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1 Abstract

We define a simple algorithm for creating large numbers of semi-magic n× n squares when
n is odd. Special cases of the algorithm can also be used to easily create magic and extra
magic (or panmagic) n× n squares when n is odd. The algorithm can also create extremely
magic n × n squares when n ≥ 5 is prime. These extremely magic n × n squares have n!
standard magic n-element subsets, and these n! standard magic n-element subsets include
the n rows and n columns as well as the 2n generalized diagonals.

2 Introduction

Suppose the positive integers 1, 2, 3, · · · , n2 are assigned to the n2 positions of a n×n matrix.
Also, suppose the sums of the n entries in each row and in each column have the common
value 1

n
[1 + 2 + 3 + · · ·+ n2] = n

2
(n2 + 1) .

This arrangement of 1, 2, · · · , n2 is called a semi-magic square. If the sums of the n entries
in each of the two main diagonals also have this common value n

2
(n2 + 1), the arrangement

is called a magic square. Thus, the following give two semi-magic squares with the second
also being a magic square.

1 5 9
8 3 4
6 7 2

4 3 8
9 5 1
2 7 6

Fig. 1
We define extra magic squares in Section 9.
In this note we define a simple algorithm for creating large numbers of semi-magic n× n

squares when n is odd. Special cases of the algorithm can also be used to easily create magic
and extra magic n× n squares when n is odd. In a subsequent paper we use the algorithm
to create extrememly magic 5× 5 squares.
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3 Basic Matrix Notation

Suppose we have a n× n square matrix as in Fig. 1. We number the columns in the order
0, 1, 2, 3, · · · , n− 1 with the left column numbered 0 and the right column numbered n− 1.

Also, we number the rows in the order 0, 1, 2, · · · , n − 1 with the top row numbered 0
and the bottom row numbered n − 1. As in the usual matrix notation, let square (i, j) be
the square in the ith row from the top and the jth column from the left. Thus, the top left
square is denoted by (0, 0), the top right square is denoted by (0, n− 1), the bottom left
square is denoted by (n− 1, 0) and the bottom right square is denoted by (n− 1, n− 1) .

4 An Algorithm for Creating Semi-Magic n×n Squares

when n is Odd

Let n be a fixed odd positive integer. Suppose the letters a0, a1, a2, · · · , an−1 are any
arbitrary but fixed permutation of the positive integers 1, 2, 3, · · · , n. Also, the letters
A0, A1, A2, · · · , An−1 are any arbitrary but fixed permutation of the integers 1, 2, 3, · · · , n.

First, we agree that t, l ∈ {1, 2, 3, · · · , n− 1} and (t, n) = 1, (l, n) = 1, (t+ l, n) = 1.
That is, (t, n) are relatively prime, (l, n) are relatively prime and (t+ l, n) are relatively
prime. Such integers t, l exist since n is odd. For example, we can let t = l = 1 where
t+ l = 2.

We now assign ordered pairs
(
axi

, Ayj

)
to the squares (i, j) of a n× n matrix where n is

odd according to the following rules.
First, in the top row we assign in order the ordered pairs (a0, A0) , (a1, A1) , (a2, A2) , (a3, A3) ,

newline · · · , (an−1, An−1) starting with (a0, A0) in square (0, 0). Thus, (a0, A0) is in square
(0, 0) , (a1, A1) in in square (0, 1) , (a2, A2) is in square (0, 2) , · · · , (an−1, An−1) is in square
(0, n− 1) .

In each row k, 1 ≤ k ≤ n−1, we assign a0 to the square (k, (kl)mod n) where (ke)mod n
is the remainder when kl is divided by n. Of course, since (n, l) are relatively prime and
1 ≤ k ≤ n− 1, we see that (ke)mod n ∈ {1, 2, 3, · · · , n− 1} .

We now shorten this notation and simply say that in each row k, 1 ≤ k ≤ n−1, we assign
a0 to the square (k.kl) where we agree that kl is computed mod n.

