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1 Abstract

A special case of Poncelet’s Theorem states that if circle C2 lies inside of circle C1 and if a

convex n-polygon, n ≥ 3, or an n-star, n ≥ 5, is inscribed in C1 and circumscribed about

C2, then there exists a family of such n-polygons and n-stars. See [3] and [4].

Suppose C2 lies inside of C1 and R, r, are the radii of C1, C2 respectively and ρ is the

1



distance between the centers of C1, C2. For n ≥ 3 we give an algorithm that computes the

necessary and sufficient conditions on R, r, ρ, where R > r + |ρ| , r > 0, so that if we start

at any arbitrary point P on C1 and draw successive tangents to C2 (counterclockwise about

the center of C2) then we will return to P in exactly n-steps and not sooner. This will create

the above families of n-polygons and n-stars. The algorithm uses only rational operations.

2 Introduction

Jean-Victor Poncelet, born July 1, 1788, Metz, France–died December 22, 1867, Paris, was

a French mathematician and engineer who was one of the founders of modern projective

geometry. See [1] and [3]. As a lieutenant of engineers in 1812, he took part in Napoleon’s

Russian campaign, in which he was abandoned as dead at Krasnoy and imprisoned at Sara-

tov; he returned to France in 1814. During his imprisonment Poncelet studied projective

geometry and wrote Applications d´analyse et de géométrie, 2 vol. (1862–64; Applications

of Analysis and Geometry).

A special case of Poncelet’s Theorem states that if all points on circle C2 lie inside of

circle C1 and if a convex n-polygon, n ≥ 3, is inscribed in C1 and circumscribed about C2

then there exists a family of such n-polygons. The same thing is true when an n-star, n ≥ 5,

is inscribed in C1 and circumscribed about C2 and the n-star goes around the center of C2

exactly two times or exactly three times or exactly four times, etc. Each member of the

family can be constructed by starting at any arbitrary point P on C1 and drawing successive

tangents to C2 (counterclockwise to the center of C2) until after exactly n steps and not

sooner.
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Fig. 1. A Family of Quadrilaterals.

If R, r are the radii of C1, C2 respectively and ρ is the distance between the centers,

where R > r + |ρ| , r > 0, then Poncelet’s Theorem and physical reasoning indicates that if

R, ρ,R > |ρ| ≥ 0, are fixed, then r must be the same and unique for all n-polygons, n ≥ 3,

of our family and for all n-stars, n ≥ 5, of our family that go around the center of C2 exactly

two times, that go around the center of C2 exactly three times, etc. With R > |ρ| ≥ 0 being

fixed and r being a variable, we develop a rational algorithm for computing this relation

between R, r, ρ, R > r + |ρ| , r > 0, for all n ≥ 3. We do this by studying a very special
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case for C1, C2, P . We assume that C2 lies inside of C1 and we define C2 : x
2 + y2 = r2, C1 :

(x− ρ)2 + y2 = R2. We also assume that R, ρ are fixed where 0 ≤ |ρ| < R. Then we

compute the necessary and sufficient conditions on R, r, ρ where R > r + |ρ| , r > 0, so that

if we start at (x0, y0) = (r,−y1) =

(
r,−

√
R2 − (r − ρ)2

)
and draw tangents successively to

C2 (counterclockwise about the origin (0, 0)) then in exactly n ≥ 3 steps and not in fewer

than n steps we will return to (x0, y0) = (r,−y1) .

By Poncelet’s Theorem these conditions are also necessary and sufficient so that if we use

any arbitrary point P on C1 in the place of (x0, y0) = (r,−y1) and use the same construction

of tangents to C2 (counterclockwise about (0, 0)) then we will return to P in exactly n-

steps and never return to P in fewer than n-steps. Of course, for each fixed n ≥ 3, this

algorithm is dealing with the n-polygons and the n-stars together to generate one equation

P ∗
n (R, r, ρ) = 0 where P ∗

n is a polynomial. However, for each fixed n ≥ 3, if R, ρ,R > |ρ| ≥ 0,

are fixed and r is a variable and if the positive real r-roots of P ∗
n (R, r, ρ) = 0 that satisfy

0 < r < R − |ρ| are 0 < r1 < r2 < · · · < rk < R − |ρ|, then rk is the radius of C2, so

that we get an n-polygon that goes around (0, 0) exactly one time, rk−1 is the radius of C2

so that we get an n-star that goes around (0, 0) exactly two times, rk−2 is the radius of C2

so that we get an n-star that goes around (0, 0) exactly three times, etc. (Important: see

Section 3 for a slight correction to this statement.) We call the n-polygons, n ≥ 3 and the

n-stars, n ≥ 5, that we generate Poncelet n-polygons and Poncelet n-stars. They can also

be called the standard n-gons and the standard n-stars. It may be true that P ∗
n (R, r, ρ) = 0

has extraneous roots ri that lie outside of R > ri + |ρ| , ri > 0. Also, P ∗
n (R, r, ρ) = 0 might

repeat some of the roots ri. But we can eliminate this multiplicity by agreeing to write

P ∗
n (R, r, ρ) = 0 in the canonical form of comment 1.
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Suppose n ≥ 3 is fixed. In Section 3 we study exactly how many n-stars can exist and

exactly how many times each n-star goes around (0, 0). The list 0 < r1 < r2 < · · · < rk, R >

ri + |ρ| , ri > 0, includes exactly one ri for each n-star that can exist. We can see this fact

intuitively by letting R > |ρ| ≥ 0 be fixed and then letting r slowly decrease from r = R−|ρ|

to r = 0 and studying the action by using physical reasoning.

3 Initial Concepts

We first discuss what we mean by an n-star in this note. Suppose we draw a regular n-

gon where n ≥ 5 and number the vertices 1, 2, 3, · · · , n in counterclockwise order. For

each k ∈
{
1, 2, · · · , ⌊n

2
⌋
}

if (n, k) are relatively prime let us start at vertex 1 and draw

lines connecting (1, 1 + k) , (1 + k, 1 + 2k) , (1 + 2k, 1 + 3k) , (1 + 3k, 1 + 4k) , · · · where the

calculations use modulo n arithmetic. Since (n, k) are relatively prime, we will return to

vertex 1 in exactly n-steps and in no fewer than n-steps. In doing this we create an n-star

that goes around the center of the n-gon exactly k times. Thus, for the 7-gon we can create

7-stars that go around the center k = 1, k = 2 or k = 3 times where we consider the 7-gon

itself as a star.
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Fig. 2a. n = 7, k = 3
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Fig. 2b. n = 8, k = 3

For the 8-gon we can create 8-stars that go around the center k = 1 or k = 3 times where

we consider the 8-gon itself as a star.

Note 1 In this entire note, it is convenient to think of R, ρ,R > |ρ| ≥ 0, as constants and

r, where R > r + |ρ| , r > 0, as a variable. By doing this we can use single variable algebra

and single variable calculus.

Algorithm 1. Suppose P (R, r, ρ) = 0, Q (R, r, ρ) = 0 are two polynomial equations

(where r is the variable) and we wish to eliminate all r-variable traces of P (R, r, ρ) = 0 that

are embedded in Q (R, r, ρ) = 0 and leave the rest. The following algorithm does this and it

also explains exactly what we mean. (In comment 1 we mention possible overkill.)

1. First, compute Q1 = gcd (P,Q) and write Q = Q1 · Q′ where gcd denotes greatest

common divisor and Q1 is a polynomial in R, r, ρ. All calculations consider r the

variable.

