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Abstract

An impartial combinatorial game played under normal rules has two players who alter-

nate moving. There is no infinite sequence of moves, both players have the same moves

available, and the winner is the last player to make a move. In this paper the games can

be both transfinite and abstract. By transfinite we mean that positions exist for which

the number of moves (although finite) might be arbitrarily large. By abstract we mean

that instead of defining what the moves are, we will simply list certain properties that a

move must have. The basic idea here is to create abstract transfinite analogies for all the

normal concrete games. In this paper we generalize a game of Hugo Steinhaus. See [5].

Suppose G1, G2, · · · , Gn are normal impartial games. There are two variations that

can be played. Due to the complexity of the abstract games, we only study Game A in

Part I. Game B is significantly harder than game A and will be studied in Part II.

In Game A, for all i = 1, 2, · · · , n, the moving player must make a move in Gi if the

position in Gi is not a terminal position. The loser is the first player to face a position

in which for all i = 1, 2, · · · , n, the position in Gi is terminal. Also, the moving player

can move in any order, e.g., G1, G2, G3;G2, G3, G1;G1, G3, G2. This becomes important

in the abstract games.

In Game B, the moving player must make a move in each Gi, i = 1, 2, · · · , n, with no

exceptions. The loser is the first player to face a position in which he is unable to move

in some Gi, i = 1, 2, · · · , n. Also, the moving player can move in any order.

Concrete normal impartial Games 1. A normal impartial game Gi is said to be

concrete if the positions and moves of the game correspond to the vertices and directed

edges of a digraph (V,E) with vertex set V and directed edge set E.
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At the end of the paper, we show that all concrete normal impartial games can

be represented by the following model. Let (P,≤) be a well-ordered set of arbitrary

ordinality with 0 being the first element and 1 being the second element. Also, ∀a ∈ P

we are given a set (possibly empty) S (a) ⊆ [0, a), where [0, a) = {x : x ∈ P, 0 ≤ x < a}.
[0, a) is called the initial segment of a and is usually denoted by s (a) .

At the beginning of the game, a position p0 ∈ P is designated the initial position.

Two players alternate moving. The game is impartial which means that both players

have the same moves available. If the moving player is facing a position p ∈ P , then

he can move to any position q ∈ S (p) if S (p) is non-empty. Of course, q < p since

S (p) ⊆ [0, p). If S (p) is empty, we call p a terminal position and in particular 0 is a

terminal position. The winner is the first player to land on a terminal position which

means the winner is the last player to move. If p0 is a terminal position, the first moving

player loses automatically.

Since (P,≤) is well-ordered, there can be no infinite sequence of moves. To see this,

suppose p0 → p1 → p2 → · · · is an infinite sequence of moves. Now p0 > p1 > p2 · · · .
However, since (P,≤) is well-ordered, we know that {p0, p1, p2, · · · , } has a first element.

Call it pk. But this is impossible if {p0, p1, p2, · · · , } is infinite since pk > pk+1 > pk+2 >

· · · .

Notation. The game that we have specified can be denoted G = (P,≤, S) . Before

defining abstract games, we deal with (ord,+,≤) . (ord,+,≤) is the usual ordinal addition

on the well-ordered proper class of all ordinal numbers. If a ∈ ord, then the immediate

successor of a is a + 1. Also, if a has an immediate predecessor, let a − 1 denote the

immediate predecessor of a.

Basic Set Theory. For any well-ordered set (P,≤), there exists a unique a ∈ ord and

a unique 1 − 1 onto function f : P → [0, a) such that f is a similarity mapping of

(P,≤) onto ([0, a) ,≤). That is, ∀a, b ∈ P, a ≤ b in (P,≤) if and only if f (a) ≤ f (b) in

([0, a) ,≤) .

∀x ∈ P let ord (x) = f (x) denote the ordinal equivalent of x.

Lemma 1. ∀a0 ∈ ord, there is no infinite sequence a0, a1, a2, · · · such that each ai+1

is the immediate predecessor of ai.

Proof. Since a0 > a1 > a2 > · · · , the same proof used above shows that {a0, a1, a2, · · · }
cannot be infinite.

Definition 1. ∀a ∈ ord, a is called a limit ordinal if a has no immediate predecessor. In
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particular, 0 is a limit ordinal.

Definition 2. Reversing the notation, ∀ak ∈ ord, define ak, ak−1, ak−2, · · · , a1, a0 where

a0 is a limit ordinal and each ai−1 is the immediate predecessor of ai. Then the degree of

ak is d(ak) = k. Thus, ∀a0 ∈ ord, a0 is a limit ordinal if and only if d (a0) = 0.

Definition 3. ∀ak ∈ ord, we say that ak is an odd ordinal if d (ak) is odd. Also, ak is an

even ordinal if d (ak) is even. Also, ak is a very even ordinal if d (ak) is even and d (ak)

≥ 2.

Lemma 2. ∀a ∈ ord, a has an immediate predecessor, a − 1, if and only if a is odd

or very even.

Lemma 3. ∀a, b ∈ ord, if a is odd and b is even, then a 6= b.