Also, in each row k, 1 ≤ k ≤ n − 1, starting with the a0 in square (k, kl) we assign
a1, a2, · · · , an−1 to the other squares in row k so that a0, a1, a2, · · · , an−1 remain in this
order. Thus, if a0 is assigned to square (2, 4) in row 2 and if n = 7, we would have the
following ai’s in row 2 starting with a3 in square (2, 0) and ending with a2 in square (2, 6) :
a3, a4, a5, a6, a0, a1, a2. Of course, from this it is obvious that each row contains all of the
lower case letters a0, a1, · · · , an−1 exactly one time.

Now since e and n are relatively prime, we see that {kl : k ∈ {1, 2, · · · , n− 1}} =
{1, 2, 3, · · · , n− 1}. Also, since a0 is assigned to square (0, 0), we can now easily see that
each of the n columns 0, 1, 2, 3, · · · , n− 1 will contain a0 exactly one time. Also, since each
row contains a0, a1, a2, a3, · · · , an−1 in order and since each column contains a0 exactly one
time, we easily see that each of the n columns 0, 1, 2, 3, · · · , n − 1 will contain each of the
lower case a0, a1, · · · , an−1 exactly one time.
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We now assign A0, A1, A2, · · · , An−1 to the n squares of the first column (which we call
column 0) by the following rule.

Of course, A0 has already been assigned to square (0, 0) .
For each 1 ≤ k ≤ n− 1, we assign to the square (k, 0) the upper case letter A

(kt)mod n
.

As always, (k, t)mod n is the remainder when kt is divided by n. Since (t, n) are relatively
prime and1≤ k ≤ n− 1, we see that (kt)mod n ∈ {1, 2, · · · , n− 1} .

We now shorten this notation and simply say that to each square (k, 0) , 1 ≤ k ≤ n− 1,
we assign Akt. Since (t, n) are relatively prime, we see that {kt : k ∈ {1, 2, 3, · · · , n− 1}} =
{1, 2, 3, · · · , n− 1}, From this and from the fact that A0 has been assigned to square (0, 0)
we see that the n squares of the first column (which we are calling column 0), will contain
each of the letters A0,A1,A2, · · · , An−1 exactly one time. Of course, in the top row (which
we are calling row 0) we have in order the letters A0,A1,A2, · · · , An−1. For each row k,
where k ∈ {1, 2, 3, · · · , n− 1} we start with the letter Akt in the first square (k, 0) and we
write the letters A0,A1,A2, · · · , An−1 in this order. For example, suppose n = 7, k = 4 and
suppose Akt = A3 has been assigned to the first square (4, 0) in row 4. We now assign
A3, A4, A5, A6, A0,A1,A2 in this order to the n = 7 squares of row k = 4. That is, A3 is
assigned to square (4, 0), A4 is assigned to square (4, 1), A5 is assigned to square (4, 2), etc.

Since the first column (which we are calling column 0) contains all of the letters A0,A1,A2,
· · · , An−1 and since the letters A0,A1,A2, · · · , An−1 remain in this order in each row, it is easy
to see that each row will contain each of the letters A0,A1,A2, · · · , An−1 exactly one time and
each column will contain each of the letters A0,A1,A2, · · · , An−1 exactly one time.

Of course, in the first row (which we call row 0), the pair (a0, A0) appears in the first
square (0, 0). Let us now consider row k where 1 ≤ k ≤ n− 1.

Now Akt appears in the first square (k, 0) of row k.
Also, a0 appears in square (k, kl) of row k. Since A0,A1,A2, · · · , An−1 remain in order in

each row 1 ≤ k ≤ n− 1 and since Akt appears in square (k, 0) we see that Akt+kl = Ak(t+e)

appears in square (k, kl), where k (t+ e) is computed by mod n arithmetic. We know
by hypothesis that (t+ e, n) are relatively prime. Therefore, k (t+ e) ∈ {1, 2, · · · , n− 1}.
Therefore, in square (k, kl) of row k, 1 ≤ k ≤ n − 1, we have the ordered pair

(
a0, Ak(t+e)

)
where Ak(t+e) ∈ {A1,A2, · · · , An−1}.

Now {k (t+ l) : k ∈ {1, 2, · · · , n− 1}} = {1, 2, 3, · · · , n− 1} since (n, t+ e) are relatively
prime.

