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Abstract Each of n teams numbered 1, 2, · · · , n play each of the other n− 1 teams

exactly one time for a total of
(

n
2

)
= n(n − 1)/2 games. Each game produces a win for

one team and a loss for the other team. Define (wi, li), i = 1, 2, · · · , n, to be the win-loss

records for the teams. That is, team i, i = 1, 2, · · · , n, wins wi games and loses li games

where wi + li = n− 1. Of course,
n∑

i=1

wi =
n∑

i=1

li = n(n−1)
2

. Suppose (wi, li) , i = 1, 2, · · · , n,

are arbitrarily specified win-loss records for the teams 1, 2, · · · , n subject only to the

conditions 0 ≤ wi, 0 ≤ li, wi + li = n − 1 and
n∑

i=1

wi =
n∑

i=1

li = n(n−1)
2

. In this paper we

prove necessary and sufficient conditions that (wi, li) , i = 1, 2, · · · , n, must satisfy so that

(wi, li) , i = 1, 2, · · · , n, is realizable in a tournament.

In section 1 we find necessary conditions on the win sequence wi. In sections 2

and 3, we prove that these conditions are also sufficient. Our inductive proof gives a

short and simple algorithm for constructing a solution. Also this algorithm provides

alternate necessary and sufficient conditions since it works if and only if the (wi, li), i =

1, 2, . . . , n, is realizable. In section 4 we prove a fairly obvious equivalent set of necessary

and sufficient conditions on (wi, li) , i = 1, 2, · · · , n, and in section 5 we briefly discuss

extensions of the problem. In [2], Kemnitz and Dolff give an existential proof of our main

result. Note that the proof given here is constructive. Other related results can be found

in [4] and [1].

Section 1

In this section, we find necessary conditions on (wi, li) , i = 1, 2, · · · , n, in order that

it be realizable.
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Since 0 ≤ wi, 0 ≤ li, wi + li = n− 1, i = 1, 2, · · · , n, it is not necessary to specify both

wi and li. Therefore, we specify only the win records wi, i = 1, 2, · · · , n, subject to (1)

0 ≤ wi ≤ n− 1, and (2)
n∑

i=1

wi = n(n−1)
2

.

Therefore, if wi, i = 1, 2, · · · , n, are arbitrarily specified subject only to 0 ≤ wi ≤
n − 1,

n∑
i=1

wi = n(n−1)
2

, we wish to find necessary and sufficient conditions that wi, i =

1, 2, · · · , n, must satisfy in order to be realizable.

In graphical form, we are given the complete undirected graph Kn on n vertices

1, 2, · · · , n. This means that there is one undirected edge between each pair of distinct

vertices. The problem requires us to find necessary and sufficient conditions on wi, i =

1, 2, · · · , n, so that we can place a direction on each edge in such a way that for each

vertex i ∈ {1, 2, · · · , n}, the number of directed edges leaving vertex i equals wi

Necessary Conditions Suppose for 1 ≤ k ≤ n we choose any combination {n1, n2, · · · , nk}
of k teams from the collection of n teams. Now these k teams play

(
k
2

)
= k (k − 1) /2

games among themselves. Therefore, the total number of wins among themselves for

these k teams equals k (k − 1) /2. Also, each of the k team plays each of the n − k

remaining teams one time for a total of k (n− k) games. It follows that condition (3′)

below is a necessary condition.

(3′): For each 1 ≤ k ≤ n, any combination of k teams {n1, n2, · · · , nk} satisfy
k∑

i=1

wni
≤

k(k−1)
2

+ k (n− k) = k
2
(2n− k − 1) .

If we agree to write 0 ≤ w1 ≤ w2 ≤ · · ·wn ≤ n−1, then the above necessary condition

(3′) is equivalent to the following condition (3). (3): ∀k ∈ {1, 2, · · · , n} ,
n∑

n+1−k

wi ≤
k
2
(2n− k − 1) .

Note The following condition (3∗) is also obviously necessary. However, condition (3∗)

is not used in this paper, and indeed in section 5 we easily prove that condition (3∗) is

equivalent to condition (3′).

(3∗) ∀k ∈ {1, 2, · · · , n} ,∀ {n1, n2, · · · , nk} ⊆ {1, 2, · · · , n} , ck
2 = k(k−1)

2
≤

k∑
i=1

wni
.
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Section 2

In this section, we rewrite the necessary conditions on wi, i = 1, 2, · · · , n, developed

in section 1 and lay the groundwork for proving that these conditions are also sufficient.

