
The Theory of Linear Fractional Transformations of Rational Quadratics

Arthur Holshouser
3600 Bullard St.
Charlotte, NC,

USA
Harold Reiter

Department of Mathematical Sciences
University of North Carolina Charlotte,

Charlotte, NC 28223, USA
hbreiter@uncc.edu

1 Abstract

A standard technique for solving the recursion xn+1 = g (xn) where g : C → C is a complex
function is to first find a fairly simple function g : C → C and a bijection f : C → C such that
g = f◦g◦f−1 where ◦ is the composition of functions. Then xn = gn (x0) = (f ◦ gn ◦ f−1) (x0)
where gn and gn are the n-fold composition of functions and gn is fairly easy to compute.
With this motivation we find all pairs of rational quadratic functions g, g such that for some

a, b, c, d ∈ C, g = ax+b
cx+d

◦g◦
(

ax+b
cx+d

)−1
where a, b, c, d satisfy

∣∣∣∣ a b
c d

∣∣∣∣ 6= 0. We denote such pairs

by g ∼ g and we show that g ∼ g if and only if g and g have the same signature. The signature
is defined as the ordered pair (θ, φ) of the two invariants that rational quadratic functions
have under the above linear fractional transformation. These invariants were heuristically
derived and computer proved. We will explain this heuristic thinking.

At the end, we apply this to study some specific examples, and we again mention the
recursion xn+1 = g (xn). Also, we mention the possible extensions to higher degree rational
functions.

2 Introduction

In this paper we use the following terminology. A rational quadratic function (called a RQ)
is a complex function of the form Ax2+Bx+C

Hx2+Dx+E
where (1) A, B, C,H, D, E ∈ C, (2) A 6= 0

or H 6= 0, (3) (A, B, C) 6= (0, 0, 0) and (H, D, E) 6= (0, 0, 0) and (4) Ax2 + Bx + C and
Hx2 + Dx + E have no roots in common. Thus, 3x2+2x+1

x2+x+1
, x2 + 4x + 2, x+1

x2+2x+3
, 1

2x2+3x+2
are

RQ’s. It is a standard lemma that if g is a RQ and f = ax+b
cx+d

where

∣∣∣∣ a b
c d

∣∣∣∣ 6= 0, then f ◦ g

and g ◦ f are RQ’s and this fact is used often in the paper
In general two functions g : C∪ {∞} → C∪ {∞} , g : C∪ {∞} → C∪ {∞}, where C is

the complex numbers, are similar if there exists a bijection f : C ∪ {∞} → C ∪ {∞} such
that g = f ◦ g ◦ f−1 where ◦ is the composition of functions.

Two functions g : C ∪ {∞} → C ∪ {∞} , g : C ∪ {∞} → C ∪ {∞} are linearly
similar (denoted by g ∼ g) if there exists a (complex) linear fractional transformation
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f = ax+b
cx+d

,

∣∣∣∣ a b
c d

∣∣∣∣ 6= 0, such that g = f ◦ g ◦ f−1. Also, two functions g : C ∪ {∞} →

C ∪ {∞} , g : C ∪ {∞} → C ∪ {∞} are very linearly similar (denoted by g ≈ g) if there
exists a (complex) linear transformation f = ax + b, a 6= 0, such that g = f ◦ g ◦ f−1. Of
course, both ∼ and ≈ are equivalence relations.

Theorem 3 states necessary and sufficient conditions so that two (normal) rational quadrat-
ics g and g are linearly similar.

The two invariants that are used in theorem 3 were heuristically derived and were proved
by a computer. We know of no way to derive these invariants by mathematical logic, and
we know of no way to prove them without using a computer. The same heuristic thinking
generates at least a few analogous invariants for higher degree rational functions, and these
invariants would soon be unprovable by any computer. So the unknown at least for us far
exceeds what we know. The good news for the reader is that the invariants are powerful
enough to make this paper a rather easy paper to read.

3 Computing the Linear Fractional Transformations of

RQ’s

It is convenient to consider two cases for the linear fractional transformation of rational
quadratics (RQ’s).

Case (a). ax+b
x+d

◦ Ax2+Bx+C
Hx2+Dx+E

◦ b−dx
x−a

where

∣∣∣∣ a b
1 d

∣∣∣∣ 6= 0 and
(

ax+b
x+d

)−1
= b−dx

x−a
.

