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Abstract

In the game G0 two players alternate removing positive numbers of counters from

a single pile and the winner is the player who removes the last counter. On the first

move of the game, the player moving first can remove a maximum of k counters,

k being specified in advance. On each subsequent move, a player can remove a

maximum of f (n, t) counters where t was the number of counters removed by his

opponent on the preceding move and n is the preceding pile size, where f : N ×N →

N is an arbitrary function satisfying the condition (1): ∃t ∈ N such that for all

n, x ∈ N, f (n, x) = f (n + t, x). This note extends our paper [5] that appeared in

EJC. We first solve the game for functions f : N × N → N that also satisfy the

condition (2): ∀n, x ∈ N, f (n, x + 1) − f (n, x) ≥ −1. Then we state the solution

when f : N ×N → N is restricted only by condition (1) and point out that the more
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general proof is almost the same as the simpler proof. The solutions when t ≥ 2 use

multiple bases.

Introduction

Notation 1 N is the set of positive integers, and N0 = {0} ∪ N . Let f : N × N → N

be a function satisfying the condition (1): ∃t ∈ N such that for all n, x ∈ N, f (n, x) =

f (n + t, x). If x, y ∈ N0, then ⊕ is defined by x ⊕ y ≡ x + y (mod t) and x ⊕ y ∈

{0, 1, 2, . . . , t− 1}. Thus x⊕ y is uniquely specified. Note that ({0, 1, 2, . . . , t− 1},⊕) is a

cyclic group.

The Games. Suppose game G0 with move function f is given. Then we define the

games Gi, i = 1, 2, · · · , t − 1 where Gi is the same as game G0 except the move function

f (i⊕ n, x) is used in the place of f (n, x) .

Example 1 In game G0, suppose the moving player is facing a pile size of 10 counters and

the preceding pile size was 15 counters. This means his opponent removed 5 counters on

the preceding move. Also, suppose f (15, 5) = 5. This means the moving player can remove

from the 10 counter pile 1, 2, 3, 4 or 5 counters. If f (15, 5) ≥ 10, the moving player can

remove all 10 counters and immediately win.

Definition 1 In game Gi, i = 0, 1, 2, · · · , t− 1,∀n ∈ N, gi (n) is defined to be the smallest

winning move size for a pile of n counters. Also, gi (0) = ∞. This means that the removal

of gi (n) counters from a pile of n counters is a winning move in Gi, and ∀t ∈ N , if

1 ≤ t < gi (n) the removal of t counters from a pile of n is a losing move in Gi. Of course,

∀n ∈ N, 1 ≤ gi (n) ≤ n.

Algorithm 1 Since gi (0) = ∞ it is easy to see that ∀n ∈ N, gi (n) is the smallest

t ∈ {1, 2, 3, · · · , n} such that f (i⊕ n, t) < gi (n− t). This means gi (1) , gi (2) , · · · can

be computed recursively.
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Definition 2. A strictly increasing sequence B = (b0 = 1, b1, b2, · · · ) of positive integers

with b0 = 1 is called a base. B can be finite or infinite.

Bases for Games. Suppose we are given games Gi, i = 0, 1, 2, · · · , t − 1, with move

functions f(i ⊕ n, x) where f : N × N → N satisfies (1) ∃t ∈ N such that ∀n, x ∈ N ,

f (n, x) = f (n + t, x) and (2) ∀n, x ∈ N, f (n, x + 1) − f (n, x) ≥ −1. For each Gi, i =

0, 1, 2, · · · , t− 1, we assume that a base Bi = (bi0 = 1, bi1, bi2, · · · ) has been generated that

satisfies the following conditions.

First, bi0 = 1, bi1 = 2, i = 0, 1, 2, · · · , t − 1. Also, ∀i ∈ {0, 1, 2, · · · , t − 1},∀k ≥

1, bi,k+1 = bik + bi⊕bik,j where bi⊕bik,j is the smallest member of Bi⊕bik
such that

(∗∗) f (i⊕ bik ⊕ bi⊕bik,j, bi⊕bik,j) ≥ bik

if such a bi⊕bik,j exists. Also, each base Bi has been generated as far as possible. This means

that ∀i ∈ {0, 1, 2, · · · , t − 1}, if {bi0, bi1, · · · , bik} ⊆ Bi then {bi0, bi1, · · · , bik, bi,k+1} ⊆ Bi

when ∃bi⊕bik,j that satisfies (∗∗). Starting with bi0 = 1, bi1 = 2, i = 0, 1, 2, · · · , t− 1, we can

generate B0, B1, B2, · · · , Bt−1 in some definite order. For example, we might add one mem-

ber to B0, if possible, add one member to B1, if possible, add one member to B2, if possible,

· · · , add one member to Bt−1, if possible. Then we repeat this cycle B0, B1, B2, · · · , Bt−1.