Writing 0 ≤ w1 ≤ w2 ≤ · · · ≤ wn ≤ n − 1, this means that we prove the following

conditions (1), (2), (3) are both necessary and sufficient for wi, i = 1, 2, · · · , n, to be

realizable.

(1) 0 ≤ wi ≤ n− 1, i = 1, 2, · · · , n.

(2)
n∑

i=1

wi = n(n−1)
2

.

(3) ∀k ∈ {1, 2, · · · , n} ,
n∑

n+1−k

wi ≤ k
2
(2n− k − 1) .

Next, we use induction on n to prove that (1), (2), (3) are sufficient. As always we

write 0 ≤ w1 ≤ w2 ≤ · · · ≤ wn ≤ n− 1.

It is obvious that conditions (1), (2), and (3) are sufficient for n = 1, 2 teams. There-

fore, we use induction on n and suppose that the conditions are necessary and sufficient

for 1, 2, 3, · · · , n − 1 teams, where n − 1 ≥ 2. To show that the conditions 1,2, and

3 are sufficient for n teams, we focus our attention on team n. If wn ≤ n − 2, then

0 ≤ w1 ≤ w2 ≤ · · · ≤ wn ≤ n − 2 which implies 0 ≤ wi ≤ n − 2, i = 1, 2, · · · , n. There-

fore, each team i ∈ {1, 2, · · · , n} loses at least one game. Next, suppose wn = n − 1.

Using k = 2, we see that wn + wn−1 ≤ k
2
(2n− k − 1) = 2n− 3.

Therefore, wn−1 ≤ (2n− 3) − (n− 1) = n − 2. Therefore, 0 ≤ w1 ≤ w2 ≤ · · · ≤
wn−1 ≤ n−2 which means that ∀i ∈ {1, 2, · · · , n− 1} , wi ≤ n−2. This means that each

of the teams 1, 2, · · · , n− 1 loses at least one game.

We now show that each team i ∈ {2, 3, · · · , n} wins at least one game. If w2 ≥ 1, then

the conclusion is obvious since w2 ≤ w3 ≤ · · · ≤ wn. Therefore, suppose w1 = w2 = 0.

From (2),
n∑

i=1

wi =
n∑

i=3

wi = n
2

(n− 1) .

Using k = n−2 in (3), we see that
n∑

i=3

wi ≤ k
2
(2n− k − 1) =

(
n−2

2

)
(n + 1) < n

2
(n− 1)

which is a contradiction. Therefore, each team i ∈ {2, 3, · · · , n} wins at least one game.
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Let us now agree that team n wins a game against wn of the weakest teams. We use this

idea repeatedly in our inductive proof which gives a constructive algorithm.

Since 0 ≤ w1 ≤ w2 ≤ · · · ≤ wn−1 ≤ wn ≤ n − 1, this means that team n satisfies

the following condition (∗): team n beats teams 1, 2, 3, · · · , wn and loses against teams

wn + 1, wn + 2, wn + 3, · · · , n− 1.

We will slightly modify scheme (∗) in a moment after we first explain a small problem

that arises when we use (∗).

Of course, in graphical form, when team n wins against team i, i = 1, 2, · · · , n−1, we

draw a directed edge from n to i and when team n loses against team i, i = 1, 2, · · · , n−1,

we draw a directed edge from i to n. Let us now delete team n and its n − 1 wins and

losses from consideration. We now focus our attention on teams 1, 2, · · · , n − 1. We

define wi, i = 1, 2, · · · , n − 1, to be the wins of each team i from among the remaining

teams {1, 2, · · · , n− 1}. Of course, ∀i ∈ {1, 2, · · · , n− 1}, if team n beats team i then

wi = wi. On the other hand, if team i beats team n then wi = wi − 1. We now show

that wi, i = 1, . . . , n− 1 satisfy (1), (2), and (3).

Since 1 ≤ w2 ≤ w3 ≤ · · ·wn−1 ≤ n − 2, since 0 ≤ w1 ≤ w2 and since team n beats

team 1 making w1 = w1, it is obvious that (1) is true.

(1) 0 ≤ wi ≤ n− 2, i = 1, 2, · · · , n− 1.

We now show that (2) is also true.

(2)
n−1∑
i=1

wi = cn−1
2 = (n−1)(n−2)

2
.

To see this, observe that team n is involved in exactly n − 1 wins and losses. Also,

team n along with these n − 1 wins and losses have been deleted from considerations.

