Creating Semi-Magic, Magic and Extra Magic $n \times n$ Squares when n is Odd

Harold Reiter
Department of Mathematics, University of North Carolina Charlotte, Charlotte, NC 28223, USA
hbreiter@email.uncc.edu

1 Abstract

We define a simple algorithm for creating large numbers of semi-magic $n \times n$ squares when n is odd. Special cases of the algorithm can also be used to easily create magic and extra magic (or panmagic) $n \times n$ squares when n is odd. The algorithm can also create extremely magic $n \times n$ squares when $n \geq 5$ is prime. These extremely magic $n \times n$ squares have n ! standard magic n-element subsets, and these n ! standard magic n-element subsets include the n rows and n columns as well as the $2 n$ generalized diagonals.

2 Introduction

Suppose the positive integers $1,2,3, \cdots, n^{2}$ are assigned to the n^{2} positions of a $n \times n$ matrix. Also, suppose the sums of the n entries in each row and in each column have the common value $\frac{1}{n}\left[1+2+3+\cdots+n^{2}\right]=\frac{n}{2}\left(n^{2}+1\right)$.

This arrangement of $1,2, \cdots, n^{2}$ is called a semi-magic square. If the sums of the n entries in each of the two main diagonals also have this common value $\frac{n}{2}\left(n^{2}+1\right)$, the arrangement is called a magic square. Thus, the following give two semi-magic squares with the second also being a magic square.

1	5	9
8	3	4
6	7	2

4	3	8
9	5	1
2	7	6

Fig. 1
We define extra magic squares in Section 9.
In this note we define a simple algorithm for creating large numbers of semi-magic $n \times n$ squares when n is odd. Special cases of the algorithm can also be used to easily create magic and extra magic $n \times n$ squares when n is odd. In a subsequent paper we use the algorithm to create extrememly magic 5×5 squares.

3 Basic Matrix Notation

Suppose we have a $n \times n$ square matrix as in Fig. 1. We number the columns in the order $0,1,2,3, \cdots, n-1$ with the left column numbered 0 and the right column numbered $n-1$.

Also, we number the rows in the order $0,1,2, \cdots, n-1$ with the top row numbered 0 and the bottom row numbered $n-1$. As in the usual matrix notation, let square (i, j) be the square in the $i^{\text {th }}$ row from the top and the $j^{\text {th }}$ column from the left. Thus, the top left square is denoted by $(0,0)$, the top right square is denoted by $(0, n-1)$, the bottom left square is denoted by $(n-1,0)$ and the bottom right square is denoted by $(n-1, n-1)$.

4 An Algorithm for Creating Semi-Magic $n \times n$ Squares when n is Odd

Let n be a fixed odd positive integer. Suppose the letters $a_{0}, a_{1}, a_{2}, \cdots, a_{n-1}$ are any arbitrary but fixed permutation of the positive integers $1,2,3, \cdots, n$. Also, the letters $A_{0}, A_{1}, A_{2}, \cdots, A_{n-1}$ are any arbitrary but fixed permutation of the integers $1,2,3, \cdots, n$.

First, we agree that $t, l \in\{1,2,3, \cdots, n-1\}$ and $(t, n)=1,(l, n)=1,(t+l, n)=1$. That is, (t, n) are relatively prime, (l, n) are relatively prime and $(t+l, n)$ are relatively prime. Such integers t, l exist since n is odd. For example, we can let $t=l=1$ where $t+l=2$.

We now assign ordered pairs $\left(a_{x_{i}}, A_{y_{j}}\right)$ to the squares (i, j) of a $n \times n$ matrix where n is odd according to the following rules.

First, in the top row we assign in order the ordered pairs $\left(a_{0}, A_{0}\right),\left(a_{1}, A_{1}\right),\left(a_{2}, A_{2}\right),\left(a_{3}, A_{3}\right)$, newline $\cdots,\left(a_{n-1}, A_{n-1}\right)$ starting with $\left(a_{0}, A_{0}\right)$ in square $(0,0)$. Thus, $\left(a_{0}, A_{0}\right)$ is in square $(0,0),\left(a_{1}, A_{1}\right)$ in in square $(0,1),\left(a_{2}, A_{2}\right)$ is in square $(0,2), \cdots,\left(a_{n-1}, A_{n-1}\right)$ is in square $(0, n-1)$.

In each row $k, 1 \leq k \leq n-1$, we assign a_{0} to the square $(k,(k l) \bmod n)$ where $(k e) \bmod n$ is the remainder when $k l$ is divided by n. Of course, since (n, l) are relatively prime and $1 \leq k \leq n-1$, we see that $(k e) \bmod n \in\{1,2,3, \cdots, n-1\}$.