Case (b).
(

x
a
− b

a

)
◦ Ax2+Bx+C

Hx2+Dx+E
◦ (ax + b) where a 6= 0 and (ax + b)−1 = x

a
− b

a
.

We also observe that ax + b = lim
t→∞

atx+bt
x+t

.

Case (a). By straight forward calculations we compute ax+b
x+d

◦ Ax2+Bx+C
Hx2+Dx+E

◦ b−dx
x−a

= Ax2+Bx+C
Hx2+Dx+E

where A, B, C, H,D, E are defined as follows. Also, from A and D we define the functions
F, G, F , G.

A = a [Ad2 −Bd + C] + b [Hd2 −Dd + E] = aF (d) + bG (d) .
B = a2 [Bd− 2C] + ab [(D − 2A) d + B − 2E] + b2 [−2Hd + D] .
C = a3C + a2b [E −B] + ab2 [A−D] + b3H.
H = Hd3 + [A−D] d2 + [E −B] d + C.
D = a [Dd2 + (B − 2E) d− 2C] + b [−2Hd2 + (D − 2A) d + B] = aF (d) + bG (d) .
E = a2 [Ed + C]− ab [Dd + B] + b2 [Hd + A] .
Observe that we are defining A = aF (d)+bG (d) and D = aF (d)+bG (d). Also, observe

that H (d) is a function of d only.
The following lemma for case a is easy to prove.
Lemma 1. (1) F (d) + dG (d) = −2H (d), (2) F (d) + dG (d) = H (d) .

Case (b).
(

x
a
− b

a

)
◦ Ax2+Bx+C

Hx2+Dx+E
◦ (ax + b) = Ax2+Bx+C

Hx2+Dx+E

=
[Aa2−Ha2b]x2+[Ba+(2A−D)ab−2Hab2]x+[−Hb3+(A−D)b2+(B−E)b+C]

Ha3x2+[2Ha2b+Da2]x+[Hab2+Dab+Ea]
.
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4 Two Invariants of RQ’s Under Linear Fractional Trans-

formations

We proceed by analogy with the following.
By calculation we see that

ax + b

x + d
◦ Ax + B

Cx + D
◦ b− dx

x− a
=

Ax + B

Cx + D

=
[Ba− Aad + Db− Cbd] x + [Aab−Ba2 + Cb2 −Dab]

[B − Ad + Dd− Cd2] x + [Ab−Ba + Cbd−Dad]
.

An invariant of Ax+B
Cx+D

under this linear fractional transformation is A2+2BC+D2

AD−BC
and this

can be easily verified by hand and by showing that A2+2BC+D2

AD−BC
= A

2
+2BC+D

2

AD−BC
. This invariant

is also equivalent to the invariant A2+2BC+D2

AD−BC
− 2 = (A−D)2+4BC

AD−BC
.

The last invariant equals the discriminant of C (d) = −Cd2 + (D − A) d + B divided

by ρ (Ax + B, Cx + D) =

∣∣∣∣ A B
C D

∣∣∣∣ where ρ (Ax + B, Cx + D) is the resultant of the two

polynomials Ax + B, Cx + D. We will use the analogy of this observation to deal with
rational quadratics. In general the resultant ρ (P, Q) of two polynomials P, Q is a standard
determinant, p.99, [1], which gives by its zero or non-zero value the necessary and sufficient
conditions so that P and Q have no common roots.

Also, the discriminant of a polynomial P is ρ (P, P ′) and it is the determinant that
likewise gives the necessary and sufficient conditions so that P has no repeated roots.

We now proceed totally by analogy to heuristically find two invariants for rational

quadratics under the linear fractional transformation g = ax+b
cx+d

◦ g ◦
(

ax+b
cx+d

)−1
.

It is possible to use any of the six case a, section 3 definitions A, B, C, H,D, E in an
analogous way to derive these two invariants.

However, we will use only H (d) and D = aF (d) + bG (d) in heuristically deriving these
two invariants since it is easy for us to explain what they mean. Using A, B, C, E will likewise
lead to these same two invariants.

Suppose that H 6= 0. We observe that a root d of H (d) must be used in ax+b
x+d

if we wish

to transform Ax2+Bx+C
Hx2+Dx+E

∼ Ax2+Bx+C
Dx+E

by case a. This is because a root d of H (d) will force

H (d) = 0. Thus, the information on whether any of the roots of H (d) repeat is probably
invariant information under linear fractional transformation and we need to look at this.
Also, the fact that Ax2 + Bx + C and Hx2 + Dx + E have no roots in common is probably
another piece of invariant information that we need to look at.