This gives
n−1∑
i=1

wi =

(
n∑

i=1

wi

)
− (n− 1) = cn

2 − (n− 1) = cn−1
2 .

We must now prove that condition (3) is satisfied for w1, w2, · · ·wn−1. Since we need

to have 0 ≤ w1 ≤ w2 ≤ · · · ≤ wn−1 ≤ n − 2, we face a slight problem with the scheme

(∗). In order to maintain 0 ≤ w1 ≤ w2 ≤ · · · ≤ wn−1 ≤ n − 2, we now slightly modify

(∗) as follows. This will still mean that team n beats wn of the weakest teams.
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Suppose team n beats wn teams where t ≤ wn ≤ k and wt−1 < wt = wt+1 = · · · =

wk < wk+1.

In order to keep w1 ≤ w2 ≤ · · · ≤ wn−1, we agree to use scheme (∗∗) in the place of

(∗). (∗∗): team n beats all of the teams 1, 2, · · · , t− 1 which is the same as in (∗) .

However, team n wins its remaining wn−(t− 1) = wn−t+1 games by beating wn−t+1

of the teams t, t + 1, t + 2, · · · , k− 1, k in the reverse order k, k− 1, k− 2, · · · , t + 1, t. Of

course, this means that team n beats the teams k + t− wn, k + t− wn + 1, · · · , k − 1, k

and loses to the teams t, t + 1, · · · , k + t − wn − 1. This modified scheme (∗∗) which

replaces scheme (∗) will guarantee that 0 ≤ w1 ≤ w2 ≤ · · · ≤ wn−1 ≤ n − 2. We now

state Definition 1 and prove Lemma 1.

Definition 1 Suppose team n beats θ of the teams n1, n2, · · · , nt where 0 ≤ θ ≤
wn, 0 ≤ θ ≤ t and {n1, n2, · · · , nt} ⊆ {1, 2, · · · , n− 1}. Then x = t− θ is called the skip

of team n with respect to {n1, n2, · · · , nt}. In other words, we say that team n skips over

x of the teams n1, n2, · · · , nt.

Lemma 1 As always, team n wins wn games against the teams 1, 2, · · · , n − 1. As

always, let us delete team n and as always let w1, w2, · · · , wn−1 be the number of games

that teams 1, 2, · · · , n− 1 win among themselves.

Suppose {n1, n2, · · · , nt} ⊆ {1, 2, · · · , n− 1} and suppose team n skips over x of the

teams {1, 2, · · · , n− 1} \ {n1, n2, · · · , nt} where, of course, 0 ≤ x ≤ n− 1− t.

Then

(
t∑

i=1

wni

)
+ x + wn =

(
t∑

i=1

wni

)
+ n− 1.

Proof. Let wn = w∗
n0

+ w∗
n1

where w∗
n0

is the number of the teams in the set

{1, 2, · · · , n− 1} \ {n1, n2, · · · , nt} that team n beats and w∗
n1

is the number of the teams

{n1, n2, · · · , nt} that team n beats. Of course, w∗
n0

+ x = n− 1− t since n− 1− t is the

number of elements in {1, 2, · · · , n− 1} \ {n1, n2, · · · , nt} . Also, since {n1, n2, · · · , nt} has

t elements, we see that

(
t∑

i=1

wni

)
+w∗

n1
=

(
t∑

i=1

wni

)
+ t, since

t∑
i=1

wni
−

t∑
i=1

wni
= t−wn1 .
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Therefore, (
t∑

i=1

wni

)
+ x + wn =(

t∑
i=1

wni

)
+ x + w∗

n0
+ w∗

n1
=[(

t∑
i=1

wni

)
+ w∗

n1

]
+
(
w∗

n0
+ x
)

=[(
t∑

i=1

wni

)
+ t

]
+ (n− 1− t) =

(
t∑

i=1

wni

)
+ n− 1.

Section 3

In this section, we finish the proof that the conditions on wi, i = 1, 2, · · · , n are

necessary and sufficient.

As before, we will let team n beat wn of the teams. Using the modified scheme (∗∗),
we are guaranteed that 0 ≤ w1 ≤ w2 ≤ · · · ≤ wn−1 ≤ n − 2 will be true after team n is

deleted. By induction, the proof is complete if we can prove (3).

(3) ∀k ∈ (1, 2, · · · , n− 1) ,
n−1∑
n−k

wi ≤ ck
2 + k (n− 1− k) = k

2
(2n− k − 3). Considering

k to be fixed; we now consider 3 cases.