We now shorten this notation and simply say that in each row $k, 1 \leq k \leq n-1$, we assign a_{0} to the square $(k . k l)$ where we agree that $k l$ is computed $\bmod n$.

Also, in each row $k, 1 \leq k \leq n-1$, starting with the a_{0} in square $(k, k l)$ we assign $a_{1}, a_{2}, \cdots, a_{n-1}$ to the other squares in row k so that $a_{0}, a_{1}, a_{2}, \cdots, a_{n-1}$ remain in this order. Thus, if a_{0} is assigned to square (2,4) in row 2 and if $n=7$, we would have the following a_{i} 's in row 2 starting with a_{3} in square $(2,0)$ and ending with a_{2} in square $(2,6)$: $a_{3}, a_{4}, a_{5}, a_{6}, a_{0}, a_{1}, a_{2}$. Of course, from this it is obvious that each row contains all of the lower case letters $a_{0}, a_{1}, \cdots, a_{n-1}$ exactly one time.

Now since e and n are relatively prime, we see that $\{k l: k \in\{1,2, \cdots, n-1\}\}=$ $\{1,2,3, \cdots, n-1\}$. Also, since a_{0} is assigned to square (0,0), we can now easily see that each of the n columns $0,1,2,3, \cdots, n-1$ will contain a_{0} exactly one time. Also, since each row contains $a_{0}, a_{1}, a_{2}, a_{3}, \cdots, a_{n-1}$ in order and since each column contains a_{0} exactly one time, we easily see that each of the n columns $0,1,2,3, \cdots, n-1$ will contain each of the lower case $a_{0}, a_{1}, \cdots, a_{n-1}$ exactly one time.

We now assign $A_{0}, A_{1}, A_{2}, \cdots, A_{n-1}$ to the n squares of the first column (which we call column 0) by the following rule.

Of course, A_{0} has already been assigned to square $(0,0)$.
For each $1 \leq k \leq n-1$, we assign to the square $(k, 0)$ the upper case letter $A_{(k t) \bmod { }_{n}}$. As always, $(k, t) \bmod n$ is the remainder when $k t$ is divided by n. Since (t, n) are relatively prime and $1 \leq k \leq n-1$, we see that $(k t) \bmod n \in\{1,2, \cdots, n-1\}$.

We now shorten this notation and simply say that to each square $(k, 0), 1 \leq k \leq n-1$, we assign $A_{k t}$. Since (t, n) are relatively prime, we see that $\{k t: k \in\{1,2,3, \cdots, n-1\}\}=$ $\{1,2,3, \cdots, n-1\}$, From this and from the fact that A_{0} has been assigned to square $(0,0)$ we see that the n squares of the first column (which we are calling column 0), will contain each of the letters $A_{0}, A_{1}, A_{2}, \cdots, A_{n-1}$ exactly one time. Of course, in the top row (which we are calling row 0) we have in order the letters $A_{0,} A_{1}, A_{2}, \cdots, A_{n-1}$. For each row k, where $k \in\{1,2,3, \cdots, n-1\}$ we start with the letter $A_{k t}$ in the first square $(k, 0)$ and we write the letters $A_{0}, A_{1}, A_{2}, \cdots, A_{n-1}$ in this order. For example, suppose $n=7, k=4$ and suppose $A_{k t}=A_{3}$ has been assigned to the first square (4,0) in row 4. We now assign $A_{3}, A_{4}, A_{5}, A_{6}, A_{0}, A_{1}, A_{2}$ in this order to the $n=7$ squares of row $k=4$. That is, A_{3} is assigned to square $(4,0), A_{4}$ is assigned to square $(4,1), A_{5}$ is assigned to square $(4,2)$, etc.

Since the first column (which we are calling column 0) contains all of the letters A_{0}, A_{1}, A_{2}, \cdots, A_{n-1} and since the letters $A_{0}, A_{1}, A_{2}, \cdots, A_{n-1}$ remain in this order in each row, it is easy to see that each row will contain each of the letters $A_{0}, A_{1}, A_{2}, \cdots, A_{n-1}$ exactly one time and each column will contain each of the letters $A_{0}, A_{1}, A_{2}, \cdots, A_{n-1}$ exactly one time.

Of course, in the first row (which we call row 0), the pair (a_{0}, A_{0}) appears in the first square $(0,0)$. Let us now consider row k where $1 \leq k \leq n-1$.