2. Next, compute Q2 = gcd (P,Q′) where Q2 is a polynomial in R, r, ρ and write Q
′
=

Q2 ·Q′′ so that Q = Q1Q2Q
′′.

3. Next, compute Q3 = gcd
(
P,Q

′′)
where Q3 is a polynomial and write Q′′ = Q3 ·Q

′′′
so
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that Q = Q1Q2Q3Q
′′′
.

...

n. Last, compute Qn = gcd
(
P,Q(n−1)

)
where Qn is a polynomial and write Q(n−1) =

Qn ·Q(n) so that Q = Q1· Q2 · · ·Qn ·Q(n). Suppose now that gcd
(
P,Q(n)

)
= 1 . That

is, P,Q(n) are relatively prime in the variable r. We now define Q(n) to be the part (or

divisor) of Q that remains after we eliminate all traces of P in the variable r that are

embedded in Q.

Since we will always be writing the equation Q(n) = 0, we can also write Q(n) as a

polynomial in all of the variables R, r, ρ.

If we wish to eliminate all r-variable traces of several polynomials P1 (R, r, ρ) = 0, P2 (R, r, ρ) =

0, · · · , Pk (R, r, ρ) = 0 that are embedded in polynomial Q (R, r, ρ) = 0 and leave the rest we

first use the above algorithm with (P1, Q). Let Q∗ be the divisor of Q that remains after all

r-traces of P1 have been eliminated from Q.

We next use the algorithm with (P2, Q
∗), and let Q∗∗ be the divisor of Q∗ that remains

after all r-traces of P2 have been removed from Q∗. Then we use the algorithm with (P3, Q
∗∗)

and let Q∗∗∗ be the divisor of Q∗∗ that remains after all r-traces of P3 have been eliminated

from Q∗∗ .

We continue the algorithm with each P1, P2 · · ·Pk until we end up with Q∗∗∗···∗ where

Q∗∗∗···∗ is the divisor ofQ that remains after all r-traces of P1, P2, · · · , Pk have been eliminated

from Q.

Comment 1 In applying this algorithm to the problems in this note, from our experience

we believe that to eliminate all r-traces of a polynomial P (R, r, ρ) = 0 from a polynomial
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Q (R, r, ρ) = 0, then all we have to do is divide Q(R,r,ρ)
P (R,r,ρ)

= Q′ = Q(n) one time and Q′ = Q(n)

will automatically be the answer that we are seeking. However, only more practice will

tell us whether this is always true or not. As always, we let R, ρ be fixed and r be a

variable. Suppose a polynomial P (R, r, ρ) = 0 in the rational field is factored P (R, r, ρ) =

P k1
1 (R, r, ρ) · P k2

2 (R, r, ρ) · · ·P kn
n (R, r, ρ) where P1, P2, · · ·Pn are distinct polynomials (in

the rational field) in the variable r that are each irreducible in the rational field. Then by

algebra and calculus we can compute a polynomial P (R, r, a) =
P (R, r, ρ)

gcd (DrP, P )
= P1 (R, r, ρ) ·

P2 (R, r, ρ) · · ·Pn (R, r, ρ) . Dr is the r-variable derivative. We call P (R, r, ρ) the canonical

form of P (R, r, ρ). This polynomial P (R, r, ρ) = 0 will contain the exact same r-root

information as P (R, r, ρ) = 0 since they have the same r-roots but P (R, r, ρ) does not

repeat the r-roots. P (R, r, ρ) is all that we need. We do not have to compute P1, P2, . . . , Pk.

If we agree to write all of our polynomials in this canonical form P (R, r, ρ), then in this

note it becomes much more likely that Algorithm 1 can be carried out by the above single

division Q(R,r,ρ)
P (R,r,ρ)

= Q′ = Q(n). In any case, if we write all of our polynomials in the above

canonical form, Algorithm 1 can always be carried out in just one single step.

4 Analytic Machinery

As always, in this note C2 : x
2+ y2 = r2, C1 : (x− ρ)2+ y2 = R2 are the standard definitions

of two circles and C2 lies inside of C1. That is, R > r + |ρ| , r > 0. The origin (0, 0) is the

center of C2 and (ρ, 0) is the center of C1.
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••
(−R + ρ, 0) (0, 0)

•

mn

mn+1

(ρ, 0)
•
(R + ρ, 0)

•

•

•

C1 : (x− ρ)2 + y2 = R2

(xn−1, yn−1,mn−1)

(xn, yn,mn)

(xn+1, yn+1,mn+1)

C2 : x2 + y2 = r2

Fig. 3 The Standard Circles, C2 : x2 + y2 = r2 and C1 : (x− ρ)2 + y2 = R2

In Fig. 3 and throughout this paper, the reader may prefer to let ρ ≥ 0. Suppose

(xn−1, yn−1,mn−1) , (xn, yn,mn) , (xn+1, yn+1,mn+1) are drawn in Fig. 3, and suppose that

(xn−1, yn−1) , (xn, yn) , (xn+1, yn+1) are successive points on circle C1 and the tangent lines to

circle C2 in Fig. 3 are oriented counterclockwise about the origin (0, 0) as indicated by the

arrows. Also, mn,mn+1, · · · are the reciprocals of the slopes of the tangent lines in Fig. 3.

That is, mn = xn−xn−1

yn−yn−1
,mn+1 =

xn+1−xn

yn+1−yn
, · · · .

For each successive n, n + 1, the line between (xn, yn) and (xn+1, yn+1) can be defined
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parametrically by the equation (x, y) = (xn +mn+1t, yn + t) where t ∈ R is the parameter.

Using the elementary analytic geometry of the circle, we can easily derive the following

recursive equations (xn, yn,mn) → (xn+1, yn+1,mn+1) where (x0, y0,m0) is a given starting

point.

1. mn+1 =
2xnyn
y2n − r2

−mn.

2. xn+1 =
(−xn + 2ρ)m2

n+1 − 2ynmn+1 + xn

m2
n+1 + 1

.

3. yn+1 =
ynm

2
n+1 − 2 (xn − ρ)mn+1 − yn

m2
n+1 + 1

.

5 A Special Case of the Recursion

As stated previously, this standard special case if the case that we always deal with in

this note. Suppose we define (x0, y0,m0) =

(
r,−

√
R2 − (r − ρ)2,m0

)
and (x1, y1,m1) =(

r1,
√

R2 − (r − ρ)2, 0

)
where the line between (x0, y0) , (x1, y1) is a vertical tangent to circle

C2.

We note that x1 = r is a rational function of r. Also, we note that y1 is an irrational

function of R, r, ρ but y21 is a rational function of R, r, ρ.

By studying the recursive equations of Section 4, we easily see by using induction that we

can write (xn, yn,mn) = (xn, Yn · y1,Mn · y1) where xn, Yn,Mn are rational functions of R, r, ρ

and y1 = +
√
R2 − (r − ρ)2. Since y21 = R2−(r − ρ)2 is a rational function of R, r, ρ, it follows

by induction from (xn, yn,mn) = (xn, Yn · y1,Mn · y1) and from the recursive equations of

Section 4 that (xn+1, yn+1,mn+1) = (xn+1, Yn+1 · y1,Mn+1 · y1) where xn+1, Yn+1,Mn+1 are

rational functions of R, r, ρ.
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If (x0, y0,m0) =

(
r,−

√
R2 − (r − ρ)2,m0

)
and (x1, y1,m1) =

(
r,+

√
R2 − (r − ρ)2, 0

)
,

we see that the recursive equations 1, 2, 3 of Section 4 can now be written for xn, Yn,Mn as the

following recursion where, of course, (xn, yn,mn) = (xn, Yn · y1,Mn · y1) and (xn+1, yn+1,mn+1) =

(xn+1, Yn+1 · y1,Mn+1 · y1) and where we use y21 = R2 − (r − ρ)2 and R > r + |ρ| , r > 0.