Case 1 wn ≤ n− 1− k.

Case 2 wn ≥ n− k and skip ({1, 2, · · · , n− 1− k}) = 0.

Case 3 wn ≥ n− k and skip ({1, 2, · · · , n− 1− k}) ≥ 1.

We consider Case 2 separately from Case 3 so that the reader will gain more insight.

Case 1 Since 0 ≤ w1 ≤ w2 ≤ · · · ≤ wn ≤ n − 1 − k, we have
n−1∑
n−k

wi ≤
n−1∑
n−k

wi ≤

k (n− 1− k) ≤ ck
2 + k (n− 1− k), which is what we need to prove.

Case 2 By the inductive hypothesis, we know that (a)
n∑

n−k

wi =

(
n−1∑
n−k

wi

)
+ wn ≤
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ck+1
2 + (k + 1) (n− 1− k) =

(
k+1
2

)
(2n− k − 2) .

As always, we need to show that
n−1∑
n−k

wi ≤ ck
2 + k (n− 1− k) = k

2
(2n− k − 3) .

Now in Case 2, x = skip ({1, 2, · · · , n− 1− k}) = 0. Using Lemma 1 with x = 0, we

see that

(
n−1∑
n−k

wi

)
+0+wn =

(
n−1∑
n−k

wi

)
+(n− 1). Therefore, from (a)

(
n−1∑
n−k

wi

)
+n−1 ≤(

k+1
2

)
(2n− k − 2) .

Therefore,
n−1∑
n−k

wi ≤
(

k+1
2

)
(2n− k − 2)− (n− 1) = k

2
(2n− k − 3) .

Case 3 In Case 3, x = skip ({1, 2, · · · , n− 1− k}) ≥ 1, and also wn ≥ n− k.

Since wn ≥ n − k, it is fairly obvious from the way that scheme (∗∗) is defined that

the following equality-inequality must be true. This is the only way that team n can

skip x of the teams {1, 2, · · · , n− 1− k}. This equality-inequality does not tell and we

do not care precisely which x of the teams {1, 2, · · · , n− 1− k} team n skips.

0 ≤ x1 ≤ · · · ≤ xn−k−x−1 ≤ wn−k−x = wn−k−x+1 = · · · = wn−k−1 = wn−k

= wn−k+1 = · · · = wn−k+x−1 ≤ wn−k+x ≤ · · · ≤ wn−1.

Let us call wn−k−x = wn−k−x+1 = · · · = wn−k+x−1 = w.

As always, we again need to show that
n−1∑
n−k

wi ≤ ck
2 + k (n− 1− k) = k

2
(2n− k − 3) .

We now prove Lemma 2 which will allow us to prove this inequality almost exactly

as we did in Case 2 by simply substituting x for 0 in the case 2 proof.

Lemma 2 Suppose wn−k−x = · · · = wn−k−1 = wn−k = wn−k+1 = · · · = wn−k+x−1 = w.

Then
n∑

n−k

wi =

(
n−1∑
n−k

wi

)
+wn ≤ ck+1

2 +(k + 1) (n− k − 1)−x =
(

k+1
2

)
(2n− k − 2)−

x.

Proof. Let us suppose the conclusion is false. That is, let us assume that

(a)
n∑

n−k

wi ≥
(

k+1
2

)
(2n− k − 2)− x + 1.
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We show that (a) leads to a contradiction. By the inductive hypothesis, we know

that (
n∑

n−k

wi

)
+

(
n−k−1∑
n−k−x

wi

)

=

(
n∑

n−k

wi

)
+ xw ≤ ck+1+x

2 + (k + 1 + x) (n− k − 1− x)

=

(
k + 1 + x

2

)
(2n− k − x− 2) .

Using (a) with this inequality we see that (b) is true.

(b) xw ≤
(

k+1+x
2

)
(2n− k − x− 2)−

n∑
n−k

wi ≤
(

k+1+x
2

)
(2n− k − x− 2)−

(
k+1
2

)
(2n− k − 2)+

x− 1.

Observe that

(c)
n∑

n−k+x

wi ≤ ck−x+1
2 + (k − x + 1) (n− k + x− 1) =

(
k−x+1

2

)
(2n− k + x− 2) .

Using (b) and (c) we see that (d) is true.