Now $A_{k t}$ appears in the first square $(k, 0)$ of row k.
Also, a_{0} appears in square $(k, k l)$ of row k. Since $A_{0}, A_{1}, A_{2}, \cdots, A_{n-1}$ remain in order in each row $1 \leq k \leq n-1$ and since $A_{k t}$ appears in square $(k, 0)$ we see that $A_{k t+k l}=A_{k(t+e)}$ appears in square $(k, k l)$, where $k(t+e)$ is computed by mod n arithmetic. We know by hypothesis that $(t+e, n)$ are relatively prime. Therefore, $k(t+e) \in\{1,2, \cdots, n-1\}$. Therefore, in square $(k, k l)$ of row $k, 1 \leq k \leq n-1$, we have the ordered pair $\left(a_{0}, A_{k(t+e)}\right)$ where $A_{k(t+e)} \in\left\{A_{1,} A_{2}, \cdots, A_{n-1}\right\}$.

Now $\{k(t+l): k \in\{1,2, \cdots, n-1\}\}=\{1,2,3, \cdots, n-1\}$ since $(n, t+e)$ are relatively prime.

Also, $\left(a_{0}, A_{0}\right)$ appears in square $(0,0)$. From this, we see that all of the ordered pairs $\left(a_{0}, A_{0}\right),\left(a_{0}, A_{1}\right),\left(a_{0}, A_{2}\right),\left(a_{0}, A_{3}\right), \cdots,\left(a_{0}, A_{n-1}\right)$ are represented exactly one time on the $n \times n$ matrix that we are dealing with.

Since $a_{0}, a_{1}, a_{2}, \cdots, a_{n-1}$ in each row remain in this order and since $A_{0,} A_{1,}, A_{2}, \cdots, A_{n-1}$ in each row remain in this order and since all of the ordered pairs $\left(a_{0}, A_{0}\right),\left(a_{0}, A_{1}\right),\left(a_{0}, A_{2}\right)$ $\left(a_{0}, A_{3}\right), \cdots,\left(a_{0}, A_{n-1}\right)$ are represented one time each on the $n \times n$ matrix, we see that all of the ordered pairs $(r, s) \in\left\{a_{0}, a_{1}, a_{2}, \cdots, a_{n-1}\right\} \times\left\{A_{0}, A_{1}, A_{2}, \cdots, A_{n-1}\right\}$ are represented exactly one time each on the $n \times n$ matrix.

That is, for each $r \in\left\{a_{0}, a_{1}, a_{2}, \cdots, a_{n-1}\right\}$ and for each $s \in\left\{A_{0}, A_{1}, A_{2}, \cdots, A_{n-1}\right\}$ the ordered pair (r, s) is represented exactly one time on the $n \times n$ matrix. Remember now that $a_{0}, a_{1}, a_{2}, \cdots, a_{n-1}$ and $A_{0}, A_{1}, A_{2}, \cdots, A_{n-1}$ are permutations of $1,2,3, \cdots, n$.

For each ordered pair $(r, s) \in\left\{a_{0}, a_{1}, a_{2}, \cdots, a_{n-1}\right\} \times\left\{A_{0}, A_{1}, A_{2}, \cdots, A_{n-1}\right\}$, let us assign
the number $(r, s)^{\#}=r+n(s-1)$ where r, s are the numerical values that have been assigned to the letters r, s.

Now $1 \leq r \leq(r, s)^{\#}=r+n(s-1) \leq n+n(n-1)=n^{2}$. That is, $1 \leq(r, s)^{\#} \leq n^{2}$.
We now show that $(r, s)^{\#}=(\bar{r}, \bar{s})^{\#}$ if and only if $r=\bar{r}$ and $s=\bar{s}$.
First, suppose $s \neq \bar{s}$ and by symmetry suppose $s<\bar{s}$. We show that $(r, s)^{\#}<(\bar{r}, \bar{s})^{\#}$.
Now $(r, s)^{\#}=r+n(s-1)$ and $(\bar{r}, \bar{s})^{\#}=\bar{r}+n(\bar{s}-1)$, we now show that $r+n(s-1)<$ $\bar{r}+n(\bar{s}-1)$. This is equivalent to $r-\bar{r}<n(\bar{s}-s)$.

Since $r, \bar{r}, s, \bar{s} \in\{1,2,3, \cdots, n\}$ and $s<\bar{s}$, we see that $r-\bar{r}<n \leq n(\bar{s}-s)$.
Therefore, $r-\bar{r}<n(\bar{s}-s)$.
If $s=\bar{s}$ then obviously, $(r, s)^{\#}=(\bar{r}, \bar{s})^{\#}$ if and only if $r=\bar{r}$.
Therefore, $(r, s)^{\#}=(\bar{r}, \bar{s})^{\#}$ if and only if $r=\bar{r}$ and $s=\bar{s}$.
From this we see that $\left\{(r, s)^{\#}: r, s \in\{1,2,3, \cdots, n\}\right\}=\left\{1,2,3,4, \cdots, n^{2}\right\}$.
Let us now represent the entries of the $n \times n$ matrix that we are dealing with by ($r_{i j}, s_{i j}$) where $r_{i j}, s_{i j}$ are the numerical values that are assigned to the ordered pair of square (i, j) where $i, j \in\{0,1,2, \cdots, n-1\}$. Thus, suppose $\left(a_{5}, A_{2}\right)$ is the ordered pair assigned to the square $(2,3)$ and suppose $a_{5}=7, A_{2}=4$. Then $\left(r_{23}, s_{23}\right)=(7,4)$.