Also, (a0, A0) appears in square (0, 0). From this, we see that all of the ordered pairs
(a0, A0) , (a0, A1) , (a0, A2) , (a0, A3) , · · · , (a0, An−1) are represented exactly one time on the
n× n matrix that we are dealing with.

Since a0, a1, a2, · · · , an−1 in each row remain in this order and since A0,A1,A2, · · · , An−1

in each row remain in this order and since all of the ordered pairs (a0, A0) , (a0, A1) , (a0, A2)
(a0, A3) , · · · , (a0, An−1) are represented one time each on the n× n matrix, we see that all
of the ordered pairs (r, s) ∈ {a0, a1, a2, · · · , an−1} × {A0,A1,A2, · · · , An−1} are represented
exactly one time each on the n× n matrix.

That is, for each r ∈ {a0, a1, a2, · · · , an−1} and for each s ∈ {A0,A1,A2, · · · , An−1} the
ordered pair (r, s) is represented exactly one time on the n×n matrix. Remember now that
a0, a1, a2, · · · , an−1 and A0,A1,A2, · · · , An−1 are permutations of 1, 2, 3, · · · , n.

For each ordered pair (r, s) ∈ {a0, a1, a2, · · · , an−1}×{A0,A1,A2, · · · , An−1}, let us assign
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the number (r, s)# = r+n (s− 1) where r, s are the numerical values that have been assigned
to the letters r, s.

Now 1 ≤ r ≤ (r, s)# = r + n (s− 1) ≤ n+ n (n− 1) = n2. That is, 1 ≤ (r, s)# ≤ n2.
We now show that (r, s)# = (r̄, s̄)# if and only if r = r̄ and s = s̄.
First, suppose s ̸= s̄ and by symmetry suppose s < s̄. We show that (r, s)# < (r̄, s̄)# .
Now (r, s)# = r+n (s− 1) and (r̄, s̄)# = r̄+n (s̄− 1), we now show that r+n (s− 1) <

r̄ + n (s̄− 1). This is equivalent to r − r̄ < n (s̄− s) .
Since r, r̄, s, s̄ ∈ {1, 2, 3, · · · , n} and s < s̄, we see that r − r̄ < n ≤ n (s̄− s) .
Therefore, r − r̄ < n (s̄− s) .
If s = s̄ then obviously, (r, s)# = (r̄, s̄)# if and only if r = r̄.
Therefore, (r, s)# = (r̄, s̄)# if and only if r = r̄ and s = s̄.

From this we see that
{
(r, s)# : r, s ∈ {1, 2, 3, · · · , n}

}
= {1, 2, 3, 4, · · · , n2} .

Let us now represent the entries of the n×n matrix that we are dealing with by (rij, sij)
where rij, sij are the numerical values that are assigned to the ordered pair of square (i, j)
where i, j ∈ {0, 1, 2, · · · , n− 1}. Thus, suppose (a5, A2) is the ordered pair assigned to the
square (2, 3) and suppose a5 = 7, A2 = 4. Then (r23, s23) = (7, 4) .

We also define the n× n matrix (rij, sij)
#, i, j ∈ {0, 1, 2, · · · , n− 1}, and show that this

matrix is always a semi-magic square and is sometimes a magic square and is sometimes an
extra magic square.

We now show that for each t ∈ {0, 1, 2, · · · , n− 1}

(∗)
n−1∑
i=0

(rti, sti)
# = n

2
(n2 + 1) and (∗∗)

n−1∑
i=0

(rit, sit)
# = n

2
(n2 + 1).

(∗) , (∗∗) mean that the sums of the n numbers in row t and column t respectively equal
n
2
(n2 + 1) .

Now,
n−1∑
i=0

(rti, sti)
# =

n−1∑
i=0

(rti + n (sti − 1)) =
n−1∑
i=0

rti + n ·
n−1∑
i=0

(sti − 1) = (∗ ∗ ∗) .

Now {rt0, rti, rt2, · · · , rt,n−1} = {1, 2, 3, · · · , n} since each row t contains all of the letters
a0, a1, a2, · · · , an−1 and a0, a1, a2, · · · , an−1 is a permutation of 1, 2, 3, · · · , n.