(d)
n∑

n−k

wi =
n∑

n−k+x

wi +
n−k+x−1∑

n−k

wi

=

(
n∑

n−k+x

wi

)
+ xw ≤

(
k − x + 1

2

)
(2n− k + x− 2)

+

(
k + 1 + x

2

)
(2n− k − x− 2)−

(
k + 1

2

)
(2n− k − 2) + x− 1.

We now show that (a) and (d) are incompatible which proves that assumption (a)

must be false.

Therefore, we must show that the right expression in (d) is less than the right expres-

sion in (a) which is the following:
(

k−x+1
2

)
(2n− k + x− 2)+

(
k+1+x

2

)
(2n− k − x− 2)−(

k+1
2

)
(2n− k − 2) + x− 1 <

(
k+1
2

)
(2n− k − 2)− x + 1.
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By collecting like terms and then multiplying by 2, this is true if and only if

(k − x + 1) (2n− k + x− 2)+(k + 1 + x) (2n− k − x− 2)+4x < 2 (k + 1) (2n− k − 2)+

4.

Multiplying out, this is true if and only if[
2nk − 2nx + 2n− k2 + xk − k + xk − x2 + x− 2k + 2x− 2

]
+
[
2nk + 2n + 2nx− k2 − k − xk − xk − x− x2 − 2k − 2− 2x

]
+4x < 4nk + 4n− 2k2 − 2k − 4k − 4 + 4.

After simplifying the above inequality is equivalent to −2x2 +4x < 4 which is equivalent

to − (x− 1)2 < 1 which is always true. �

Lemma 2 now allows us to finish Case 3 almost exactly as we finished Case 2.

As always, we must prove that
n−1∑
n−k

wi ≤ ck
2 + k (n− 1− k) = k

2
(2n− k − 3). Since

x = skip ({1, 2, · · · , n− k − 1}), we know from Lemma 1 that

(
n−1∑
n−k

wi

)
+ x + wn =(

n−1∑
n−k

wi

)
+(n− 1). From Lemma 2 we know that

(
n−1∑
n−k

wi

)
+wn ≤

(
k+1
2

)
(2n− k − 2)−

x. Therefore,

(
n−1∑
n−k

wi

)
+ wn + x ≤

(
k+1
2

)
(2n− k − 2) which implies

(
n−1∑
n−k

wi

)
+

(n− 1) ≤
(

k+1
2

)
(2n− k − 2). Therefore,

(
n−1∑
n−k

wi

)
≤
(

k+1
2

)
(2n− k − 2) − (n− 1) =

k
2
(2n− k − 3).

This completes Case 3 which finishes the proof.

Section 4

In this section, we find equivalent necessary and sufficient conditions.

Lemma 3 Conditions (1), (2), (3′) of Section 1 are equivalent to (1), (2), (3∗).

(3∗) ∀k ∈ {1, 2, · · · , n}, ∀ combination of k teams Ik = {n1, n2, · · · , nk} ⊆ {1, 2, · · · , n},∑
i∈Ik

wi =
k∑

i=1

wni
≥ ck

2 = k(k−1)
2

.

Proof. We show that (1), (2), (3′)⇒(3∗). The proof that (1), (2), (3∗)⇒(3′) is similar
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and is left to the reader.

Consider Ic
k = {1, 2, · · · , n} \ {n1, n2, · · · , nk}.

Also, observe that cn−k
2 + ck

2 + k (n− k) = cn
2 .

Now from (2),
n∑

i=1

wi =
∑
i∈Ik

wi +
∑
i∈Ic

k

wi = cn
2 .

From (3′),
∑
i∈Ic

k

wi ≤ cn−k
2 + (n− k) k.

Therefore,
∑
i∈Ik

wi = cn
2 −

∑
i∈Ic

k

wi ≥ cn
2 −

[
cn−k
2 + (n− k) k

]
= ck

2.

Section 5

In this section we point to future directions.

An obvious generalization is to have n teams with each pair of teams playing exactly

k games together with each game producing a winner and a loser. We again ask whether

a given sequence of win-loss records is realizable. Another generalization is to allow any

game to produce one of 3 outcomes namely win, loss, tie. We then ask whether a given

sequence of win, loss, tie records is realizable. Another generalization is to have n teams

with each game involving 3 teams say. Also, each combination of 3 teams plays exactly

k games together. The possible outcome of a game can be defined in different ways. For

example, a game may always end with one winner and two losers, or a game may always

end with one team winning, one team losing and one team neither winning nor losing.

Thus the problem solved in this paper can be extended in many ways.
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