Lemma 4. ∀a ∈ ord, if a is odd, then a + 1 is very even and a − 1 is even. If a is

even, then a+ 1 is odd. If a is very even, then a− 1 is odd.

Before we define an abstract normal impartial game, we need to give some examples.

A basic reason for defining abstract games is that the amount of information in concrete

games is often far more than needed.

Example 1. Two players, Art and Beth, are facing a pile of counters, and the winner

is the last player to move. The game is impartial so by symmetry suppose it is Art’s

move. Art’s move consists of the following 3 steps.

1. Before Art moves, Beth must block exactly one of Art’s options.

2. Art then removes x counters where x ∈ {1, 2, 3} provided that x is not blocked and

x counters remain in the pile.

3. Beth has the option of removing one additional counter if the pile still has counters

in it at this point.

Of course, Beth’s move consists of interchanging the words Art and Beth in the

definition of Art’s move. We say that a player has made a move if at the end of steps

1,2,3 the number of counters in the pile has been reduced.

Example 2. Example 2 is the same as example 1, except step 2 is changed to read

as follows:
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2′ If Art is facing an even pile of counters, he removes x ∈ {1, 2, 3, 4} provided x is

not blocked and the pile has x counters. If Art is facing an odd pile of counters, he

removes x ∈ {1, 2, 3} provided x is not blocked and the pile has x counters.

Example 3. Two players, Art and Beth, are facing a pile of counters. Art and Beth

alternate moving, and the winner is the last player to move. The game is impartial so

by symmetry suppose it is Art’s move. Art’s move consists of one step.

1. On Art’s move, Beth removes 1, 2, or 3 counters as she chooses.

Note that on Art’s move, he does nothing at all and yet this is still considered to

be his move. By symmetry on Beth’s move, Art removes 1, 2 or 3 counters as he

chooses.

Example 4. Two players, Art and Beth, are facing a pile of counters. Art and Beth

alternate moving, and the winner is the last player to move. The game is impartial so

by symmetry suppose it is Art’s move. Art’s move consists of the following 3 steps.

1. Unknown to each other, Art writes down x ∈ {1, 2, 3} on a card and Beth writes

down y ∈ {0, 1} on a card.

2. Art and Beth simultaneously lay their numbers down on the table.

3. If the pile size n satisfies n ≥ x+ y, Art removes x+ y counters leaving n− x− y

counters. If the pile size n satisfies n < x + y, Art removes all of the remaining

counters leaving an empty pile.

By symmetry on Beth’s move, Beth writes down x ∈ {1, 2, 3} and Art writes down

y ∈ {0, 1} .

Based on these examples, we now define an abstract impartial normal game and from

that definition we define an abstract impartial normal combinatorial game. In [3] we give

a rigorous derivation of this definition starting with a simple, natural definition in which

the term ‘well-ordered’ is not mentioned.

Abstract impartial normal games 2. Let (P,≤) be a well-ordered set of arbitrary

ordinality with 0 being the first element and 1 the second element. A set T ⊆ P , where

0 ∈ T , is given and each p ∈ T is called a terminal position.

∀x ∈ P\T , we are given sets A (x) , B (x) , C (x) that satisfy the following conditions.
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1. A (x) , B (x) , C (x) is a partition of 2[0,x), where 2[0,x), called the power set, is the

family of all subsets of [0, x) including φ. That is, A (x)∩B (x) = A (x)∩C (x) =

B (x) ∩ C (x) = φ and A (x) ∪B (x) ∪ C (x) = 2[0,x).

2. ∀θ ⊆ [0, x) ,∀ψ ⊆ [0, x), if θ ⊆ ψ, then

(a) θ ∈ A (x) ⇒ ψ ∈ A (x) , and

(b) ψ ∈ B (x) ⇒ θ ∈ B (x) .

3. [0, x) ∈ A(x), φ ∈ B(x).

At the beginning of the game, a position p0 ∈ P is designated the initial position.

Two players, Art and Beth, alternate moving and the winner is the first player to land

on a terminal position. If p0 ∈ T , the first moving player loses automatically. The

game is impartial or symmetric. However, a move is undefined, and we will only list the

properties that a move must have.

By symmetry, suppose it is Art’s move and Art is facing a position p ∈ P\T . Art’s

move consists of some undefined encounter (whatever that is) between Art and Beth that

has the following properties.

1. When Art’s move is over, the new position will be p̄ ∈ P . (The move is denoted

p→ p̄).

2. The new position p̄ will lie inside of [0, p). That is, p̄ ∈ [0, p) .

3. ∀θ ∈ A (p), if Art uses perfect play (whatever that is), he can force p̄ ∈ θ.

4. ∀θ ∈ B (p), if Beth uses perfect play, she can force p̄ ∈ [0, p) \θ. That is, she can

force the end of Art’s move, p̄, to lie outside of θ.

5. ∀θ ∈ C (p), no information is given about θ.

By symmetry, if it is Beth’s move and Beth is facing p ∈ P\T , the words Art and

Beth are interchanged in (1), (3), (4). For example, in (3), ∀θ ∈ A (p), if Beth uses

perfect play, she can force p̄ ∈ θ.