Also, {st0, st1, st2, · · · , stn−1, } = {1, 2, 3, · · · , n} since each row t contain all of the letters
A0,A1,A2, · · · , An−1 and A0,A1,A2, · · · , An−1 is a permutation of 1, 2, 3, · · · , n.

Thus,

(∗ ∗ ∗) = (1 + 2 + · · ·+ n) + n (0 + 1 + 2 + · · ·+ (n− 1))

=
n

2
(n+ 1) + n

(
n− 1

2

)
(n)

=
n

2

[
n+ 1 + n2 − n

]
=

n

2

(
n2 + 1

)
.

Likewise (∗∗) is true for the same reasons. Thus, from (∗) , (∗∗) we see that the n × n
matrix become a semi-magic square when (rij, sij)

# are assigned to squares (i, j). Instead of

using the code (r, s)# = r+n (s− 1) we can also substitute the code (r, s)# = s+n (r − 1).
This new code will always give a semi-magic n× n square when n is odd.
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5 Using the Algorithm to Create Magic Squares

In the algorithm of Section 4 let t = 1, e = 1. Of course, (t, n) and (e, n) are relatively prime.
Also, (t+ e, n) = (2, n) are relatively prime since n is odd.

As always, (a0, A0) is assigned to square (0, 0) .
In each row k, 1 ≤ k ≤ n− 1, we assign a0 to square (k, kl) = (k, k). This means that a0

is assigned to each of the diagonal squares (0, 0) , (1, 1) , (2, 2) , · · · , (n− 1, n− 1). Also, for
each 1 ≤ k ≤ n−1, we assign to the square (k, 0) the upper case letter Akt = Ak. Thus, in the
first column we are assigning A0 to square (0, 0) and we assign in order A1,A2, A3, · · · , An−1

to the squares (1, 0) , (2, 0) , (3, 0) , · · · , (n− 1, 0).
Now, the second diagonal of the n×n matrix consists of the squares (0, n− 1) , (1, n− 2) ,

(2, n− 3) , · · · , (n− 2, 1) , (n− 1, 0). That is, the second diagonal consists of the squares
(k, n− k − 1) , 0 ≤ k ≤ n − 1. Since Ak is assigned to square (k, 0) , 0 ≤ k ≤ n − 1, we see
that Ak+(n−k−1) = An−1 is assigned to each of the squares of the second diagonal.

Thus, in summary, a0 is assigned to each of the n squares of the first diagonal and An−1

is assigned to each of the n squares of the second diagonal.
From Section 4, we know that each of the ordered pairs (r, s) ∈ {a0, a1, a2, · · · , an−1} ×

{A0, A1, A2, · · · , An−1} is represented exactly one time on the n× n matrix.
Therefore, we can easily see that the n squares of the first diagonal will contain each of

the ordered pairs (a0, A0) , (a0, A1) , (a0, A2) , · · · , (a0, An−1) exactly one time.
Also, we easily see that the n squares of the second diagonal will contain each of the

ordered pairs (a0, An−1) , (a1, An−1) , (a2, An−1) , · · · , (an−1, An−1) exactly one time.
We now let a0, a1, a2, · · · , an−1 be any permutation of 1, 2, 3, · · · , n subject to the one

condition a0 =
n+1
2
.

We also let A0, A1, A2, · · · , An−1be any permutation of 1, 2, 3, · · · , n subject to the one
condition An−1 =

n+1
2
.

Of course, the algorithm of Section 4 will always produce a n×n semi-magic square when
n is odd.

We now show that the n×n semi-magic square that we have just defined is also a magic
square where the sum of the n entries in each of the two main diagonals equals n

2
(n2 + 1).