We leave it to the reader to show that no matter what order B0, B1, B2, · · · , Bt−1 is gen-

erated, if we generate as far as possible then these bases will always be exactly the same.

Also, we point out that for some i ∈ {0, 1, 2, · · · , t− 1}, Bi might be infinite, and for other

i ∈ {0, 1, 2, . . . , t− 1}, Bi might be finite.

The following definition is very convenient in proving theorems 1,2.

Definition 3. For each game Gi, i = 0, 1, 2, · · · , t − 1, we define a function Fi : N0 ×

N → {0, 1} as follows. First, ∀x ∈ N, Fi (0, x) = 0. Also, ∀n, x ∈ N, Fi (n, x) = 0 if

1 ≤ x < gi (n) and Fi (n, x) = 1 if gi (n) ≤ x.

This means that if n ∈ N is fixed and x ∈ N is a variable then the sequence Fi (n, x) , x =

1, 2, 3, · · · always consists of a finite string (possibly empty) of consecutive 0’s followed by

an infinite string of consecutive 1’s. Of course, Fi (n, x) = 1 when x ≥ n. From the defi-

nition of gi and Fi, we note that for all n, x ∈ N if x ≤ n then Fi (n, x) = 1 when the list
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Fi (n− 1, f (i⊕ n, 1)) , Fi (n− 2, f (i⊕ n, 2)) , · · · , Fi (n− x, f (i⊕ n, x)) contains at least

one 0. Also, Fi (n, x) = 0 when this list contains no 0’s. Furthermore, from the def-

initions of Fi and gi, we note that ∀n ∈ N, gi (n) is the position of the first 0 in the

list Fi (n− 1, f (i⊕ n, 1)) , Fi (n− 2, f (i⊕ n, 2)) , · · ·Fi (n− gi (n) , f (i⊕ n, gi (n))). This

means that Fi (n− gi (n) , f (i⊕ n, gi (n))) = 0, but all preceding members of this sequence

have a value of 1.

The Main Theorem

Theorem 1 Suppose f : N ×N → N satisfies (1) ∃t ∈ N such that ∀n, x ∈ N, f (n, x) =

f (n + t, x) and (2) ∀n, x ∈ N, f (n, x + 1)− f (n, x) ≥ −1. Also, ∀Gi, i = 0, 1, 2, · · · , t− 1,

a base Bi has been generated. Then the following is true,

1. ∀i = 0, 1, 2, · · · , t− 1,∀bik ∈ Bi, gi (bik) = bik,

2. ∀i = 0, 1, 2, · · · , t− 1,∀n ∈ N\Bi, 1 ≤ gi (n) < n,

3. ∀i = 0, 1, 2, · · · , t− 1,∀n ∈ N\Bi,

(a) if bik < n < bi,k+1 then n = bik + (n− bik) and gi (n) = gi⊕bik
(n− bik) , and

(b) if bik < n and Bi is finite and bik is the largest member of Bi, then n = bik

+ (n− bik) and gi(n) = gi⊕bik
(n− bik) .

Proof. We prove conclusions 1, 2, and 3 by mathematical induction on the pile size n.

For each n ∈ N , we go through the same proof for each game Gi, 0, 1, 2, · · · , t− 1. So we

can just focus our attention on any arbitrary i = 0, 1, 2, · · · , t − 1. First, let n = 1. Now

bi0 = 1 ∈ Bi. Also, no matter what f : N ×N → N is, gi (1) = 1. Therefore, conclusion 1

holds for n = 1. Conclusions 2, 3 do not apply to n = 1.

Next, let n = 2. Now bi1 = 2 ∈ Bi. Also, no matter what f : N × N → N is,

gi (2) = 2. Therefore, conclusion 1 holds for n = 2. Conclusions 2, 3 do not apply to

n = 2. So we can now use induction on n. In game Gi let us suppose that conclusion
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1 is true for all bij ∈ {bi0 , bi1 , · · · , bik} where k ≥ 1 and conclusions 2, 3 are true for

all n ∈ {1, 2, 3, 4, 5, · · · , bik}\Bi. We show that conclusions 2, 3 are true for all n ∈

{bik + 1, bik + 2, · · · , bi,k+1 − 1} and conclusion 1 is true for bij = bi,k+1. In the following

argument, we omit the first part when bi,k+1−bik = 1. So we can imagine that bi,k+1−bik ≥ 2.