We also define the $n \times n$ matrix $\left(r_{i j}, s_{i j}\right)^{\#}, i, j \in\{0,1,2, \cdots, n-1\}$, and show that this matrix is always a semi-magic square and is sometimes a magic square and is sometimes an extra magic square.

We now show that for each $t \in\{0,1,2, \cdots, n-1\}$
$(*) \sum_{i=0}^{n-1}\left(r_{t i}, s_{t i}\right)^{\#}=\frac{n}{2}\left(n^{2}+1\right)$ and $(* *) \sum_{i=0}^{n-1}\left(r_{i t}, s_{i t}\right)^{\#}=\frac{n}{2}\left(n^{2}+1\right)$.
$(*),(* *)$ mean that the sums of the n numbers in row t and column t respectively equal $\frac{n}{2}\left(n^{2}+1\right)$.

Now, $\sum_{i=0}^{n-1}\left(r_{t i}, s_{t i}\right)^{\#}=\sum_{i=0}^{n-1}\left(r_{t i}+n\left(s_{t i}-1\right)\right)=\sum_{i=0}^{n-1} r_{t i}+n \cdot \sum_{i=0}^{n-1}\left(s_{t i}-1\right)=(* * *)$.
Now $\left\{r_{t 0}, r_{t i}, r_{t 2}, \cdots, r_{t, n-1}\right\}=\{1,2,3, \cdots, n\}$ since each row t contains all of the letters $a_{0}, a_{1}, a_{2}, \cdots, a_{n-1}$ and $a_{0}, a_{1}, a_{2}, \cdots, a_{n-1}$ is a permutation of $1,2,3, \cdots, n$.

Also, $\left\{s_{t 0}, s_{t 1}, s_{t 2}, \cdots, s_{t n-1},\right\}=\{1,2,3, \cdots, n\}$ since each row t contain all of the letters $A_{0}, A_{1}, A_{2}, \cdots, A_{n-1}$ and $A_{0}, A_{1}, A_{2}, \cdots, A_{n-1}$ is a permutation of $1,2,3, \cdots, n$.

Thus,

$$
\begin{aligned}
(* * *) & =(1+2+\cdots+n)+n(0+1+2+\cdots+(n-1)) \\
& =\frac{n}{2}(n+1)+n\left(\frac{n-1}{2}\right)(n) \\
& =\frac{n}{2}\left[n+1+n^{2}-n\right] \\
& =\frac{n}{2}\left(n^{2}+1\right) .
\end{aligned}
$$

Likewise $(* *)$ is true for the same reasons. Thus, from $(*),(* *)$ we see that the $n \times n$ matrix become a semi-magic square when $\left(r_{i j}, s_{i j}\right)^{\#}$ are assigned to squares (i, j). Instead of using the code $(r, s)^{\#}=r+n(s-1)$ we can also substitute the code $(r, s)^{\#}=s+n(r-1)$. This new code will always give a semi-magic $n \times n$ square when n is odd.

5 Using the Algorithm to Create Magic Squares

In the algorithm of Section 4 let $t=1, e=1$. Of course, (t, n) and (e, n) are relatively prime. Also, $(t+e, n)=(2, n)$ are relatively prime since n is odd.

As always, $\left(a_{0}, A_{0}\right)$ is assigned to square $(0,0)$.
In each row $k, 1 \leq k \leq n-1$, we assign a_{0} to square $(k, k l)=(k, k)$. This means that a_{0} is assigned to each of the diagonal squares $(0,0),(1,1),(2,2), \cdots,(n-1, n-1)$. Also, for each $1 \leq k \leq n-1$, we assign to the square $(k, 0)$ the upper case letter $A_{k t}=A_{k}$. Thus, in the first column we are assigning A_{0} to square (0,0) and we assign in order $A_{1,} A_{2}, A_{3}, \cdots, A_{n-1}$ to the squares $(1,0),(2,0),(3,0), \cdots,(n-1,0)$.

Now, the second diagonal of the $n \times n$ matrix consists of the squares $(0, n-1),(1, n-2)$, $(2, n-3), \cdots,(n-2,1),(n-1,0)$. That is, the second diagonal consists of the squares $(k, n-k-1), 0 \leq k \leq n-1$. Since A_{k} is assigned to square $(k, 0), 0 \leq k \leq n-1$, we see that $A_{k+(n-k-1)}=A_{n-1}$ is assigned to each of the squares of the second diagonal.