Finally, if F (d) and G (d) have any root d in common, then since−2H (d) = F (d)+dG (d)
we know that H (d) = 0. Thus, we can use this common root of F (d) , G (d) , H (d) to

transform Ax2+Bx+C
Hx2+Dx+E

∼ A
E
x2 + B

E
x + C

E
which is a polynomial.

Therefore, we also need to look at whether F (d) and G (d) have any root d in common.
We heuristically believe that the above information is the glue that holds the transformation
invariants together.

We now use this information to conjecture two invariants for rational quadratics under
linear fractional transformation.
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We define invariant 1: θ =
ρ(H(d),H

′
(d))

ρ(Ax2+Bx+C,Hx2+Dx+E)
and

invariant 2: φ = ρ(F (d),G(d))
ρ(Ax2+Bx+C,Hx2+Dx+E)

.

Now ρ (Ax2 + Bx + C, Hx2 + Dx + E) =

∣∣∣∣∣∣∣∣
A B C 0
0 A B C
H D E 0
0 H D E

∣∣∣∣∣∣∣∣
= (AE − CH)2+(BE − CD) (BH − AD). See p.99, [1]. When (A, H) 6= (0, 0) this resultant
will always give the necessary and sufficient conditions so that Ax2+Bx+C and Hx2+Dx+E
have no common roots. This includes all degenerate cases including the extreme case where
one of (A, B) = (0, 0), or (H, D) = (0, 0).

Using this formula we can now easily compute

ρ (F (d) , G (d)) = ρ
(
Dd2 + (B − 2E) d− 2C,−2Hd2 + (D − 2A) d + B

)
= (BD − 4CH)2

+
[
B2 − 2BE + 2CD − 4AC

] [
−D2 + 2AD − 2BH + 4EH

]
.

Now the standard discriminant ρ (P (x) , P ′ (x)) of the cubic P (x) = a0x
3 + a1x

2 + a2x + a3

is ρ (P, P ′) = −27a2
0a

2
3 + 18a0a1a2a3 − 4a3

1a3 − 4a0a
3
2 + a2

1a
2
2. See p.117, [1].

Since H (d) = Hd3+(A−D) d2+(E −B) d+C we have ρ
(
H (d) , H

′
(d)

)
= −27H2C2+

18H (A−D) (E −B) C − 4 (A−D)3 C − 4H (E −B)3 + (A−D)2 (E −B)2 .
Therefore, we are conjecturing that the following are two invariants of the given RQ

under linear fractional transformation.
Invariant 1:

θ =
−27H2C2 + 18H (A−D) (E −B) C − 4 (A−D)3 C − 4H (E −B)3 + (A−D)2 (E −B)2

(AE − CH)2 + (BE − CD) (BH − AD)
.

Invariant 2:

φ =
(BD − 4CH)2 + [B2 − 2BE + 2CD − 4AC] [−D2 + 2AD − 2BH + 4EH]

(AE − CD)2 + (BE − CD) (BH − AD)
.

Therefore, θ and φ must remain unchanged when we substitute A, B, . . . , H for A, B, . . . , H
using either case a or case b of section 3.

Prof. Ben Klein, Davidson College, Davidson, N.C., has verified both of these invariants
using the Mathematica software.

Also, he has verified that in case a the common factor involving a, b, d that appears in both

the numerator and denominator of each of the two invariants is

∣∣∣∣ a b
1 d

∣∣∣∣6. Also, we observe

that case b of section 3 can be considered a special case of case a since ax + b = lim
t→∞

atx+bt
x+t

.

Since

∣∣∣∣ a b
1 d

∣∣∣∣ 6= 0 and

∣∣∣∣ a b
1 d

∣∣∣∣6 is cancelled out of both the numerator and denominator

of θ and φ, we see that it is impossible for a degeneracy 0
0

to ever appear in θ or φ as we

vary a, b, d in case a subject to

∣∣∣∣ a b
1 d

∣∣∣∣ 6= 0. It is also true in case b.
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(Note also the following information).
Since we assume that Ax2 + Bx + C and Hx2 + Dx + E have no roots in common, it

will always be true that Ax2 + Bx + C and Hx2 + Dx + E have no roots in common when
Ax2+Bx+C
Hx2+Dx+E

∼ Ax2+Bx+C
Hx2+Dx+E

.