Now the sum of the n entries in the first diagonal squares (0, 0) , (1, 1) , (2, 2) , · · · , (n− 1, n− 1)
equals

n−1∑
i=0

(a0, Ai)
# =

n−1∑
i=0

(a0 + n (Ai − 1))

=

(
n−1∑
i=0

a0

)
+ n ·

n−1∑
i=0

(Ai − 1)

= n · a0 + n (0 + 1 + 2 + · · ·+ n− 1)

= n

(
n+ 1

2

)
+

n2

2
(n− 1)

=
n

2

[
n+ 1 + n2 − n

]
=

n

2

(
n2 + 1

)
.
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Also, the sum of the entries in the second diagonal squares
(0, n− 1) , (1, n− 2) , (2, n− 3) , · · · , (n− 1, 0) equals

n−1∑
i=0

(ai, An−1)
# =

n−1∑
i=0

(ai + n (An−1 − 1))

=
n−1∑
i=0

ai + n ·
n−1∑
i=0

(An−1 − 1)

= (1 + 2 + · · ·+ n) + n ·
n−1∑
i=0

(
n+ 1

2
− 1

)
=

n

2
(n+ 1) + n

(
n− 1

2

)
(n)

=
n

2

[
n+ 1 + n2 − n

]
=

n

2

(
n2 + 1

)
.

Thus, we have a magic n× n square when n is odd.

6 An Observation

In the Section 4 algorithm we know that for 1 ≤ k ≤ n − 1, a0 is assigned to square (k, kl)
where kl ∈ {1, 2, 3, · · · , n− 1} and kl is computed mod n.

Thus, for 1 ≤ k ≤ n− 1 we have a−kl = a(n−l)k assigned to square (k, 0) where −kl, n− l,
and (n− l) k are computed mod n. Letting n− l = l̄ we see that for 1 ≤ k ≤ n− 1 we have
al̄k and Atk assigned to square (k, 0) where (t, n) ,

(
l̄, n
)
,
(
t− l̄, n

)
are all relatively prime.

As always (a0, A0) is assigned to square (0, 0). Thus, we have an alternative way of defining
the n× n semi-magic square when n is odd.

7 A Specific Example of the Algorithm

In the Section 4 algorithm, we now let n = 5, l = 2, t = 2, l + t = 4. This leads to the
following 5× 5 matrix.

(a0, A0) (a1, A1) (a2, A2) (a3, A3) (a4, A4)
(a3, A2) (a4, A3) (a0, A4) (a1, A0) (a2, A1)
(a1, A4) (a2, A0) (a3, A1) (a4, A2) (a0, A3)
(a4, A1) (a0, A2) (a1, A3) (a2, A4) (a3, A0)
(a2, A3) (a3, A4) (a4, A0) (a0, A1) (a0, A2)

Fig. 2. A 5× 5 matrix.
We now let (a0, a1, a2, a3, a4) = (3, 5, 1, 2, 4) and (A0, A1, A2, A3, A4) = (2, 1, 5, 4, 3) .
Using the code (r, s)# = r + n (s− 1) = r + 5 (s− 1) with the 5× 5 matrix of Fig. 2 we

have the 5 × 5 semi-magic square of Fig. 3. The sum of the 5 entries in each row and in
such column will be 5

2
(52 + 1) = 65.
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8 5 21 17 14
22 19 13 10 1
15 6 2 24 18
4 23 20 11 7
16 12 9 3 25

Fig. 3 A 5× 5 Semi-Magic Square
It turns out that Fig. 3 is also a magic square and an extra magic square. We deal with

extra magic squares in Sections 9-11.

8 A 5 ×5 Magic Square

We let the reader use Section 5 to create a 5 × 5 Magic Square by letting t = e = 1, n =
5, a0 =

n+1
2

= 3, A4 =
n+1
2

= 3.
The reader can try different combinations from {a1, a2, a3, a4} = {1, 2, 4, 5} and {A0, A1, A2, A3} =

{1, 2, 4, 5}. All combinations will lead to Magic 5 ×5 Square.

9 Generalizing the Algorithm of Section 4

We can generalize the algorithm of Section 4 by replacing the sequence a0, am, a2m, · · · , a(n−1)m

for a1, a2, a3, · · · , an−1 and replacing the sequenceA0, Am̄, A2m, · · · , A(n−1)m forA0, A1, A2, · · · , An−1

where m,m ∈ {1, 2, 3, · · · , n− 1} and (m,n) , (m,n) are relatively prime. The main ideas
of Section 4 remain unchanged in this generalization. For example, Akt goes in each square
(k, 0) , k ∈ {0, 1, 2, · · · , n− 1}, and a0 goes in each square (k, kl) , k ∈ {0, 1, 2, · · · , n− 1},
where (t, n) , (e, n) are relatively prime. Instead of requiring that (t+ e, n) be relatively
prime we require that (t+me, n) be relatively prime.