1. (x1, Y1,M1) = (r, 1, 0)

2. Mn+1 =
2xnYn

Y 2
n · y21 − r2

−Mn.

3. xn+1 =
(−xn + 2ρ)M2

n+1 · y21 − 2YnMn+1 · y21 + xn

M2
n+1 · y21 + 1

.

4. Yn+1 =
YnM

2
n+1 · y21 − 2 (xn − ρ)Mn+1 − Yn

M2
n+1 · y21 + 1

.

In these equations, we let R, ρ be constants and let r be the variable. We can even let

R = 1. There is also no loss of generality if we assume ρ ≥ 0.

The computer programs run more efficiently if we deal exclusively with polynomials.

Therefore, let us write Mn = Mn

Mn
, xn = xn

xn
, Yn = Yn

xn
where we have the five polynomials,

xn, xn, Yn,Mn,Mn.

We now have x1 = r, x1 = 1, Y1 = 1,M1 = 0,M1 = 1, y21 = R2 − (r − ρ)2 .

The recursions are as follows.

1. Mn+1 = 2xnYnMn − Y 2
nMny

2
1 + r2x2

nMn.

1′ Mn+1 = Y 2
nMny

2
1 − r2x2

nMn.

2. xn+1 = (−xn + 2ρxn)M
2
n+1y

2
1 − 2YnMn+1Mn+1y

2
1 + xnM

2

n+1.

2′ xn+1 = xnM
2
n+1y

2
1 + xnM

2

n+1.

11



3. Yn+1 = YnM
2
n+1y

2
1 − 2 (xn − ρxn)Mn+1Mn+1 − YnM

2

n+1.

We can easily prove by induction that for all n ≥ 1 and for all real R, r, ρ we have

xn > 0, xn+1 > 0.

Therefore, we never have to worry about xn

xn
, Yn

xn
having a common r-root in the range

R > r + |ρ| , r > 0.

However, to be on the safe side we need to compute the gcd
(
Mn,Mn

)
and throw this

gcd away, in the numerator and denominator of Mn

Mn
.

In this note, we always deal with the fraction form of the recursion and not the polynomial

form.

In both the fraction and polynomial forms of the recursion, it appears that the recursive

equations will quickly become intractable. However, from our experience, these recursive

equations will massively simplify proportional to the expansion. So they remain tractable.

This phenomenon is far from random.

Comment 2 It is probably true by induction that y21| (xn − r) for all n ∈ {0, 1, 2, 3, · · · }

where y21 = (R− r + ρ) (R + r − ρ) .

To see this we see that x0 = x1 = r and y21| (x0 − r) and y21| (x1 − r). From the fraction

form of the recursion for xn+1 we see that xn+1 − r =
( )y21+(xn−r)

M2
n+1y

2
1+1

and from this we see that

it is probably true that y21| (xn+1 − r) since y21|y21 and y21| (xn − r) .

By the same reasoning it is also probably true by induction that r |xn and r|Mn for all

n ∈ {1, 2, 3, · · · }. To see this we see that r |x1, r|M1 since x1 = r,M1 = 0.

From the recursion for xn+1,Mn+1, we see that it is probably true that r|xn+1, r|Mn+1

for all n ∈ {1, 2, 3, · · · } .
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6 Main Problem 1 and Problems 1, 1′, 2

Main Problem 1 Suppose n ≥ 3 is fixed. Using the standard example that we defined in

Section 5, where R, ρ,R > |ρ| ≥ 0, are fixed, we wish to compute the necessary and sufficient

conditions P ∗
n (R, r, ρ) = 0, R > r + |ρ| , r > 0, where r is considered to be the only variable

and where P ∗
n (R, r, ρ) is a polynomial in R, r, ρ, so that if we start at the standard point

(x0, y0) = (r,−y1) =

(
r,−

√
R2 − (r − ρ)2

)
on C1 and draw successive tangents to C2 that

are oriented counterclockwise about (0, 0) then we will return to (x0, y0) in exactly n steps

and also such that we pass through (x0, y0) just one time in n steps. (In this note, when we

say that we arrive at or return to (x0, y0) in exactly n steps this always means that we arrive

at or return to (x0, y0) at the end of exactly n steps.)

Note 2 We will call this P ∗
n (R, r, ρ) = 0, where R > r + |ρ| , r > 0 the standard equation

or the Poncelet equation. As always, starting at (x0, y0), we call the above construction of

tangents to C2 the standard construction and we call (x0, y0) =

(
r,−

√
R2 − (r − ρ)2

)
→

(x1, y1) =

(
r,+

√
R2 − (r − ρ)2

)
the standard starting points.

Observation 1 We soon define three problems whose solutions are equivalent to Main

Problem 1. First, we state the following without proof. By the x-axis symmetry of the

standard construction, the proofs are fairly easy and are left to the reader.

Suppose we start at the standard (x0, y0) = (r,−y1) and by using the standard construc-

tion we arrive back at (x0, y0) in exactly n steps and also we arrive back at (x0, y0) just one

time in n steps. We call this the standard condition (or the Poncelet condition).

1. If n ≥ 3 is odd, then the standard (or Poncelet) condition is met if and only if in

exactly n+1
2

steps we arrive at one of the two points (−R + ρ, 0) , (R + ρ, 0) .
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Also, we pass through this (−R + ρ, 0) or (R + ρ, 0) point exactly one time in n+1
2

steps. Note that we only pass through one of these two points (−R + ρ, 0) , (R + ρ, 0) .

Exactly which of these two points we arrive at in n+1
2

steps depends exactly upon the

nature of the n-star that we are dealing with. Of course, a Poncelet n-polygon will

arrive at(−R + ρ, 0) in exactly n+1
2

steps. The reader can study analogies of Fig. 2 to

see this. When n = 3, we have no 3-stars and we can only arrive at (−R + ρ, 0) in

exactly n+1
2

= 2 steps. We cannot arrive at (R + ρ, 0) in 2 steps. When n ≥ 5 is odd,

we can have some n-stars (and one n-polygon) that arrive at (−R + ρ, 0) in exactly

n+1
2

steps, and just one time in n+1
2

steps, and we can have some n-stars that arrive at

(R + ρ, 0) in exactly n+1
2

steps and just one time in n+1
2

steps.

2. If n ≥ 4 and n is even, then the standard (or Poncelet) condition is met if and only if in

exactly n
2
steps and just one time in n

2
steps, we arrive at

(
−r,+

√
R2 − (−r − ρ)2

)
=(

−r,+
√

R2 − (r + ρ)2
)
.

We note that there are no n-stars when r = 4 or n = 6. Look at the analogy of Fig. 2

for n = 6.

From Observation 1, Main Problem 1 is equivalent to the following Problems 1, 1′, 2.

In Problems 1, 1′, 2 as always we consider R and ρ,R > |ρ| ≥ 0, to be fixed and r to

be a variable where R > r + |ρ| , r > 0.