We will prove that conclusions 2, 3 are true for n ∈ {bik + 1, bik + 2, · · · , bi,k+1 − 1} by

proving this sequentially with n starting at n = bik + 1 and ending at n = bi,k+1 − 1.

Note that once we prove conclusion 3 for any n ∈ {bik + 1, · · · , bi,k+1 − 1}, conclusion 2

will follow for this n as well. This is because if n = bik + (n− bik) where 1 ≤ n − bik and

gi (n) = gi⊕bik
(n− bik), then gi (n) = gi⊕bik

(n− bik) ≤ n− bik < n.

Recall that gt (m) ≤ m is always true.

So let us now prove conclusion 3-a is true for n as n varies sequentially over bik +1, bik +

2, · · · , bi,k+1−1. The proof for conclusion 3-b is the same as 3-a. Now since we are assuming

that bi,k+1 − bik ≥ 2, this means that f (i⊕ bik ⊕ 1, 1) < bik is assumed as well.

This means that f (i⊕ bik ⊕ 1, 1) = f (i⊕ (bik + 1) , 1) < gi ((bik + 1)− 1) = gi (bik) =

bik. By the definition of gi (bik + 1), this implies gi (bik + 1) = 1. Of course, gi⊕bik
(1) = 1.

Therefore, gi (bik + 1) = gi⊕bik
(1). Therefore, suppose we have proved conclusion 3 for all

n ∈ {bik + 1, bik + 2, · · · , bik + t− 1} where bik + t− 1 ≤ bi,k+1 − 2.

We now prove conclusion 3 for n = bik + t. This means we know that gi (bik + j) =

gi⊕bik
(j) , j = 1, 2, 3, · · · , t− 1 and we wish to prove gi(bik + t) = gi⊕bik

(t) .

Recall that gi⊕bik
(t) is the smallest positive integer x such that the list

1. Fi⊕bik
(t− 1, f (i⊕ bik ⊕ t, 1)) , Fi⊕bik

(t− 2, f (i⊕ bik ⊕ t, 2)) , . . . ,

Fi⊕bik
(t− x, f (i⊕ bik ⊕ t, x)) contains exactly one 0 (which comes at the end of the

list).

Also, gi (bik + t) is the smallest positive integer x such that the list

2. Fi (bik + t− 1, f (i⊕ (bik + t) , 1)) , Fi (bik + t− 2, f (i⊕ (bik + t) , 2)) , . . . ,

Fi (bik + t− x, f (i⊕ (bik + t) , x)) contains exactly one 0 (which comes at the end).

Since we are assuming that gi (bik + j) = gi⊕bik
(j) , j = 1, 2, · · · , t− 1, we know from

the definition of Fi and Fi⊕bik
that Fi (bik + j, y) = Fi⊕bik

(j, y) for all j = 1, 2, · · · , t−1
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and all y ∈ N . Recall that Fθ (n, x) = 0 when 1 ≤ x ≤ gθ (n) − 1 and Fθ (n, x) = 1

when gθ (n) ≤ x.

Since i⊕ bik ⊕ t = i⊕ (bik + t), this means that lists (1) and (2) must be identical as

long as 1 ≤ x ≤ t − 1. Now if t /∈ Bi⊕bik
, we know by induction from conclusion 2

with game Gi⊕bik
that gi⊕bik

(t) < t. This tells us that for list (1) the smallest x such

that list (1) contains exactly one 0 satisfies 1 ≤ x ≤ t − 1. Therefore, since the two

lists (1), (2) are identical when 1 ≤ x ≤ t−1, this tells us that gi (bik + t) = gi⊕bik
(t) .

Next, suppose t ∈ Bi⊕bik
. We know by induction from conclusion 1 with game Gi⊕bik

that gi⊕bik
(t) = t. Therefore, to prove gi(bik + t) = gi⊕bik

(t) we need to show that

gi (bik + t) = t. Since gi⊕bik
(t) = t, we know that the first t− 1 members of the above

list (1) consists of all 1’s, and the tth member of list (1) is a 0. Since the above lists

(1) and (2) are identical when 1 ≤ x ≤ t − 1, we know that the first t − 1 members

of list (2) consists of all 1’s. Therefore, to show that gi (bik + t) = t, we need to show

that the tth member of list (2) is a 0.

From the definition of bi,k+1, we know that bi,k+1 − bik = bi⊕bik,j where bi⊕bik,j is the

smallest member of Bi⊕bik
such that f (i⊕ bik ⊕ bi⊕bik,j, bi⊕bik,j) ≥ bik. Since t ∈ Bi⊕bik

and t < bi⊕bik,j we know that f (i⊕ bik ⊕ t, t) < bik = gi (bik) .