Therefore, since (A, H) 6= (0, 0)
(
A, H

)
6= (0, 0) , we know that

ρ (Ax2 + Bx + C, Hx2 + Dx + E) 6= 0 and ρ
(
Ax2 + Bx + C, Hx2 + Dx + E

)
6= 0. There-

fore, the denominator of both θ and φ is never 0 as we vary a, b, d in case a subject to∣∣∣∣ a b
1 d

∣∣∣∣ 6= 0, and this fact will include all degenerate cases. It is also true in case b. For

simplicity in this paper we will often assume that θ 6= 0 and we call the RQ normal.

But θ 6= 0 implies in case (a) that ρ
(
H (d) , H

′
(d)

)
6= 0. Also, from the definition of

θ this implies that it is impossible for both H = 0 and A − D = 0. Thus, in case (a),
H (d) = Hd3 + (A−D) d2 + (E −B) d + C is a polynomial of at least degree 2.

Also, if H (d) is of degree 2 and θ 6= 0, then ρ
(
H (d) , H

′
(d)

)
= −4 (A−D)3 C +

(A−D)2 (E −B)2 = (A−D)2 [
(E −B)2 − 4 (A−D) C

]
6= 0 and (E −B)2−4 (A−D) C 6=

0. This implies that the two roots of H (d) are unequal. In general the two invariants θ, φ
provide the same information for all degenerate cases.

Definition 1. If Ax2+Bx+C
Hx2+Dx+E

is a rational quadratic, then the signature of this RQ is
(θ, φ) .

Definition 2. A rational quadratic Q(x) is said to be normal if the signature (θ, φ) of
Q(x) satisfies θ 6= 0.

The rest of this paper is devoted mainly to proving theorems 1,2,3.
Theorem 1. A rational quadratic Q having a signature (θ, φ) is linearly similar to a

rational quadratic polynomial P if and only if (θ, φ) = (θ, 0) .
Theorem 2. Any normal rational quadratic Q is linearly similar to a normal rational

quadratic Q of the form Q (x) = Ax + B + 1
x

where A 6= 0.
Theorem 3. Two normal rational quadratics Q, Q′ are linearly similar if and only if Q

and Q′ have the same signature (θ, φ) , θ 6= 0.

5 Proving Theorem 1 and Related Lemmas

Lemma 2. The signature of the rational quadratic polynomial Ax2 + Bx + C, A 6= 0, is
(θ, φ) =

(
(B − 1)2 − 4AC, 0

)
.

Proof. Using H = D = 0, E = 1 we have

θ =
−4A3C + A2 (1−B)2

A2

= −4AC + (1−B)2 .

Also, φ = 0
A2 = 0.

Theorem 1. Suppose Ax2+Bx+C
Hx2+Dx+E

is a RQ having a signature (θ, φ) .

Then ∃ a rational quadratic polynomial Ax2 + Bx + C, A 6= 0, such that Ax2+Bx+C
Hx2+Dx+E

∼
Ax2 + Bx + C if and only if (θ, φ) = (θ, 0) .

5



Proof. Since the signature (θ, φ) of a RQ is invariant under linear fractional transfor-
mation, from Lemma 2, φ = 0 is necessary for a RQ to be linearly similar to a rational
quadratic polynomial. Therefore, suppose φ = 0 for Ax2+Bx+C

Hx2+Dx+E
.

We may assume (H, D) 6= (0, 0). Since the denominator of φ is never 0 and since the
numerator of φ is ρ (F (d) , G (d)), we see that φ = 0 if and only if ρ (F (d) , G (d)) = 0 where
F (d) , G (d) are defined in case a, section 3, as D = aF (d) + bG (d). Since (H, D) 6= (0, 0)
we know that ρ (F (d) , G (d)) = 0 implies that F (d) , G (d) have a common root d. From
Lemma 1, F (d) + dG (d) = −2H (d). Therefore, F (d) = G (d) = H (d) = 0. Using this

d in case a of section 3 with ax+b
x+d

where

∣∣∣∣ a b
1 d

∣∣∣∣ 6= 0, we have Ax2+Bx+C
Hx2+Dx+E

∼ Ax2+Bx+C
Hx2+Dx+E

=

Ax2+Bx+C
0x2+0x+E

= A
E
x2 + B

E
x + C

E
.