10 Extra Magic Squares

As in Section 5, the first main diagonal consists of the squares (k, k) , k ∈ {0, 1, 2, · · · , n− 1},
and the second main diagonal consists of the squares (k, n− 1− k) , k ∈ {0, 1, 2, · · · , n− 1}.
For each fixed a ∈ {0, 1, 2, · · · , n− 1} we define a generalized first type diagonal Da as Da =
{(k, k + a) : k ∈ {0, 1, 2, · · · , n− 1}}. Also, for each fixed a ∈ {0, 1, 2, · · · , n− 1} we define a
generalized second type diagonal Da as Da = {(k, n− 1− k + a) : k ∈ {0, 1, 2, · · · , n− 1}}.
All operations use mod n arithmetic. A semi-magic n×n square is called a strong magic n×n
square if the sum of the n entries on each generalized first type diagonal equals n

2
(n2 + 1)

and the sum of the n entries on each generalized second type diagonal equals n
2
(n2 + 1) .

11 Creating Extra Magic n×n Squares when n is Odd

If the average value of the ai’s on each generalized diagonal equals n+1
2

and the average value
of the Ai’s on each generalized diagonal equals n+1

2
and the sum of the n entries on each
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generalized diagonal will equal∑
(i,j)∈diagonal

(rij, sij)
# =

∑
(i,j)∈ diagonal

(rij + n (sij − 1))

=
(∑

rij

)
+ n ·

(∑
sij

)
− n2

= n

(
n+ 1

2

)
+ n2

(
n+ 1

2

)
− n2

=
n

2

[
n+ 1 + n2 + n− 2n

]
=

n

2

(
n2 + 1

)
.

One way to have the average value of the ai’s and the average value of the Ai’s on each
generalized diagonal equal to n+1

2
is to have each of a0, a1, a2, · · · , an−1 and to have each of

A0, A1, A2, · · · , An−1 appear on each generalized diagonal. It is often possible to do this and
we consider this first. As always, all arithmetic is mod n.

First, we observe that if each of the two main diagonals contain all of the letters a0, a1, a2, · · · , an−1

and contain all of the letters A0, A1, A2, · · · , An−1 then all of the generalized diagonals will
also contain all of the letters a0, a1, an−1 and contain all of the letters A0, A1, An−1.

For each row k ∈ [0, 1, 2, · · · , n− 1] square (k, 0) will contain Akt and square (k, ek) will
contain a0. Therefore, the first main diagonal square (k, k) will contain Akt+k = Ak(t+1)

and will contain a0+k−kl = ak(1−e) = ak(n+1−e). Therefore, the first main diagonal will
contain all of a0, a1, a2, · · · , an−1 if (e− 1, n) are relatively prime and will contain all of
A0, A1, A2, · · · , An−1 if (t+ 1, n) are relatively prime.

Also, the second main diagonal square (k, n− 1− k) will contain Akt+n−1−k = An−1+k(t−1)

and will contain a0+n−1−k−kl = an−1−k(e+1).
Therefore, the second main diagonal will contain all of a0, a1, a2, · · · , an−1 if (e+ 1, n)

are relatively prime and contain all of A0, A1, A2, · · · , An−1 if (t− 1, n) are relatively prime.
Recall that (t, n) , (l, n) , (t+ l, n) must be relatively prime in order to have a semi-magic

square. If we also have (t+ 1, n) , (t− 1, n) , (l + 1, n) , (l − 1, n) are relatively prime, then
we have an extra magic square. This is easy to do when n ≥ 5 and n is prime.

Next, suppose (a or b) is true and (c or d) is true in addition to (t, n) , (l, n) , (t+ l, n)
are relatively prime.

a. (t+ 1, n) are relatively prime and n - t− 1.

b. (t− 1, n) are relatively prime and n - t+ 1.

c. (l + 1, n) are relatively prime and n - l − 1.

d. (l − 1, n) are relatively prime and n - l + 1.

