 3rd member of its foursome and (ai+3, ci+3, bi+3) is the 4th member of its

foursome.

The following lemma 3′ brings the game under control.

Lemma 3′:

1. g(a1) = g(1) = 2, g(b1) = g(2) = 3,

g(a2) = g(3) = 4, g(c2) = g(4) = 5,

g(b2) = g(5) = 5.

2. ∀i ≥ 3, g(ai) = ai, g(bi) = bi.

3. ∀i ≥ 3, if for this i we have (ai, ci, bi), then g(ci) is computed as follows.

G(ci) = 2 if (ai, ci, bi) is the 1st or 2nd member of its foursome. G(ci) = 3 if (ai, ci, bi)

is the 3rd member of its foursome, and g(ci) = 4 if (ai, ci, bi) is the 4th member of

its foursome.

4. ∀ positive integer N if N is not a member of the base, then 2 ≤ g(N) < N.

5. ∀ positive integer N if bi < N < ai+1, then N = bi + (N − bi), where

1 ≤ N − bi < ai−4 and 1 ≤ N − bi < ai+5 when i ≥ 8
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a) If for this i, we have (ai, bi), then g(N) = g(N − bi).

b) If for this i, we have (ai, ci, bi), then g(N) = g(N − bi), when 6 ≤ N − bi

and g(N) = 3 if N − bi = 1,

g(N) = 4 if N − bi = 2,

g(N) = 5 if N − bi = 3,

g(N) = 4 if N − bi = 4,

g(N) = if N − bi = 5,

Conclusion: As stated in the abstract, we believe there are endless examples

of these move size dynamic single pile blocking games that can be brought under

control. However, after observing the two games specified in this paper, it seems very

unlikely that anyone can achieve the massive consolidation that was accomplished

with the non-blocking version, this means that methods very similar to the methods

used in this paper must be used ad-hoc to analyze these games on a case by case basis.

As another example, the reader might like to analyze the game where the opposing

player can block one move and ∈ {1, 2, 3, 4, · · ·} → {1, 2, 3, 4, · · ·} is specified as

follows: ∈ (n) = 3
2
n, when n is even, and ∈ (n) = 3n−1

2
when n is odd.

Finally, the Misere version can also be analyzed by methods that are similar to

the methods used in this paper. Also, the rules used in this paper can be modified,

e.g. not allowing the moving player to overshoot N = 0.
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