From this and i ⊕ bik ⊕ t = i ⊕ (bik + t) we know from the definition of Fi that

Fi (bik + t− t, f (i⊕ (bik + t) , t)) = Fi (bik, f (i⊕ bik ⊕ t, t)) = 0, which means the tth

member of list (2) is a 0.

This finishes conclusion 3. We now prove conclusion 1 for bi,k+1. Therefore, we show

that gi (bi,k+1) = bi,k+1.Of course, bi,k+1 = bik + bi⊕bik,j where bi⊕bik,j ∈ Bi⊕bik
and

f (i⊕ bik ⊕ bi⊕bik,j, bi⊕bik,j) ≥ bik. By induction with game Gi⊕bik
, gi⊕bik

(bi⊕bik,j) =

bi⊕bik,j. We now know that gi (bik + t) = gi⊕bik
(t) , t = 1, 2, 3, · · · , bi,k+1 − bik − 1 =

bi⊕bik,j − 1.

Since gi⊕bik
(bi⊕bik,j) = bi⊕bik,j, we know that all terms in the following list (3) are 1’s

except the final term which is 0.
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3. Fi⊕bik
(bi⊕bik,j − 1, f (i⊕ bik ⊕ bi⊕bik,j, 1)) , Fi⊕bik

(bi⊕bik,j − 2, f (i⊕ bik ⊕ bi⊕bik,j, 2)) , · · · ,

Fi⊕bik
(1, f (i⊕ bik ⊕ bi⊕bik,j, bi⊕bik,j − 1)) , Fi⊕bik

(0, f (i⊕ bik ⊕ bi⊕bik,j, bi⊕bik,j)) = 0.

Now gi (bi,k+1) = gi (bik + bi⊕bik,j) is the position of the first 0 in list (4) where we

note that the position of a term Fi (bik + bi⊕bik,j − i, f (i⊕ (bik + bi⊕bik,j) , i)) is i.

4. Fi(bik + bi⊕bik,j−1, f(i⊕ (bik + bi⊕bik,j), 1)), Fi(bik + bi⊕bik,j−2, f(i⊕ (bik + bi⊕bik,j), 2)),

. . . , Fi (bik + 1, f (i⊕ (bik + bi⊕bik,j) , bi⊕bik,j − 1)) , [Fi (bik, f (i⊕ (bik + bi⊕bik,j) , bi⊕bik,j))]
∗ ,

Fi (bik − 1, f (i⊕ (bik + bi⊕bik,j) , bi⊕bik,j + 1)) , Fi (bik − 2, f (i⊕ (bik + bi⊕bik,j) , bi⊕bik,j + 2)) , . . . ,

Fi (1, f (i⊕ (bik + bi⊕bik,j) , bi⊕bik,j + bik − 1)) , Fi (0, f (i⊕ (bik + bi⊕bik,j) , bi⊕bik,j + bik)) =

0.

Since gi (bik + t) = gi⊕bik
(t) , t = 1, 2, . . . , bi⊕bik,j − 1, and since i ⊕ (bik + bi⊕bik,j) =

i ⊕ bik ⊕ bi⊕bik,j as always we know from the definitions of Fi and Fi⊕bik
that the first

bi⊕bik,j−1 terms of list (4) are the same as the first bi⊕bik,j−1 terms of list (3) which means

that the first bi⊕bik,j − 1 terms of list (4) are 1’s.

Now [Fi (bik, f (i⊕ (bik + bi⊕bik,j) , bi⊕bik,j))]
∗ = 1 from the definition of Fi since

f (i⊕ (bik ⊕ bi⊕bik,j) , bi⊕bik,j) ≥ gi (bik) = bik.

Note that the last term in list (4) is 0. As always, ∀x ∈ N if 1 ≤ x ≤ bik − 1 then

gi (bik − x) ≤ bik − x.

Also, from condition (2) on f : N × N → N, f (i⊕ (bik + bi⊕bik,j) , bi⊕bik,j + x) ≥

f (i⊕ (bik + bi⊕bik,j) , bi⊕bik,j)− x ≥ bik − x.

Therefore, ∀x ∈ N if 1 ≤ x ≤ bik − 1 then

gi (bik − x) ≤ bik − x ≤ f (i⊕ bik ⊕ bi⊕bik,j, bi⊕bik,j + x) .

From the definition of Fi, we now know that all terms in list (4) are 1’s except the

last term which is 0. Therefore, since list (4) has bik + bi⊕bik,j = bi,k+1 terms, we see that

gi (bi,k+1) = bi,k+1.