Thus, in summary, a_{0} is assigned to each of the n squares of the first diagonal and A_{n-1} is assigned to each of the n squares of the second diagonal.

From Section 4, we know that each of the ordered pairs $(r, s) \in\left\{a_{0}, a_{1}, a_{2}, \cdots, a_{n-1}\right\} \times$ $\left\{A_{0}, A_{1}, A_{2}, \cdots, A_{n-1}\right\}$ is represented exactly one time on the $n \times n$ matrix.

Therefore, we can easily see that the n squares of the first diagonal will contain each of the ordered pairs $\left(a_{0}, A_{0}\right),\left(a_{0}, A_{1}\right),\left(a_{0}, A_{2}\right), \cdots,\left(a_{0}, A_{n-1}\right)$ exactly one time.

Also, we easily see that the n squares of the second diagonal will contain each of the ordered pairs $\left(a_{0}, A_{n-1}\right),\left(a_{1}, A_{n-1}\right),\left(a_{2}, A_{n-1}\right), \cdots,\left(a_{n-1}, A_{n-1}\right)$ exactly one time.

We now let $a_{0}, a_{1}, a_{2}, \cdots, a_{n-1}$ be any permutation of $1,2,3, \cdots, n$ subject to the one condition $a_{0}=\frac{n+1}{2}$.

We also let $A_{0}, A_{1}, A_{2}, \cdots, A_{n-1}$ be any permutation of $1,2,3, \cdots, n$ subject to the one condition $A_{n-1}=\frac{n+1}{2}$.

Of course, the algorithm of Section 4 will always produce a $n \times n$ semi-magic square when n is odd.

We now show that the $n \times n$ semi-magic square that we have just defined is also a magic square where the sum of the n entries in each of the two main diagonals equals $\frac{n}{2}\left(n^{2}+1\right)$. Now the sum of the n entries in the first diagonal squares $(0,0),(1,1),(2,2), \cdots,(n-1, n-1)$ equals

$$
\begin{aligned}
\sum_{i=0}^{n-1}\left(a_{0}, A_{i}\right)^{\#} & =\sum_{i=0}^{n-1}\left(a_{0}+n\left(A_{i}-1\right)\right) \\
& =\left(\sum_{i=0}^{n-1} a_{0}\right)+n \cdot \sum_{i=0}^{n-1}\left(A_{i}-1\right) \\
& =n \cdot a_{0}+n(0+1+2+\cdots+n-1) \\
& =n\left(\frac{n+1}{2}\right)+\frac{n^{2}}{2}(n-1) \\
& =\frac{n}{2}\left[n+1+n^{2}-n\right] \\
& =\frac{n}{2}\left(n^{2}+1\right)
\end{aligned}
$$

Also, the sum of the entries in the second diagonal squares $(0, n-1),(1, n-2),(2, n-3), \cdots,(n-1,0)$ equals

$$
\begin{aligned}
\sum_{i=0}^{n-1}\left(a_{i}, A_{n-1}\right)^{\#} & =\sum_{i=0}^{n-1}\left(a_{i}+n\left(A_{n-1}-1\right)\right) \\
& =\sum_{i=0}^{n-1} a_{i}+n \cdot \sum_{i=0}^{n-1}\left(A_{n-1}-1\right) \\
& =(1+2+\cdots+n)+n \cdot \sum_{i=0}^{n-1}\left(\frac{n+1}{2}-1\right) \\
& =\frac{n}{2}(n+1)+n\left(\frac{n-1}{2}\right)(n) \\
& =\frac{n}{2}\left[n+1+n^{2}-n\right] \\
& =\frac{n}{2}\left(n^{2}+1\right) .
\end{aligned}
$$

Thus, we have a magic $n \times n$ square when n is odd.

6 An Observation

In the Section 4 algorithm we know that for $1 \leq k \leq n-1, a_{0}$ is assigned to square $(k, k l)$ where $k l \in\{1,2,3, \cdots, n-1\}$ and $k l$ is computed $\bmod n$.

Thus, for $1 \leq k \leq n-1$ we have $a_{-k l}=a_{(n-l) k}$ assigned to square $(k, 0)$ where $-k l, n-l$, and $(n-l) k$ are computed $\bmod n$. Letting $n-l=\bar{l}$ we see that for $1 \leq k \leq n-1$ we have $a_{\bar{l} k}$ and $A_{t k}$ assigned to square $(k, 0)$ where $(t, n),(\bar{l}, n),(t-\bar{l}, n)$ are all relatively prime. As always $\left(a_{0}, A_{0}\right)$ is assigned to square $(0,0)$. Thus, we have an alternative way of defining the $n \times n$ semi-magic square when n is odd.