Of course, A 6= 0, E 6= 0 since Ax2+Bx+C
E

must be a RQ. Also, note that H = D =

0, A · E = 0 implies
(
AE − CH

)2
+

(
BE − CD

) (
BH − AD

)
= 0, which is impossible.

Lemma 3. Two rational quadratic polynomials Ax2 + Bx + C and Ax2 + Bx + C are
very linearly similar (i.e. Ax2 + Bx + C ≈ Ax2 + Bx + C) if and only if they have the same

signature
(
(B − 1)2 − 4AC, 0

)
=

((
B − 1

)2 − 4AC, 0
)

.

Note 1. Of course, this implies that two RQ polynomials P, P are linearly similar if and
only if they have the same signature. Thus, two RQ polynomials P, P are linearly similar if
and only if they are very linearly similar.

Proof of Lemma 3. Let us assume that Ax2+Bx+C, A 6= 0, and Ax2+Bx+C, A 6= 0,
have the same signature (θ, φ) = (θ, 0) .

Using case b, section 3 with ax + b, a 6= 0, we have

Ax2 + Bx + C =
Ax2 + Bx + C

0x2 + 0x + 1
∼ Aa2x2 + (Ba + 2Aab) x + Ab2 + (B − 1) b + C

0 · x2 + 0 · x + 1 · a

= Aax2 + (B + 2Ab) x +
Ab2 + (B − 1) b + C

a
.

Now, Aa = A, B+2Ab = B defines a 6= 0 and b. Since the signature (θ, φ) = (θ, 0) is invariant
under linear fractional transformation and since A 6= 0, A 6= 0 we know that it is automati-

cally true that Ab2+(B−1)b+C
a

= C since A, B and the signature (θ, φ) =
((

B − 1
)2 − 4AC, 0

)
of Ax2 + Bx + C will uniquely determine C.

Corollary 1. Suppose Ax2+Bx+C
Hx2+Dx+E

and Ax2+Bx+C
Hx2+Dx+E

are two RQ’s having the same signature

(θ, φ) = (θ, 0). Then Ax2+Bx+C
Hx2+Dx+E

∼ Ax2+Bx+C
Hx2+Dx+E

.
Proof. Follows from Theorem 1, Lemma 3, Note 1 and the fact that ∼ is an equivalence

relation.

6 Computing the signature of Ax2+Bx+1
x , A 6= 0.

We first compute the signature (θ, φ) of the RQ Ax2+Bx+1
x

, A 6= 0.

Then we compute all of the normal RQ’s Ax2+Bx+1
x

, A 6= 0, that have a given signature
(θ, φ), (where normality means that θ 6= 0).
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To compute the signature of Ax2+Bx+1
x

we use H = E = 0, C = D = 1. Therefore,

θ =
−4(A−1)

3
+(A−1)

2
B

2

A
.

Also, φ =
B

2
+

[
B

2
+2−4A

]
[−1+2A]

A
=

2AB
2−2(2A−1)

2

A
.

We now compute all normal Ax2+Bx+1
x

, A 6= 0, that have a given (θ, φ) , θ 6= 0. Since

θ 6= 0, we see that A 6= 1. Therefore, using the above formulas for θ and φ we have

(∗) B
2

=
θA + 4

(
A− 1

)3(
A− 1

)2 =
φA + 2

(
2A− 1

)2

2A
.

Also,

(∗∗) φA
3 − 2 (θ + φ− 1) A

2
+ (φ− 4) A + 2 = 0.

If (θ, φ) , θ 6= 0, is given them A, B is uniquely computed from (∗) and (∗∗). Note that
(∗∗) follows from (∗) since A 6= 0, A 6= 1.

Also, A = 0 and A = 1 do not solve (∗∗) since θ 6= 0,
Lemma 4. If the signature (θ, φ) of the normal RQ Ax2+Bx+C

Hx2+Dx+E
satisfies θ 6= 0, φ = 0,

then Ax2+Bx+C
Hx2+Dx+E

∼ Ax2+Bx+1
x

where A, satisfies (θ − 1) A
2
+ 2A− 1 = 0 and B = ±(2A−1)√

A
.

Proof. From (∗), (∗∗) we know that Ax2+Bx+1
x

has the same signature (θ, φ) , θ 6= 0, φ = 0

as the given RQ Ax2+Bx+C
Hx2+Dx+E

.

Therefore, from Corollary 1, Ax2+Bx+C
Hx2+Dx+E

∼ Ax2+Bx+1
x

.