Bases for the Gi, i = 0, 1, 2, . . . , t− 1. Suppose f : N ×N → N satisfies (1). ∃t ∈ N

such that ∀n, x ∈ N, f (n, x) = f (n + t, x). For each Gi, i = 0, 1, 2, . . . , t − 1, we assume

that a base Bi = (bi0 = 1, bi1, bi2, . . .) and a function Θi : Bi → N has been generated
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that satisfies the following conditions. First, bi0 = 1, Θi (1) = 1, bi1 = 2, Θi (2) = 2. Also,

∀i ∈ {0, 1, 2, . . . , t − 1},∀k ≥ 1, bi,k+1 = bik + bi⊕bik,j where bi⊕bik,j is the smallest mem-

ber of Bi⊕bik
such that (∗ ∗ ∗) Θi⊕bik

(bi⊕bik,j) = bi⊕bik,j and f (i⊕ bik ⊕ bi⊕bik,j, bi⊕bik,j) ≥

Θi (bik) if such a bi⊕bik,j exists. Also, once bi⊕bik,j and bi,k+1 are computed, we define

Θi (bi,k+1) = min {bi⊕bik,j + x̄ : 1 ≤ x̄ ≤ bik and f (i⊕ bi,k+1, bi⊕bik,j + x̄) < gi (bik − x̄)}. Of

course, min S is the smallest member of S. Also, each base Bi has been generated as far

as possible.

Theorem 2 Suppose f : N ×N → N satisfies (1) ∃t ∈ N such that ∀n, x ∈ N.f (n, x) =

f (n + t, x). Also, ∀Gi, i = 0, 1, 2, . . . , t − 1, a base Bi and a function Θi : Bi → N have

been generated.

Then the following is true.

1. ∀i = 0, 1, 2, . . . , t− 1,∀bik ∈ Bi, gi (bik) = Θi (bik) .

2. ∀i = 0, 1, 2, . . . , t− 1,∀n ∈ N\Bi, 1 ≤ gi (n) < n.

3. ∀i = 0, 1, 2, . . . , t− 1,∀n ∈ N\Bi

(a) if bik < n < bi.k+1 then

n = bik + (n− bik) and gi (n) = gi⊕bik
(n− bik) and

(b) if bik < n and Bi is finite and bik is the largest member of Bi, then n = bik +

(n− bik) and gi (n) = gi⊕bik
(n− bik) .

Proof. The proof of theorem 2 is very similar to the proof of theorem 1 and is left

to the reader. [5] gives a complete proof of theorem 2 when t = 1. Also, [5] gives several

interesting applications of theorem 2 for t = 1.

Remark As Theorem 1 shows, sometimes the bases for Gi can be generated very easily.

However, it is usually much harder to generate these bases. For these bases that are hard

to generate, the reader might wonder what the value of the theory is. It turns out that

quite often the members of Bi grow exponentially. This means that even though the bases
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may be hard to generate very often they will give extremely efficient storage of the strategy

of the game.

Example 2 Two alternating players play the game G0 that uses the move function f :

N × N → N defined by (1) f (n, 3) = 4 if n is odd and (2) f (n, x) = 2x for all other

n, x ∈ N . This means that f (n, x) satisfies the conditions of theorem 1 where t = 2. This

means that we must deal with the two games G0 and G1 and generate the two bases B0 and

B1. This is reasonably easy to do. So we will just state the result and leave the details to

the reader.

First, let (F0, F1, F2, F3, . . .) = (1, 2, 3, 5, 8, 13, 21, . . .) denote the Fibonacci sequence.

Then B0 and B1 are specified as follows where the pattern in braces [ ] repeats itself as we

have illustrated.

B0 =


F0, F1, F2, F3, F4, F5,

[F6 + F1, F7 + F2 + 1, F8 + F3 + 1, F9 + F4, F10 + F5 − 1, F11 + F6 − 1] ,

[F12 + F7, F13 + F8 + 1, F14 + F9 + 1, F15 + F10, F16 + F11 − 1, F17 + F12 − 1] , . . .


B1 =


F0, F1, F2, F3, F4 + F1,

F5 + F1, [F6 + F1, F7 + F2 − 1, F8 + F3 − 1, F9 + F4, F10 + F5 + 1, F11 + F6 + 1] ,

[F12 + F7, F13 + F8 − 1, F14 + F9 − 1, F15 + F10, F16 + F11 + 1, F17 + F12 + 1] , . . .


The reader may note that if f (n, x) = 2x, then t = 1 and B0 = {1, 2, 3, 5, 8, 13, 21, . . .}.

This game is called Fibonacci Nim. In [3] we found all functions for which theorem 1 is

effective for t = 1. Of course, t = 1 when f (n, x) = f (x) .
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