7 A Specific Example of the Algorithm

In the Section 4 algorithm, we now let $n=5, l=2, t=2, l+t=4$. This leads to the following 5×5 matrix.

$\left(a_{0}, A_{0}\right)$	$\left(a_{1}, A_{1}\right)$	$\left(a_{2}, A_{2}\right)$	$\left(a_{3}, A_{3}\right)$	$\left(a_{4}, A_{4}\right)$
$\left(a_{3}, A_{2}\right)$	$\left(a_{4}, A_{3}\right)$	$\left(a_{0}, A_{4}\right)$	$\left(a_{1}, A_{0}\right)$	$\left(a_{2}, A_{1}\right)$
$\left(a_{1}, A_{4}\right)$	$\left(a_{2}, A_{0}\right)$	$\left(a_{3}, A_{1}\right)$	$\left(a_{4}, A_{2}\right)$	$\left(a_{0}, A_{3}\right)$
$\left(a_{4}, A_{1}\right)$	$\left(a_{0}, A_{2}\right)$	$\left(a_{1}, A_{3}\right)$	$\left(a_{2}, A_{4}\right)$	$\left(a_{3}, A_{0}\right)$
$\left(a_{2}, A_{3}\right)$	$\left(a_{3}, A_{4}\right)$	$\left(a_{4}, A_{0}\right)$	$\left(a_{0}, A_{1}\right)$	$\left(a_{0}, A_{2}\right)$

Fig. 2. A 5×5 matrix.
We now let $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}\right)=(3,5,1,2,4)$ and $\left(A_{0}, A_{1}, A_{2}, A_{3}, A_{4}\right)=(2,1,5,4,3)$.
Using the code $(r, s)^{\#}=r+n(s-1)=r+5(s-1)$ with the 5×5 matrix of Fig. 2 we have the 5×5 semi-magic square of Fig. 3. The sum of the 5 entries in each row and in such column will be $\frac{5}{2}\left(5^{2}+1\right)=65$.

8	5	21	17	14
22	19	13	10	1
15	6	2	24	18
4	23	20	11	7
16	12	9	3	25

Fig. 3 A 5×5 Semi-Magic Square
It turns out that Fig. 3 is also a magic square and an extra magic square. We deal with extra magic squares in Sections 9-11.

8 A 5×5 Magic Square

We let the reader use Section 5 to create a 5×5 Magic Square by letting $t=e=1, n=$ $5, a_{0}=\frac{n+1}{2}=3, A_{4}=\frac{n+1}{2}=3$.

The reader can try different combinations from $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}=\{1,2,4,5\}$ and $\left\{A_{0}, A_{1}, A_{2}, A_{3}\right\}=$ $\{1,2,4,5\}$. All combinations will lead to Magic 5×5 Square.

9 Generalizing the Algorithm of Section 4

We can generalize the algorithm of Section 4 by replacing the sequence $a_{0}, a_{m}, a_{2 m}, \cdots, a_{(n-1) m}$ for $a_{1}, a_{2}, a_{3}, \cdots, a_{n-1}$ and replacing the sequence $A_{0}, A_{\bar{m}}, A_{2 \bar{m}}, \cdots, A_{(n-1) \bar{m}}$ for $A_{0}, A_{1}, A_{2}, \cdots, A_{n-1}$ where $m, \bar{m} \in\{1,2,3, \cdots, n-1\}$ and $(m, n),(\bar{m}, n)$ are relatively prime. The main ideas of Section 4 remain unchanged in this generalization. For example, $A_{k t}$ goes in each square $(k, 0), k \in\{0,1,2, \cdots, n-1\}$, and a_{0} goes in each square $(k, k l), k \in\{0,1,2, \cdots, n-1\}$, where $(t, n),(e, n)$ are relatively prime. Instead of requiring that $(t+e, n)$ be relatively prime we require that $(t+\bar{m} e, n)$ be relatively prime.

10 Extra Magic Squares

As in Section 5, the first main diagonal consists of the squares $(k, k), k \in\{0,1,2, \cdots, n-1\}$, and the second main diagonal consists of the squares $(k, n-1-k), k \in\{0,1,2, \cdots, n-1\}$. For each fixed $a \in\{0,1,2, \cdots, n-1\}$ we define a generalized first type diagonal D_{a} as $D_{a}=$ $\{(k, k+a): k \in\{0,1,2, \cdots, n-1\}\}$. Also, for each fixed $a \in\{0,1,2, \cdots, n-1\}$ we define a generalized second type diagonal \bar{D}_{a} as $\bar{D}_{a}=\{(k, n-1-k+a): k \in\{0,1,2, \cdots, n-1\}\}$. All operations use $\bmod n$ arithmetic. A semi-magic $n \times n$ square is called a strong magic $n \times n$ square if the sum of the n entries on each generalized first type diagonal equals $\frac{n}{2}\left(n^{2}+1\right)$ and the sum of the n entries on each generalized second type diagonal equals $\frac{n}{2}\left(n^{2}+1\right)$.