Problem 1 Suppose n ≥ 3 and n is odd. We wish to find necessary and sufficient condi-

tions Pn (R, r, ρ) = 0, where Pn (R, r, ρ) is a polynomial in R, r, ρ and R > r+|ρ| , r > 0,

so that if we start at the standard (x0, y0) and use the standard construction then we

will arrive at (−R + ρ, 0) in exactly n+1
2

steps and we also pass through (−R + ρ, 0)
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just one time in n+1
2

steps.

Problem 1′ Suppose n ≥ 5 and n is odd. We wish to find necessary and sufficient

condition P n (R, r, ρ) = 0, where P n (R, r, ρ) is a polynomial in R, r, ρ and R > r +

|ρ| , r > 0, so that if we start at the standard (x0, y0) and use the standard construction

then we will arrive at (R + ρ, 0) in exactly n+1
2

steps and we also pass through (R + ρ, 0)

just one time in n+1
2

steps.

The solution to Main Problem 1 when n ≥ 3 and n is odd is P ∗
n = Pn (R, r, ρ) = 0 or

P ∗
n = P n (R, r, ρ) = 0 where R > r + |ρ| , r > 0.

Problem 1′ is degenerate with no solution with R > r + |ρ| , r > 0, when n = 3.

Problem 2 Suppose n ≥ 4 and n is even. We wish to find necessary and sufficient

conditions Pn (R, r, ρ) = 0 where Pn (R, r, ρ) is a polynomial in R, r, ρ and R > r +

|ρ| , r > 0, so that if we start at the standard (x0, y0) and use the standard construction

then we will arrive at

(
−r,+

√
R2 − (−r − ρ)2

)
=

(
−r,+

√
R2 − (r + ρ)2

)
in exactly

n
2
steps and we also pass through

(
−r,

√
R2 − (r + ρ)2

)
just one time in n

2
steps.

The solution to Main Problem 1 when n ≥ 4 and n is even is P ∗
n (R, r, ρ) = Pn (R, r, ρ) =

0, R > r + |ρ| , r > 0.

7 Weaker Conditions on R, r, ρ

To solve Problems 1, 1′, 2 we first compute some weaker conditions on R, r, ρ where R >

r + |ρ| , r > 0.

In this section, we start at the standard (x0, y0) → (x1, y1,m1) and we assume that we
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have computed (xn, yn,mn) = (xn, Yn · y1,Mn · y1) for each n ∈ {1, 2, 3, · · · } by the recursive

algorithm of Section 5.

Problem 1∗ Suppose n ≥ 3 and n is odd. We wish to find necessary and sufficient

conditions Rn (R, r, ρ) = 0 where Rn (R, r, ρ) is a polynomial in R, r, ρ and R > r+|ρ| , r > 0,

so that if we start at the standard (x0, y0) and use the standard construction of tangents to

C2 then we will arrive at (−R + ρ, 0) in exactly n+1
2

steps. In Problem 1∗ we do not require

that we also arrive at (−R + ρ, 0) just one time in n+1
2

steps.

Problem 1∗∗ Suppose n ≥ 5 and n is odd. We wish to find necessary and sufficient

conditions Rn (R, r, ρ) = 0 where Rn (R, r, ρ) is a polynomial in R, r, ρ and R > r+|ρ| , r > 0,

so that if we start at the standard (x0, y0) and use the standard construction of tangents to

C2 then we will arrive at (R + ρ, 0) in exactly n+1
2

steps. In Problem 1∗∗ we do not require

that we also arrive at (R + ρ, 0) just one time in n+1
2

steps. Problem 1∗∗ has no solution

when n = 3 that satisfies R > r + |ρ| , r > 0.

Solution to Problems 1∗, 1∗∗ Problems 1∗, 1∗∗ can be solved by settling xn+1
2

= −R + ρ

and xn+1
2

= R + ρ respectively.

This gives the required polynomials Rn (R, r, ρ) = 0 and Rn (R, r, ρ) = 0 where we require

R > r + |ρ| , r > 0.

These two equations are equivalent to xn+1
2

− r = −R + ρ − r = − (R + r − ρ) and

xn+1
2

− r = R− r + ρ respectively.

Since y21 = (R + r − ρ) (R− r + ρ) probably divides xn+1
2
−r, we see that we can probably

divide out R + r − ρ and R − r + ρ respectively in these two equations. We can now call

these new polynomials Rn (R, r, ρ) = 0, Rn (R, r, ρ) = 0 and as always, we can write Rn, Rn

in the canonical form. These factors R + r − ρ = 0, R − r + ρ = 0 are extraneous since we
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soon show that they each contradict R > r + |ρ| , r > 0. We rarely use the above solutions.

The following second solutions are much superior. From Fig. 3, we can solve problem 1∗ by

using the equality
xn−1

2
−(−R+ρ)

yn−1
2

−0
= mn+1

2
. That is, xn−1

2
+R− ρ = yn−1

2
mn+1

2
= Yn−1

2
Mn+1

2
y21.

This is equivalent to (∗) .

(∗)
(
xn−1

2
− r

)
+ (R + r − ρ) = Yn−1

2
Mn+1

2
y21.

Since y21|
(
xn−1

2
− r

)
is probably true, we see that R + r − ρ will probably divide out of

(∗). R + r − ρ = 0 is extraneous since R + r − ρ = 0, r > 0 implies ρ = |ρ| = R + r and

R ≯ r+ |ρ| = R+ 2r. After we divide R+ r− ρ out of (∗), we call the resulting polynomial

equation R′
n (R, r, ρ) = 0.

NowR′
n (R, r, ρ) = 0 is not the solution to Problem 1∗. We now observe thatRn−2 (R, r, ρ) =

0 gives necessary and sufficient conditions so that the standard construction arrives at

(−R + ρ, 0) in exactly (n−2)+1
2

= n−1
2

steps, and this will also solve the above equation (∗)

since xn−1
2
+R−ρ = 0 and Yn−1

2
= 0. Therefore, to compute the true solution to Problem 1∗,

we must now eliminate all r-traces of Rn−2 (R, r, ρ) = 0 from the equation R′
n (R, r, ρ) = 0

by using Algorithm 1 with emphasis on Comment 1. The divisor of R′
n (R, r, ρ) that is left

will be the true necessary and sufficient conditions Rn (R, r, ρ) = 0, R > r + |ρ| , r > 0, that

solve Problem 1∗.

From Fig. 3, we can solve Problem 1∗∗ by using the equality
xn−1

2
−(R+ρ)

yn−1
2

−0
= mn+1

2
. That

is, xn−1
2

−R− ρ = yn−1
2
mn+1

2
= Yn−1

2
Mn+1

2
y21. This is equivalent to (∗∗) .

(∗∗)
(
xn−1

2
− r

)
− (R− r + ρ) = Yn−1

2
Mn+1

2
y21.

Since y21|
(
xn−1

2
− r

)
is probably true, we see that R − r + ρ will probably divide out of

(∗∗) .

Now R− r+ ρ = 0 is extraneous since R− r+ ρ = 0 implies ρ = − (R− r) which implies
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|ρ| = R− r and R ≯ r + |ρ| = R.

After we divideR−r+ρ out of (∗∗), we call the resulting polynomial equationR
′
n (R, r, ρ) =

0.