7 Proving Theorem 2

Since Lemma 4 took care of Theorem 2 for the easy case where (θ, φ) satisfies θ 6= 0, φ = 0,
we now assume that θ 6= 0, φ 6= 0.

Lemma 5. If the signature (θ, φ) of the normal RQ Ax2+Bx+C
Dx+E

, where A 6= 0, satisfies

θ 6= 0, φ 6= 0 then D 6= 0 and ∃B∗ ∈ C such that Ax2+Bx+C
Dx+E

∼ A
D

x + B∗ + 1
x
.

Proof. Obviously D 6= 0 since the signature (θ, φ) of Ax2+Bx+C
E

would be (θ, φ) = (θ, 0) .

We now use case b of section 3 (where a 6= 0) with H = 0. Therefore, Ax2+Bx+C
Dx+E

∼
Ax2+Bx+C

Dx+E
where A = Aa2, D = Da2, E = a (Db + E). Since D 6= 0 we can define b so that

Db + E = 0 which gives Ax2+Bx+C
Dx+E

∼ Aa2x2+Bx+C
Da2x

.

Since Aa2x2+Bx+C
Da2x

is a RQ we see that C 6= 0. Therefore, since D 6= 0, C 6= 0 we can

define a so that Da2 = C where a 6= 0. Therefore, Ax2+Bx+C
Dx+E

∼ Aa2x2+Bx+C
Da2x

= A
D

x + B
Da2 + 1

x
.

Lemma 6. If the signature (θ, φ) of the normal RQ Ax2+Bx+C
Hx2+Dx+E

satisfies θ 6= 0, φ = 0,

then ∃ a normal RQ Ax2+Bx+C
Dx+E

, A 6= 0, D 6= 0, such that Ax2+Bx+C
Hx2+Dx+E

∼ Ax2+Bx+C
Dx+E

.

Note 2. Of course, A 6= 0 and from Lemma 5, D 6= 0.
Proof. Since (θ, φ) for Ax2+Bx+C

Hx2+Dx+E
satisfies φ 6= 0, we know from Lemma 2 that it is

impossible for both H = 0 and D = 0 to be true. Therefore, we can assume that H 6= 0
since if H = 0 there is nothing to prove.
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Using case a of section 3 with ax+b
x+d

where H (d) = 0 and

∣∣∣∣ a b
1 d

∣∣∣∣ 6= 0, we have Ax2+Bx+C
Hx2+Dx+E

∼
Ax2+Bx+C

Dx+E
where A, B, C, H (d) = 0, D, E are defined in case a.

Now if D = 0 we would have the signature of Ax2+Bx+C
Dx+E

satisfying (θ, φ) = (θ, 0) which is

a contradiction. Therefore, D 6= 0 and also A 6= 0 since Ax2+Bx+C
Dx+E

is a rational quadratic.

Theorem 2. Any normal rational quadratic Q is linearly similar to a normal RQ Q of
the form Q = Ax + B + 1

x
where A 6= 0.

Proof. This follows from Lemmas 4, 5, 6.

8 Solving (∗∗) of Section 6 when all of the Roots are

Equal

Lemma 7. If (θ, φ) satisfies θ 6= 0, φ 6= 0, then the three roots of (∗∗), section 6, are all
equal if and only if (θ, φ) = (−27, 16) and when (θ, φ) = (−27, 16) the three equal roots of
(∗∗) are

{
−1

2
,−1

2
,−1

2

}
.

Proof. Using x for A, the 3 roots of (∗∗) are equal if and only if ∃r ∈ C such that

x3 − 2(θ+φ−1)
φ

x2 +
(

φ−4
φ

)
x + 2

φ
= (x− r)3 = x3 − 3rx2 + 3r2x− r3.

Of course, r 6= 0. Therefore, φ 6= 4.
Now r3 = −2

φ
, r2 = φ−4

3φ
.

Therefore, r = r3

r2 = −2
φ

(
3φ

φ−4

)
= −6

φ−4
.

Therefore,
(
−6
φ−4

)2

= φ−4
3φ

.

Therefore, φ3 − 12φ2 − 60φ− 64 = (φ + 2)2 (φ− 16) = 0.
Therefore, φ = −2, φ = 16.
(a) φ = 16 implies r = −6

φ−4
= −1

2
.

Also, −3r = −2(θ+φ−1)
φ

implies θ = −27.