It is now easy to use the idea stated at the beginning of this section to create extra magic
n×n squares. We let the reader do this for himself when n = 9, l = 2, t = 5, l− t = 7. When
the reader fills in the (aij, Aij)’s of the 9× 9 matrix, he will observe the following.
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Each of the generalized 1st diagonals will contain each of the letters
a0, a1, a2, a3, a4, a5, a6, a7, a8.

Each of the generalized 1st diagonals will contain A0, A3, A6, A0, A3, A6, A0, A3, A6 or
A0, A4, A7, A1, A4, A7, A1, A4, A7 or A2, A5, A8, A2, A5, A8, A2, A5, A8.

Also, each of the generalized 2nd diagonals will contain each of the letters A0, A1, A2, A3,
A4, A5, A6, A7, A8. Also, each of the generalized 2nd diagonals will contain a0, a3, a6, a0, a3, a6,
a0, a3, a6 or a1, a4, a7, a1, a4, a7, a1, a4, a7 or a2, a5, a8, a2, a5, a8, a2, a5, a8. We now choose a0 =
1, a3 = 5, a6 = 9 and a1 = 2, a4 = 6, a7 = 7 and a2 = 3, a5 = 4, a8 = 8.

Also, we choose A0 = 1, A3 = 5, A6 = 9 and A1 = 2, A4 = 6, A7 = 7 and A2 = 3, A5 =
4, A8 = 8.

We now observe that

a0 + a3 + a6
3

=
a1 + a4 + a7

3

=
a2 + a5 + a8

3

=
A0 + A3 + A6

3

=
A1 + A4 + A7

3

=
A2 + A5 + A8

3

=
n+ 1

2
= 5.

Of course,
8∑

i=0

ai
9
=

8∑
i=0

Ai

9
= n+1

2
= 5.

Therefore, when we use the code (r, s)# = r + n (s− 1) = r + 9 (s− 1) we will have an
extra magic 9× 9 square. This example illustrates the general pattern when (a or b) and (c
or d) are true. As a project the reader can also consider n = 15, l = t = 2.

12 An Extra Magic 5× 5 Square

We let n = 5, l = t = 2, e+ t = 4. We see that (l, n) , (t, n) , (l + t, n) , (t− 1, n) , (t+ 1, n),
(l − 1, n) , (l + 1, n) are all relatively prime.

This gives the extra magic 5× 5 square of Figs. 2, 3 when we choose (a0, a1, a2, a3, a4) =
(3, 5, 1, 2, 4) and (A0, A1, A2, A3, A4) = (2, 1, 5, 4, 3). Of course, any permutations a0, a1, a2, a3, a4
and A0, A1, A2, A3, A4 of 1, 2, 3, 4, 5 will give an extra magic 5×5 square and the reader might
like to try a few.

The generalized algorithm of Section 8 can be used to create far more extra magic 5× 5
square.

In a subsequent paper, we show that the magic 5× 5 square of Fig. 2 is also extremely
magic. This means that it has 120 standard five element magic subsets whose sum is 65.
These include the five rows, five columns, and the ten generalized diagonals.
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13 Some Concluding Remarks

Suppose we have a n× n semi-magic square.
First, suppose aki1 , aki2 , · · · , akim and ali1 , ali2 , · · · , alim are m entries in rows k, l of this

n× n semi-magic square where 1 ≤ k < l ≤ n and 1 < i1 < i2 < · · · < im ≤ n.

If
m∑
j=1

akij =
m∑
j=1

alij then we can interchange (aki1 , ak‘i2 , · · · , akim) and (ali1 , ali2 , alim) and

still have a n× n semi-magic square.
Likewise, we can do the same thing for m entries, in columns k < l of a n×n semi-magic

square.
Thus, in particular we can interchange any two rows and interchange any two columns

of a n× n semi-magic square, and still have a semi-magic square.
Finally, we mention that we must add a new technique in order to define a n × n semi-

magic square or a n× n magic square when n is an even positive integer. We also note that
there does not exist a semi-magic 2×2 square and this is one difficulty in defining semi-magic
and magic n× n square when n is even.
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