NowR
′
n (R, r, ρ) = 0 is not the solution to Problem 1∗∗. We now observe thatRn−2 (R, r, ρ) =

0 gives necessary and sufficient conditions so that the standard construction arrives at

(R + ρ, 0) in exactly (n−2)+1
2

= n−1
2

steps and this will also solve the above equation (∗∗)

since xn−1
2

−R− ρ = 0 and Yn−1
2

= 0.

Therefore, to compute the true solution to Problem 1∗∗, we must now eliminate all r-

traces of Rn−2 (R, r, ρ) = 0 from the equation R
′
n (R, r, ρ) = 0 by using Algorithm 1 with

emphasis on Comment 1. The divisor of R
′
n (R, r, ρ) that is left will be the true necessary

and sufficient conditions Rn (R, r, ρ) = 0, R > r + |ρ| , r > 0, that solve Problem 1∗∗. �

Problem 2∗ Suppose n ≥ 4 and n is even. We wish to find necessary and sufficient

conditions Rn (R, r, ρ) = 0 where Rn (R, r, ρ) is a polynomial in R, r, ρ and R > r+|ρ| , r > 0,

so that if we start at the standard (x0, y0) and use the standard construction of tangents to

C2 then we will arrive at

(
−r,+

√
R2 − (−r − ρ)2

)
=

(
−r,+

√
R2 − (r + ρ)2

)
in exactly

n
2
steps.

In Problem 2∗, we do not require that we also arrive at

(
−r,+

√
R2 − (−r − ρ)2

)
just

one time in n
2
steps.

Solution to Problem 2∗ We first define the equation xn
2
= −r where x1, x2, x3, · · · have

been recursively computed. From Comment 2, we know that r|xn
2
is probably true.

Therefore, we divide r out of the equation xn
2
= −r where r = 0 is an extraneous fac-

tor since it contradicts r > 0. This defines a polynomial equation R′
n (R, r, ρ) = 0, R >

r + |ρ| , r > 0 which gives necessary and sufficient conditions so that if we start at (x0, y0)
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and construct tangents to C2 in the standard way then we will arrive at one or the other of(
−r,−

√
R2 − (−r − ρ)2

)
,

(
−r,+

√
R2 − (−r − ρ)2

)
in exactly n

2
steps (but not necessar-

ily just one time in n
2
steps).

By induction, we know that Rn−2 = 0, R > r+ |ρ| , r > 0, are the necessary and sufficient

conditions so that if we start at the standard (x0, y0) and use the standard construction of

tangents to C2, then we will arrive at

(
−r,+

√
R2 − (−r − ρ)2

)
in exactly n−2

2
= n

2
− 1

steps (but not necessarily just one time in n
2
− 1 steps).

Now if the standard and construction starting at (x0, y0) arrives at

(
−r,−

√
R2 − (−r − ρ)2

)
in exactly n

2
steps, then this construction must also arrive at

(
−r,+

√
R2 − (−r − ρ)2

)
in exactly n

2
− 1 steps. Therefore, if we eliminate all r-traces of Rn−2 (R, r, ρ) = 0, R >

r + |ρ| , r > 0, from R′
n (R, r, ρ) = 0 by using Algorithm 1 with emphasis on Comment 1,

the divisor of R′
n (R, r, ρ) = 0 that is left will be the necessary and sufficient conditions

Rn (R, r, ρ) = 0, R > r + |ρ| , r > 0, that solves Problem 2∗. As always, we can write Rn in

the canonical form. If we write R′
n and Rn−2 in the canonical form, it may be true that we

only need to divide R′
n(R,r,ρ)

Rn−2(R,r,ρ)
= Rn (R, r, ρ) .

In any case, if we write R′
n and Rn−2 in the canonical form, then Algorithm 1 can be

carried out in only one step.

8 Solving Problem 1, 1′, 2 and Main Problem 1

Notation 1 We now review the notation. As in Section 7, for each n ≥ 3, n odd, Rn (R, r, ρ) =

0, R > r+|ρ| , r > 0, are the necessary and sufficient conditions calculated in Section 7 so that

the standard construction starting at the standard (x0, y0) = (r,−y1) arrives at (−R + ρ, 0)
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in exactly n+1
2

steps but not necessarily just one time in n+1
2

steps.

Also, Rn (R, r, ρ) = 0, R > r + |ρ| , r > 0, are the necessary and sufficient conditions

calculated in Section 7 so that the standard construction starting at the standard (x0, y0)

= (r,−y1) arrives at (R + ρ, 0) in exactly n+1
2

steps, but not necessarily just one time in n+1
2

steps.

Also, Pn (R, r, ρ) = 0, R > r + |ρ| , r > 0, and P n (R, r, ρ) = 0, R > r + |ρ| , r > 0,

are the necessary and sufficient conditions so that the standard construction starting at the

standard (x0, y0) = (r,−y1) arrives at (−R + ρ, 0) , (R + ρ, 0) respectively in exactly n+1
2

steps and passes through (−R + ρ, 0) , (R + ρ, 0) just one time in n+1
2

steps.

For each n ≥ 4, n even, Rn (R, r, ρ) = 0, R > r + |ρ| , r > 0, are the necessary and

sufficient conditions calculated in Section 7 so that the standard construction starting at the

standard (x0, y0) = (−r,−y1) arrives at

(
−r,+

√
R2 − (−r − ρ)2

)
in exactly n

2
steps but

not necessarily just one time in n
2
steps.

Also, for each n ≥ 4, n even, Pn (R, r, ρ) = 0, R > r + |ρ|, r > 0, are the necessary and

sufficient conditions so that the standard construction starting at (x0, y0) = (r,−y1) arrives at(
−r,+

√
R2 − (−r − ρ)2

)
in exactly n

2
steps and passes through

(
−r,+

√
R2 − (−r − ρ)2

)
just one time in n

2
steps.

Solution to Problems 1,1′ Suppose n ≥ 3, n is odd, is fixed, and the Problems 1,1′ have

been solved for all 3 ≤ n < n where n is odd. We wish to calculate Pn (R, r, ρ) = 0, R >

r+ |ρ| , r > 0. The calculation of P n (R, r, ρ) = 0, R > r+ |ρ| , r > 0 in Problem 1′ is exactly

the same as the calculation of Pn (R, r, ρ) = 0, R > r + |ρ| , r > 0, in Problem 1.

Suppose 3≤ n1 < n2 < · · · < nk < n is the list of all positive odd integers n that lie in

3 ≤ n < n with the following propriety (∗) .
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Of course, as always, for each ni in the list, Pni
(R, r, ρ) = 0, R > r + |ρ| , r > 0, are the

necessary and sufficient conditions so that a (Poncelet) ni-gon or ni-star constructed by the

standard construction starting at (x0, y0) = (−r,−y1) arrives at (−R + ρ, 0) in exactly ni+1
2

steps and passes through (−R + ρ, 0) just one time in ni+1
2

steps.

Property (∗) For each ni in the list, we require these (Poncelet) ni-gons or ni-stars to

also arrive at (−R + ρ, 0) in exactly n+1
2

steps.

In this note, for each odd 3 ≤ n, we compute the above list 3 ≤ n1 < n2 < · · · < nk < n

of odd n′
is adhoc by simply checking each odd 3 ≤ n < n to see if n has property (∗) .