11 Creating Extra Magic $n \times n$ Squares when n is Odd

If the average value of the a_{i} 's on each generalized diagonal equals $\frac{n+1}{2}$ and the average value of the A_{i} 's on each generalized diagonal equals $\frac{n+1}{2}$ and the sum of the n entries on each
generalized diagonal will equal

$$
\begin{aligned}
\sum_{(i, j) \in \text { diagonal }}\left(r_{i j}, s_{i j}\right)^{\#} & =\sum_{(i, j) \in \text { diagonal }}\left(r_{i j}+n\left(s_{i j}-1\right)\right) \\
& =\left(\sum r_{i j}\right)+n \cdot\left(\sum s_{i j}\right)-n^{2} \\
& =n\left(\frac{n+1}{2}\right)+n^{2}\left(\frac{n+1}{2}\right)-n^{2} \\
& =\frac{n}{2}\left[n+1+n^{2}+n-2 n\right] \\
& =\frac{n}{2}\left(n^{2}+1\right) .
\end{aligned}
$$

One way to have the average value of the a_{i} 's and the average value of the A_{i} 's on each generalized diagonal equal to $\frac{n+1}{2}$ is to have each of $a_{0}, a_{1}, a_{2}, \cdots, a_{n-1}$ and to have each of $A_{0}, A_{1}, A_{2}, \cdots, A_{n-1}$ appear on each generalized diagonal. It is often possible to do this and we consider this first. As always, all arithmetic is $\bmod n$.

First, we observe that if each of the two main diagonals contain all of the letters $a_{0}, a_{1}, a_{2}, \cdots, a_{n-1}$ and contain all of the letters $A_{0}, A_{1}, A_{2}, \cdots, A_{n-1}$ then all of the generalized diagonals will also contain all of the letters a_{0}, a_{1}, a_{n-1} and contain all of the letters A_{0}, A_{1}, A_{n-1}.

For each row $k \in[0,1,2, \cdots, n-1]$ square $(k, 0)$ will contain $A_{k t}$ and square ($k, e k$) will contain a_{0}. Therefore, the first main diagonal square (k, k) will contain $A_{k t+k}=A_{k(t+1)}$ and will contain $a_{0+k-k l}=a_{k(1-e)}=a_{k(n+1-e)}$. Therefore, the first main diagonal will contain all of $a_{0}, a_{1}, a_{2}, \cdots, a_{n-1}$ if $(e-1, n)$ are relatively prime and will contain all of $A_{0}, A_{1}, A_{2}, \cdots, A_{n-1}$ if $(t+1, n)$ are relatively prime.

Also, the second main diagonal square ($k, n-1-k$) will contain $A_{k t+n-1-k}=A_{n-1+k(t-1)}$ and will contain $a_{0+n-1-k-k l}=a_{n-1-k(e+1)}$.

Therefore, the second main diagonal will contain all of $a_{0}, a_{1}, a_{2}, \cdots, a_{n-1}$ if $(e+1, n)$ are relatively prime and contain all of $A_{0}, A_{1}, A_{2}, \cdots, A_{n-1}$ if $(t-1, n)$ are relatively prime.

Recall that $(t, n),(l, n),(t+l, n)$ must be relatively prime in order to have a semi-magic square. If we also have $(t+1, n),(t-1, n),(l+1, n),(l-1, n)$ are relatively prime, then we have an extra magic square. This is easy to do when $n \geq 5$ and n is prime.

Next, suppose (a or b) is true and (c or d) is true in addition to $(t, n),(l, n),(t+l, n)$ are relatively prime.
a. $(t+1, n)$ are relatively prime and $n \nmid t-1$.
b. $(t-1, n)$ are relatively prime and $n \nmid t+1$.
c. $(l+1, n)$ are relatively prime and $n \nmid l-1$.
d. $(l-1, n)$ are relatively prime and $n \nmid l+1$.

It is now easy to use the idea stated at the beginning of this section to create extra magic $n \times n$ squares. We let the reader do this for himself when $n=9, l=2, t=5, l-t=7$. When the reader fills in the $\left(a_{i j}, A_{i j}\right)$'s of the 9×9 matrix, he will observe the following.

Each of the generalized 1st diagonals will contain each of the letters
$a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}$.
Each of the generalized 1st diagonals will contain $A_{0}, A_{3}, A_{6}, A_{0}, A_{3}, A_{6}, A_{0}, A_{3}, A_{6}$ or $A_{0}, A_{4}, A_{7}, A_{1}, A_{4}, A_{7}, A_{1}, A_{4}, A_{7}$ or $A_{2}, A_{5}, A_{8}, A_{2}, A_{5}, A_{8}, A_{2}, A_{5}, A_{8}$.