(b) φ = −2 implies r = −6
φ−4

= 1.

Also, −3r = −2(θ+φ−1)
φ

implies θ = 0 which contradicts the hypothesis.

Note 3. When θ = −27, φ = 16, the solution
(
A, B

)
to (∗) , (∗∗) of Section 6 is

(
A, B

)
=(

−1
2
, 0

)
.

9 Proving Theorem 3

Lemma 8. If A 6= 0, then Ax2+Bx+1
x

∼ Ax2−Bx+1
x

.

Proof. Using ax+b = −x+0 with case b of Section 3 we have Ax2+Bx+1
x

∼ A(−1)2x2+B(−1)x+1

(−1)2x
=

Ax2−Bx+1
x

Theorem 3. Two normal rational quadratics Q,Q′ are linearly similar if and only if Q
and Q′ have the same signature (θ, φ) .
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Proof. Of course, normality is equivalent to θ 6= 0. Also, if Q ∼ Q′ then Q and
Q′ must have the same signature (θ, φ) since (θ, φ) is an invariant under linear fractional
transformation.

Also, from Corollary 1, if φ = 0 then Q ∼ Q′ if and only if Q and Q′ have the same
signature (θ, φ) = (θ, 0) .

Therefore, we now assume that Q and Q′ have the same signature (θ, φ) where θ 6= 0, φ 6=
0 and we show that Q ∼ Q′. From Theorem 2 we know that Q and Q′ are each linearly
similar to normal RQ’s of the form Q ∼ Ax+B+ 1

x
, Q′ ∼ A∗x+B∗+ 1

x
where A 6= 0, A∗ 6= 0.

Now if (θ, φ) = (−27, 16) then from Lemma 7 and Note 3 we know that Ax + B + 1
x

=
A∗x + B∗ + 1

x
= −1

2
x + 1

x
.

Therefore, Q ∼ Q′ when (θ, φ) = (−27, 16) .
Let us now assume that (θ, φ) 6= (−27, 16) .
From Lemma 7 we know that the equation (∗∗) of Section 6 must have exactly two or

exactly three distinct roots which we call A1, A2 or A1, A2, A3. Therefore, there are exactly
two or exactly three RQ’s of the form Aix ± Bi + 1

x
, where i ∈ {1, 2} or i ∈ {1, 2, 3}, that

have this signature (θ, φ). Of course, by Lemma 8, Aix + Bi + 1
x
∼ Aix−Bi + 1

x
.

We now show that any Ax+B+ 1
x
, A 6= 0, having a signature (θ, φ) , θ 6= 0, φ 6= 0, (θ, φ) 6=

(−27, 16) is linearly similar to at least one other Ax+B + 1
x
, A 6= 0, where A 6= A. This will

imply that each of Aix ± Bi + 1
x
, i ∈ {1, 2} or i ∈ {1, 2, 3}, is linearly similar to all of the

others and this will imply that Q ∼ Q′ which finishes the proof.
If we now use the case (a) Section 3 transformation with Ax2+Bx+1

x
where A = A, B =

B, C = D = 1, H = E = 0, we have Ax2+Bx+1
x

∼ Ax2+Bx+C
Hx2+Dx+E

where A = a [Ad2 −Bd + 1] −
bd, H = [A− 1] d2 −Bd + 1 and D = a [d2 + Bd− 2] + b [(1− 2A) d + B] .

Since θ 6= 0, we know from section 6 that A 6= 1. Letting a = 1, b = 0 we have
A = Ad2 −Bd + 1, H = (A− 1) d2 −Bd + 1 and D = d2 + Bd− 2.

Now since θ 6= 0 we know from the definition of the numerator of θ that H (d) must have

two distinct roots d1 6= d2. Also, d1 6= 0, d2 6= 0. Therefore,

∣∣∣∣ a b
1 d

∣∣∣∣ =

∣∣∣∣ 1 0
1 d

∣∣∣∣ 6= 0.

Now H (d) = 0 implies A = d2 and D = Ad2 − 1.

Therefore, (∗ ∗ ∗) Ax2+Bx+1
x

∼ d2
i x2+Bix+Ci

(Ad2
i−1)x+Ei

where i ∈ {1, 2} with d1 6= d2, d1 6= 0, d2 6= 0.