For our fixed n ≥ 3, n odd, Rn (R, r, ρ) = 0, R > r + |ρ| , r > 0 are the necessary and

sufficient conditions computed in Section 7 so that the standard construction starting at the

standard (x0, y0) = (r1 − y1) arrives at (−R + ρ, 0) in exactly n+1
2

steps but not necessarily

just one time in n+1
2

steps. Now any standard construction that arrives at (−R + ρ, 0) in

exactly n+1
2

steps must either pass through (−R + ρ, 0) just one time in exactly n+1
2

steps or

it has already arrived at (−R + ρ, 0) in exactly ni+1
2

steps and passed through (−R + ρ, 0)

just one time in ni+1
2

steps for some ni in our list 3 ≤ n1 < n2 < · · · < nk < n.

We now eliminate all r-traces of the polynomials Pn1 = 0, Pn2 = 0, · · · , Pnk
= 0 from the

polynomial Rn = 0 by using Algorithm 1 of Section 3 with emphasis on Comment 1 at the

end of Algorithm 1. If we use Comment 1 a simple division may be all that we need to use

Algorithm 1.

The polynomial divisor of Rn (R, r, ρ) = 0, R > r + |ρ| , r > 0, that remains after all

r-traces of Pn1 = 0, Pn2 = 0, · · · , Pnk
= 0 have been removed from Rn (R, r, a) = 0 will be

the required polynomial Pn (R, r, ρ) = 0, R > r + |ρ| , r > 0, that solves Problem 1. The

solution to Problem 1′ is almost exactly the same. �
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Solution to Problem 2 Suppose n ≥ 4, n even, is fixed and suppose Problem 2 has been

solved for all n where 4 ≤ n < n and n is even.

We wish to calculate Pn (R, r, ρ) = 0, R > r + |ρ| , r > 0. The solution is almost exactly

the same as Problems 1, 1′. Suppose 4 ≤ n1 < n2 < · · · < nk < n is the list of all positive

even integers n that lie in 4 ≤ n < n with the following property (∗∗) .

Of course, as always for each ni in the list, Pni
(R, r, ρ) = 0, R > r+|ρ| , r > 0, are

the necessary and sufficient conditions so that the standard construction starting at the

standard (x0, y0) = (r,−y1) arrives at

(
−r,+

√
R2 − (−r − ρ)2

)
in exactly ni

2
steps and

passes through

(
−r,

√
R2 − (−r − a)2

)
just one time in ni

2
steps.

Property (∗∗) For each ni in the list, we require these (Poncelet) ni-gons or ni-stars to

also arrive at

(
−r,

√
R2 − (−r − ρ)2

)
in exactly n

2
steps.

In this note, for each even 4 ≤ n, we compute the above list 4 ≤ n1 < n2 · · · < nk < n of

even ni’s ad hoc by simply checking each even 4 ≤ n < n to see if n has property (∗∗) .

Now Rn (R, r, ρ) = 0, R > r + |ρ| , r > 0, are the necessary and sufficient conditions

computed in Section 7 so that the standard construction starting at the standard (x0, y0) =

(r,−y1) arrives at

(
−r,+

√
R2 − (−r − ρ)2

)
in exactly n

2
steps but not necessarily just one

time in n
2
steps.

Now any standard construction that arrives at

(
−r,+

√
R2 − (−r − ρ)2

)
in exactly n

2

steps must arrive at

(
−r,+

√
R2 − (−r − ρ)2

)
just one time in n

2
steps or it has already ar-

rived at

(
−r,+

√
R2 − (−r − ρ)2

)
in exactly ni

2
steps and passed through

(
−r,+

√
R2 − (−r − ρ)2

)
just one time in ni

2
steps for some ni in our list 4 ≤ n1 < · · · < nk < n.

As in Problems 1, 1′, we now eliminate all r-traces of the polynomial Pn1 = 0, Pn2 =

0, · · · , Pnk
= 0 from Rn (R, r, ρ) = 0 using Algorithm 1 of Section 3 with emphasis on
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Comment 1 at the end of Algorithm 1. If we use Comment 1, a simple division may be all

that we need to use Algorithm 1.

The polynomial divisor of Rn (R, r, ρ) = 0, R > r + |ρ| , r > 0, that remains after all

r-traces of Pn1 , Pn2 , · · · , Pnk
have been removed from Rn(R, ρ, P ), R > r + |ρ|, r > 0 will be

the required polynomial Pn(R, r, ρ) = 0, R > r + |ρ|, r > 0 that solves problem 2. �

Solution to Main Problem 1 As stated in Section 6, the solutions to Problems 1, 1′, 2 give

the solution P ∗
n = Pn, P

∗
n = P n, P

∗
n = Pn where P ∗

n (R, r, ρ) , R > r + |ρ| , r > 0, is the

polynomial solution to Main Problem 1. �

9 Some Hand Calculated Examples

We solve Main Problem 1 for n = 3, 4 by hand.

Example 1(n = 3) For n = 3, it is easy to see that P ∗
3 (R, r, ρ) = P3 (R, r, ρ) = R3 (R, r, ρ) =

0 where R3 (R, r, ρ) = 0 is the polynomial computed for Problem 1∗ in Section 7 using two

different methods. We now give both the long first method and the very short second method.

From Section 7, we see that the Problem 1∗ equation xn+1
2

= −R+ρ becomes x2 = −R+ρ.

The Problem 1∗∗ equation x2 = R + ρ is degenerate.

From Section 5, (x1, Y1,M1) = (r, 1, 0) and we recall that y21 = R2 − (r − ρ)2 and M2 =

2x1Y1

Y 2
1 ·y21−r2

−M1 =
2r

y21−r2
= 2r

R2−2r2+2ρr−ρ2
.

Using the recursion for x2 of Section 5 and simplifying we see that x2 = −R+ ρ becomes
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the following.

4r2 (2ρ− r) y21 − 4ry21 (R
2 − 2r2 + 2ρr − ρ2) + r (R2 − 2r2 + 2ρr − ρ2)

2

4r2y21 + (R2 − 2r2 + 2ρr − ρ2)2

= −R + ρ.

This is equivalent to the following.

4ry21
[
2ρr − r2 −R2 + 2r2 − 2ρr + ρ2

]
+ r

[
R2 − 2r2 + 2ρr − ρ2

]2
= 4ry21 (−Rr + ρr) +

[
R2 − 2r2 + 2ρr − ρ2

]2
(−R + ρ)

which is equivalent to (∗) .

(∗)

4ry21
(
−R2 + r2 +Rr − ρr + ρ2

)
= −

[
R2 − 2r2 + 2ρr − ρ2

]2
(R + r − ρ) .

Since y21 = (R + r − ρ) (R− r + ρ) and R + r − ρ = 0 is an extraneous equation that

contradicts R > r + |ρ|, r > 0, we see that (∗) is equivalent to the following

4r (−R + r − ρ)
[
−R2 + r2 +Rr − ρr + ρ2

]
=

[
R2 − 2r2 + 2ρr − ρ2

]2
.

When we multiply this out and then simplify this becomes R4 − 4rR3 + 4r2R2 − 2ρ2R2 +

4ρ2rR + ρ4 = 0 which is equivalent to [(R2 − ρ2)− 2rR]
2
= 0. This is equivalent to P ∗

3 =

R2 − ρ2 − 2rR = 0 which is the standard Euler’s equation. The cononical form of Comment

1 would automatically catch this multiplicity. We now solve Example 1 by computing P ∗
3 =

P3 = R
′
3 = R3 by using the short second method of Problem 1∗ of Section 7.