Also, each of the generalized 2nd diagonals will contain each of the letters $A_{0}, A_{1}, A_{2}, A_{3}$, $A_{4}, A_{5}, A_{6}, A_{7}, A_{8}$. Also, each of the generalized 2 nd diagonals will contain $a_{0}, a_{3}, a_{6}, a_{0}, a_{3}, a_{6}$, a_{0}, a_{3}, a_{6} or $a_{1}, a_{4}, a_{7}, a_{1}, a_{4}, a_{7}, a_{1}, a_{4}, a_{7}$ or $a_{2}, a_{5}, a_{8}, a_{2}, a_{5}, a_{8}, a_{2}, a_{5}, a_{8}$. We now choose $a_{0}=$ $1, a_{3}=5, a_{6}=9$ and $a_{1}=2, a_{4}=6, a_{7}=7$ and $a_{2}=3, a_{5}=4, a_{8}=8$.

Also, we choose $A_{0}=1, A_{3}=5, A_{6}=9$ and $A_{1}=2, A_{4}=6, A_{7}=7$ and $A_{2}=3, A_{5}=$ $4, A_{8}=8$.

We now observe that

$$
\begin{aligned}
\frac{a_{0}+a_{3}+a_{6}}{3} & =\frac{a_{1}+a_{4}+a_{7}}{3} \\
& =\frac{a_{2}+a_{5}+a_{8}}{3} \\
& =\frac{A_{0}+A_{3}+A_{6}}{3} \\
& =\frac{A_{1}+A_{4}+A_{7}}{3} \\
& =\frac{A_{2}+A_{5}+A_{8}}{3} \\
& =\frac{n+1}{2} \\
& =5
\end{aligned}
$$

Of course, $\sum_{i=0}^{8} \frac{a_{i}}{9}=\sum_{i=0}^{8} \frac{A_{i}}{9}=\frac{n+1}{2}=5$.
Therefore, when we use the code $(r, s)^{\#}=r+n(s-1)=r+9(s-1)$ we will have an extra magic 9×9 square. This example illustrates the general pattern when (a or b) and (c or d) are true. As a project the reader can also consider $n=15, l=t=2$.

12 An Extra Magic 5×5 Square

We let $n=5, l=t=2, e+t=4$. We see that $(l, n),(t, n),(l+t, n),(t-1, n),(t+1, n)$, $(l-1, n),(l+1, n)$ are all relatively prime.

This gives the extra magic 5×5 square of Figs. 2,3 when we choose $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{4}\right)=$ $(3,5,1,2,4)$ and $\left(A_{0}, A_{1}, A_{2}, A_{3}, A_{4}\right)=(2,1,5,4,3)$. Of course, any permutations $a_{0}, a_{1}, a_{2}, a_{3}, a_{4}$ and $A_{0}, A_{1}, A_{2}, A_{3}, A_{4}$ of $1,2,3,4,5$ will give an extra magic 5×5 square and the reader might like to try a few.

The generalized algorithm of Section 8 can be used to create far more extra magic 5×5 square.

In a subsequent paper, we show that the magic 5×5 square of Fig. 2 is also extremely magic. This means that it has 120 standard five element magic subsets whose sum is 65 . These include the five rows, five columns, and the ten generalized diagonals.

13 Some Concluding Remarks

Suppose we have a $n \times n$ semi-magic square.
First, suppose $a_{k i_{1}}, a_{k i_{2}}, \cdots, a_{k i_{m}}$ and $a_{l i_{1}}, a_{l i_{2}}, \cdots, a_{l i_{m}}$ are m entries in rows k, l of this $n \times n$ semi-magic square where $1 \leq k<l \leq n$ and $1<i_{1}<i_{2}<\cdots<i_{m} \leq n$.

If $\sum_{j=1}^{m} a_{k i j}=\sum_{j=1}^{m} a_{l i j}$ then we can interchange $\left(a_{k i_{1}}, a_{k^{\prime} i_{2}}, \cdots, a_{k i_{m}}\right)$ and $\left(a_{l i_{1}}, a_{l i_{2}}, a_{l i_{m}}\right)$ and still have a $n \times n$ semi-magic square.

Likewise, we can do the same thing for m entries, in columns $k<l$ of a $n \times n$ semi-magic square.

Thus, in particular we can interchange any two rows and interchange any two columns of a $n \times n$ semi-magic square, and still have a semi-magic square.

Finally, we mention that we must add a new technique in order to define a $n \times n$ semimagic square or a $n \times n$ magic square when n is an even positive integer. We also note that there does not exist a semi-magic 2×2 square and this is one difficulty in defining semi-magic and magic $n \times n$ square when n is even.