Since the signature (θ, φ) of Ax2+Bx+1
x

satisfies φ 6= 0 we know that Ax2+Bx+1
x

is not linearly
similar to a rational quadratic polynomial. Therefore, Ad2 − 1 6= 0 when d ∈ {d1, d2}. Now

from Lemma 5
d2

i x2+Bix+Ci

(Ad2
i−1)x+Ei

∼ d2
i x

Ad2
i−1

+ B∗
i + 1

x
where di ∈ {d1, d2}.

Now if d2
1 6= d2

2 then
d2
1

Ad2
1−1

6= d2
2

Ad2
2−1

and this finishes the proof.

Therefore, let us assume that d2
1 = d2

2. Of course, this is true if and only if B = 0 and
when B = 0 the roots of H (d) satisfy d2 = 1

1−A
.

Using (∗ ∗ ∗) the proof is complete if we can show that A 6= d2

Ad2−1
when d2 = 1

1−A
. Now

A = d2

Ad2−1
is true if and only if A = 1

2A−1
which is equivalent to (2A + 1) (A− 1) = 0. From

Section 6 we know that A = 1 implies θ = 0, a contradiction. Therefore, suppose A = −1
2
.

Since B = 0 we see from Section 6 that θ =
−4(− 1

2
−1)

3

−1
2

= −27 and φ =
−2[2(−1

2 )−1]
2

− 1
2

= 16 and

this is also a contradiction.
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10 Some Applications

Let us define f (x) = 1√
m

tan x, g (x) = 2x + tan−1 (
√

mc) , f−1 (x) = tan−1 (
√

mx) .

Also, g (x) = f (x) ◦ g (x) ◦ f−1 (x) .
By straightforward calculations we see that g (x) = −cmx2+2x+c

−mx2−2cmx+1
and therefore we are

able to compute (g (x))n by (g (x))n = f (x) ◦ [2x + tan−1 (
√

mc)]
n ◦ f−1 (x) .

We might think for a moment that we have accomplished something of significance.
However, a calculation shows that the signature of g (x) is the following since A = −cm, B =
2, C = c, H = −m, D = −2cm, E = 1.

θ =
−27m2c2 + 18 (−m) (cm) (−1) c− 4 (cm)3 c + 4m (−1)3 + (cm)2 (−1)2

(−cm + cm)2 + (2 + 2c2m) (−2m− 2c2m2)

=
−9m2c2 − 4m3c4 − 4m + m2c2

−4 (1 + mc2) (m + m2c2)

=
−8m2c2 − 4m3c4 − 4m

−4m (1 + mc2)2

=
m2c4 + 2mc2 + 1

(1 + mc2)2 = 1.

Also, by similar calculations we see that φ = 0. Therefore, since the signature of x2 is

also (θ, φ) = (1, 0), we see that g (x) = −cmx2+2x+c
−mx2−2cmx+1

∼ x2. Of course,
[
−cmx2+2x+c
−mx2−2cmx+1

]n

∼
(x2)

n
= x2 ◦ x2 ◦ . . . ◦ x2 and the recursion xn+1 = g (xn) where xn = gn (x0) can be easily

solved. The reader might like to compute the signatures of some standard RQ’s such as
cos (2 cos−1 x) = 2x2−1, tanh

(
2 tanh−1 x

)
= 2x

1+x2 , coth
(
2 coth−1 x

)
= x2+1

2x
, cot (2 cot−1 x) =

x2−1
2x

, tan(2 tan−1 x) = 2x
1−x2 .

We note that if Ax2 + Bx + C, A 6= 0, is any rational quadratic polynomial then there
exists a unique complex number C∗ such that Ax2 + Bx + C ∼ x2 + C∗. Also, the reader

might like to show that (a+c)x2+2mx+cm
x2+2cx+(m−ac)

∼ x2+s
2x−t

∼ x2 and Ax2−2Bx+C
x2−2Ax+B

∼ x2−2rx+t
−2x+r

∼ 1
x2 .

11 Discussion

Using the same basic heuristic techniques that we used in this paper it appears fairly easy
to believe that we could in general compute at least some of the invariants for the following
general linear fractional transformations.

ax+b
x+d

◦
∑n

i=0 aix
i∑n

i=0 bixi ◦ b−dx
x−a

=
∑n

i=0 aix
i∑n

i=0 bixi . However, it would quickly become impractical to try

to prove that the proposed invariants will actually work using a computer. Also, since there
are only three degrees of freedom in ax+b

x+d
, it hardly seems worth the effort to go too high

even if the invariants could be verified.
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