From x1 = r, Y1 = 1, y21 = (R− r + ρ) (R + r − ρ) and M2 = 2r
y21−r2

= 2r
R2−2r2+2ρr−ρ2

we

see that xn−1
2

+ R − ρ = Yn−1
2
Mn+1

2
y21 becomes x1 + R − ρ = Y1M2y

2
1, which is r + R − ρ =

2r·(R−r+ρ)(R+r−ρ)
R2−2r2+2ρr−ρ2

.
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Dividing out the extraneous equation r+R− ρ = 0 this becomes R2 − 2r2 + 2ρr− ρ2 =

2Rr − 2r2 + 2ρr and we see that P ∗
3 = P3 = R′

3 = R3 = R2 − ρ2 − 2rR = 0. �

Note 2 We see that the second method is very superior to the first method. If we try

to compute R3 (R, r, ρ) = 0 for n = 3 by the second method of Section 7, we see that

xn−1
2

− R − ρ = Yn−1
2
Mn+1

2
y21 becomes x1 − R − ρ = Y1M2y

2
1 which is r − R − ρ = 2r

y21−r2
y21.

This is equivalent to − (y21 − r2) = 2r (R + r − ρ) which simplifies to ρ2 = R2 + 2rR. This

equation is degenerate since we require R > r + |ρ| , r > 0. However, we need to keep this

equation ρ2 − R2 − 2Rr = 0 since this factor will divide out of some of the higher level

equations that we will encounter. In particular, we use ρ2 = R2 + 2rR when we deal with

n = 5.

Example 2 (n = 4) We compute P ∗
4 (R, r, ρ) = P4 = 0 for n = 4. For n = 4 it is easy to see

that P4 (R, r, ρ) = R′
4 (R, r, ρ) = R4 (R, r, ρ) where R′

4 (R, r, ρ) is the polynomial computed

in Problem 2∗ of Section 7. We note that R4 (R, r, ρ) = R′
4 (R, r, ρ) since Rn−2 = R2 = 2r is

degenerate and we are going to divide r out of R′
4 anyway. Using the formula for x2 given

in Example 1, we see that x2 = −r becomes the following.

4r2y21(2ρ−r)−4ry21(R2−2r2+2ρr−ρ2)+r(R2−2r2+2ρr−ρ2)
2

4r2y21+(R2−2r2+2ρr−ρ2)2
= −r which is equivalent to the following.

4r2y21 (2ρ− r)− 4ry21 (R
2 − 2r2 + 2ρr − ρ2) + r (R2 − 2r2 + 2ρr − ρ2)

2
=

−r
[
4r2y21 + (R2 − 2r2 + 2ρr − ρ2)

2
]
.

Dividing out the extraneous r = 0, this becomes 4r (2ρ− r) y21−4y21 (R
2 − 2r2 + 2ρr − ρ2)+

4r2y21 = −2 [R2 − 2r2 + 2ρr − ρ2]
2
.

Dividing out 2 and simplifying we have 2y21 (R
2 − 2r2 − ρ2) = (R2 − 2r2 + 2ρr − ρ2)

2
.

Using y21 = R2 − r2 + 2ρr − ρ2 this becomes 2 (R2 − r2 + 2ρr − ρ2) (R2 − 2r2 − ρ2) =

(R2 − 2r2 + 2ρr − ρ2)
2
.
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Multiplying out and simplifying we have R4 − 2ρ2R2 + ρ4 = 2ρ2r2 + 2r2R2 which is

(R2 − ρ2)
2
= 2r2 (R2 + ρ2). This is the standard quadrilateral formula. �

10 Some Computer Generated Examples

We solve Main Problem 1 for n = 5, 6, 7 by using a computer.

Example 3 (n = 5) We first compute R′
5 (R, r, ρ) = 0 of Problem 1∗ by using the equality

(∗)x2 +R− ρ− Y2M3y
2
1 = 0 which is equivalent to (∗) (x2 − r) + (R + r − ρ)− Y2M3y

2
1 = 0.

Dividing R + r − ρ out of (∗) and using a computer, we arrive at R′
5 (R, r, ρ) = 16ρ2R2r4 +

8R (R2 − ρ2)
2
r3 − 8R2 (R2 − ρ2)

2
r2 + (R2 − ρ2)

4
= 0. From Problem 1∗ of Section 7, we

know that R3 (R, r, ρ) = 2Rr + ρ2 − R2 = 0 will also solve (∗) where R3 = 0 was computed

in Example 1 (n = 3). Therefore, we must eliminate all r-traces of R3 = 0 from R′
5 =

0. We can do this by dividing R′
5 by R3 and letting R5 (R, r, ρ) be the quotient. This

gives R5 (R, r, a) = 8ρ2Rr3 + 4R2 (R2 − ρ2) r2 − 2R (R2 − ρ2)
2
r − (R2 − ρ2)

3
= 0. It is

easy to show that R5 = 0 is irreducible in the rational field. We now let R = 1 and

by symmetry suppose 0 ≤ ρ < 1. We know by Descartes’ law of signs that R5 = 0 has

one positive r-root for each fixed 0 ≤ ρ < 1. For each fixed 0 ≤ ρ < 1, we show that

R5 = 0 has one r-root that satisfies 0 < r < 1 − ρ. Now R5 (R, r, ρ) = R5 (1, 0, ρ) =

− (1− ρ)3 < 0. We now show that R5 (R, r, ρ) = R5 (1, 1− ρ, ρ) > 0. This is true if

and only if
[
8ρ2 + 4 (1 + ρ)− 2 (1 + ρ)2 − (1 + ρ)3

]
(1− ρ)3 > 0. This is true if and only if

(1− 3ρ+ 3ρ2 − ρ3) (1− ρ)3 = (1− ρ) 6 > 0, which is true. From this we see that for each

0 ≤ ρ < 1, R5 = 0 has one r-root that satisfies 0 < r < 1− ρ. Therefore, in general for each

R > |ρ| ≥ 0, we see that R5 (R, r, ρ) = 0 has one r-root that satisfies R > r + |ρ| , r > 0.
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We let P ∗
5 = R5 where P ∗

5 = 0 is one solution to Main Problem 1. We next compute

R
′
5 (R, r, ρ) = 0 by using the equality (∗∗) x2 − R − ρ − Y2M3y

2
1 = 0 which is equivalent to

(∗∗) (x2 − r)−R+ r−ρ−Y2M3y
2
1 = 0. Dividing r−R−ρ out of (∗∗) and using a computer

we arrive at R
′
5 (R, r, ρ) = 16ρ2R2r4 − 8R (R2 − ρ2)

2
r3 − 8R2 (R2 − ρ2)

2
r2 +(R2 − ρ2)

4
= 0.

Now R3 (R, r, ρ) = −2Rr + ρ2 − R2 = 0 will also solve (∗∗). Therefore, we must elim-

inate all r-traces of R3 = 0 from R
′
5 = 0. We can do this by dividing R

′
5 by R3 and

letting R5 (R, r, ρ) be the quotient. This gives R5 (R, r, ρ) = −8ρ2Rr3 + 4R2 (R2 − ρ2) r2 +

2R (R2 − ρ2)
2
r − (R2 − ρ2)

3
= 0.

It is easy to show that R5 = 0 is irreducible in the rational field. We now let R = 1

and by symmetry suppose 0 < ρ < 1. We know by Descartes’ law of signs tht R5 = 0

has zero or two positive r-roots for each fixed 0 < ρ < 1. For each fixed 0 < ρ < 1 we

show that R5 = 0 has one r-root that satisfies 0 < r < 1 − ρ. (ρ = 0 is easy to deal

with). Now R5 (R, r, ρ) = R5 (1,+∞, ρ) < 0. Also, R5 (R, r, ρ) = R5 (1, 0, ρ) < 0. If we show

that R5 (R, r, ρ) = R5 (1, 1− ρ, ρ) > 0, then it will follow that for each 0 < ρ < 1, R5 = 0

has one r-root that satisfies 0 < r < 1 − ρ. Now R5 (R, r, ρ) = R5 (1, 1− ρ, ρ) > 0 if

and only if
[
−8ρ2 + 4 (1 + ρ) + 2 (1 + ρ)2 − (1 + ρ)3

]
(1− ρ)3 > 0. This is true if and only if[

4 (1 + ρ− 2ρ2) + (1 + ρ)2 (2− (1 + ρ))
]
(1− ρ)3 =

[
4 (1 + 2ρ) (1− ρ) + (1 + ρ)2 (1− ρ)

]
(1− ρ)3 >

0 which is true.

Therefore, in general for each R > |ρ| ≥ 0, we see that R5 (R, r, ρ) = 0 has one r-root

that satisfies R > r + |ρ| , r > 0. We let P ∗
5 = R5 where P ∗

5 = 0 is that second solution to

Main Problem 1.�

Therefore, P ∗
5 = R5 and P ∗

5 = R5 are the two solutions to Main Problem 1 for n = 5.

Example 4 (n = 6) From Problem 2∗, we define the equation xn
2
= x3 = −r. We do this
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with a computer. From Comment 2 we divide r out of x3 = −r where r = 0 is an extraneous

factor since it contradicts r > 0. This defines a polynomial equation R′
6 (R, r, ρ) = 0 which

we store in the computer. From Problem 2∗, to compute R6 = 0 we must eliminate all

r-traces of R4 (R.r.ρ) = 2 (R2 + ρ2) r2 − (R2 − ρ2)
2
= 0 from R′

6 (R, r, ρ) = 0. This can be

done by a single division
R′

6(R,r,ρ)

R4(R,r,ρ)
= R6 (R, r, ρ) .

That is, R′
6 (R, r, ρ) = R4 (R, r, ρ)·R6 (R, r, ρ) =

[
(R2 − ρ2)

2 − 2 (ρ2 +R2) r2
]
·R6 (R, r, ρ)

where R6 (R, r, ρ) = 16ρ2R2r4 + 4 (ρ2 +R2) (R2 − ρ2)
2
r2 − 3 (R2 − ρ2)

4
= 0. We now let

R = 1, 0 ≤ ρ < 1. We know from Descartes’ Law of signs that R6 (R, r, ρ) = R6 (1, r, ρ) = 0

has one positive r-root for each fixed 0 ≤ ρ < 1. We now show that for each fixed

0 ≤ ρ < 1, R6 = 0 has one r-root that satisfies 0 < r < 1 − ρ. Now R6 (R, r, ρ) =

R6 (1, 0, ρ) = −3 (1− ρ2)
4
< 0. We now show that R6 (R, r, ρ) = R6 (1, 1− ρ, ρ) > 0

which will finish the proof. Now R6 (1, 1− ρ, ρ) > 0 is true if and only if 16ρ2 (1− ρ)4 +

4 (1 + ρ2) (1 + ρ)2 (1− ρ)4−3 (1 + ρ)4 (1− ρ)4 > 0. This is equivalent to
[
16ρ2 + 4 (1 + ρ2) (1 + ρ)2 − 3 (1 + ρ)4

]
(1− ρ)4 =

[ρ4 − 4ρ3 + 6ρ2 − 4ρ+ 1] (1− ρ)4 = (1− ρ)8 > 0 which is true. From Problem 2 of Section

8, we know that P ∗
6 = P6 = R6 (R, r, a) where P ∗

6 = 0 solves Main Problem 1 for n = 6. �

Example 5 (n = 7) We first compute R′
7 (R, r, ρ) = 0 of Problem 1∗ by using the equality

(∗) , x3+R−ρ−Y3M4y
2
1 = 0 which is equivalent to (∗) (x3 − r)+(R + r − ρ)−Y3M4y

2
1 = 0.

Dividing R + r − ρ out of (∗), we arrive at R′
7 (R, r, ρ) = 0 and we store this in

the computer. From Problem 1∗ of Section 7, we know that R5 (R, r, ρ) = 8ρ2R2r3 +

4R2 (R2 − ρ2)
2
r2 − 2R (R2 − ρ2)

2
r − (R2 − ρ2)

3
= 0 will also solve (∗) where R5 = 0 was

computed in Example 3 (n = 5). Therefore, we must eliminate all r-traces of R5 = 0 from

R′
7 = 0. We can do this by dividing R′

7 by R5 and letting R7 (R, r, ρ) be the quotient.

This gives R7 (R, r, ρ) = 64ρ2R4r6 − 32ρ2R (R2 − ρ2) (R2 + ρ2) r5 − 16ρ2R2 (R2 − ρ2)
2
r4 +
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8R (R2 + 3ρ2) (R2 − ρ2)
3
r3 − 4R2 (R2 − ρ2)

4
r2 − 4R (R2 − ρ2)

5
r + (R2 − ρ2)

6
= 0.

The equation R7 (R, r, ρ) = 0 is the same as R7 (R, r, ρ) = 0 except that R7 (R, r, ρ) =

R7 (−R, r, ρ) = R7 (R,−r, ρ) = 0. The solution to Main Problem 1 is P ∗
7 = R7 and P ∗

7 = R7.

If we let R = 1, 0 < ρ < 1, we can use a computer to show that R7 (R, r, ρ) = R7 (1, r, ρ) = 0

has two real r-roots r1, r2 that satisfy 0 < r1 < r2 < 1− ρ. These two r-roots give the 7-gon

and a 7-star that goes around (0, 0) three times when R = 1. The equation R7(R, r, ρ) =

R7 (1, r, ρ) has one r-root r3 that satisfies 0 < r3 < 1 − ρ. This r3 gives a 7-star that goes

around (0, 0) two times when R = 1. �

As is consistent with the general pattern, R7 (R, r, ρ) = R7 (1, 1− ρ, ρ) = (1− ρ)12. We

recall that R6 (1, 1− ρ, ρ) = (1− ρ)8. Also, R5 (1, 1− ρ, ρ) = (1− ρ)6.

Also, R4 (1, 1− ρ, ρ) = 2 (1− ρ)2 (1 + ρ2)− (1− ρ2)
2
= (1− ρ)4 .

Also, R3 (1, 1− ρ, ρ) = 2 (1− ρ)− (1− ρ2) = (1− ρ)2 .

In general Ri (1, 1− ρ, ρ) = (1− ρ)2ni where ni is the r-degree of Ri (R, r, ρ) .

11 Discussion

It is fairly obvious that the polynomials R3, R4, R5, R6, R7 that we have computed are mem-

bers of a family. For example they all have powers of 2, i.e. 2, 4, 8, 16, 32, 64, · · · appearing

in them. They also have (R2 − ρ2) , (R2 − ρ2)
2
, . . . appearing in them. In general, they

just look alike in some ways. However, the only true invariant that we have discovered for

R3, R4, R5, R6, R7 is that each Ri satisfies Ri (R, r, ρ) = Ri (1, 1− ρ, ρ) = (1− ρ)2ni , where

ni is the r− degree of Ri (R, r, ρ) .
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