Note∀x ∈ P\T , the three sets A (x) , B (x) , C (x) is a structure.

Notation. We will denote this abstract normal impartial game by (P,≤, T, A,B,C).
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Definition 4. The abstract normal impartial game (P,≤, T, A,B,C) is a combinatorial

game if ∀x ∈ P\T,C(x) = φ.

Notation. We will denote this abstract normal impartial combinatorial game by

(P,≤, T, A,B) .

Note. ∀x ∈ P\T , the two sets A (x) , B (x) is a structure.

Remark 1. Our example 4 is obviously not a combinatorial game. Even so, it is

an amazing fact that it is possible to compute the generalized Sprague-Grundy values of

this game. Then we can use these Sprague-Grundy values to play composite games in

the usual way. See [3].

Safe (0) and unsafe (1) positions. (P,≤, T, A,B) is given. ∀p0 ∈ P , if the first

moving player starting at p0 can win with perfect play, we call p0 an unsafe (1) position.

If the second moving player can win with perfect play when the game starts at p0, we call

p0 a safe (0) position. Of course, all terminal positions, i.e., p0 ∈ T , are safe (0) .

Safe (0) and unsafe (1) Algorithm 1. In the game (P,≤, T, A,B), we assign to each

x ∈ P a 0 or 1 by transfinite induction on (P,≤). First, we assign a 0 to the first

element 0 of (P,≤) since the first element 0 of (P,≤) is terminal and therefore safe.

Suppose all y ∈ [0, x) have been assigned 0′s or 1′s. We then assign 0 or 1 to x by the

following rules.

1. If x is a terminal position, we assign x a 0 since x is safe.

If x is non-terminal, define 0 (x) = {y : y ∈ [0, x) , y is assigned a 0}

2. If 0 (x) ∈ A (x), we assign 1 to x.

3. If 0 (x) ∈ B (x), we assign 0 to x.

Explanations. In Step 2, if 0 (x) ∈ A (x), the player facing x with perfect play can

land inside of 0 (x). But no matter where he lands in 0 (x), he must land on a safe (0)

position since 0 (x) consists of all the safe positions in [0, x). A similar explanation holds

for Step 3.

We now develop the machinery for studying game A in the abstract.

Notation. In the game (P,≤, T, A,B) ,∀x ∈ P, 0 (x) = {y ∈ [0, x) : y is safe (0)} ,
1 (x) = {y ∈ [0, x) : y is unsafe (1)} .
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Remark 2. Since (ord,≤) is well-ordered, if ∃t ∈ ord such that t has a certain

property, then it makes sense to talk about the smallest t ∈ ord that has this property.

The following definition is illustrated by a suggestive drawing in the appendix which

we advise the reader to refer to.

The M (x) function 2. In (P,≤, T, A,B) ,∀x ∈ P we assign to x an ordinal number

M (x) ∈ ord by transfinite induction on (P,≤). Also, by this transfinite induction, we

show (a), (b),

(a) ∀x ∈ P,M (x) is odd if x is unsafe (1), and M (x) is even if x is safe (0) .

(b) ∀x ∈ P,M (x) ≤ ord (x) + 1, where ord(x) is the ordinal equivalent of x specified

in the basic set theory section.

We provide some additional information as well.

(1) First, M (0) = 0, since 0 is terminal.

(2) Suppose ∀y ∈ [0, x) ,M (y) ∈ ord has been assigned. Also, suppose ∀y ∈ [0, x),

y satisfies (a), (b). Then M (x) is computed as follows. Also, M (x) satisfies

(a), (b).

A. If x is terminal, M (x) = 0.

B. Suppose x is non-terminal and safe (0). Let t ∈ ord be the smallest

member of (ord,≤) satisfying 0 (x) ∪ {y ∈ 1 (x) : M (y) ≤ t} ∈ A (x).

This implies ∀t′ ∈ ord, if t′ < t, then 0 (x) ∪ {y ∈ 1 (x) : M (y) ≤ t′} ∈
B (x) . Such a t exists and t ≤ ord (x) since by induction ∀y ∈ [0, x) ,M (y) ≤
ord (y)+1 ≤ ord (x), which implies 0 (x)∪{y ∈ 1 (x) : M (y) ≤ ord (x)} =

0 (x)∪1 (x) = [0, x) ∈ A (x). Also, 1 ≤ t is easy to prove since t = 0 leads

to the contradiction 0(x) is a member of A(x). M (x) is now defined as

follows.

(a′) If t is a limit ordinal, M (x) = t.

(b′) If t is not a limit ordinal, M (x) = t+ 1.

Still assuming (B) x is non-terminal and safe (0), we have the following.

i. If t is a limit ordinal, then t is even which means M (x) = t is even.

Suppose y ∈ 1 (x) and M (y) ≤ t. Now by induction, M (y) is odd

since y ∈ 1 (x). Therefore, M (y) 6= t. Therefore, if y ∈ 1 (x), then

M (y) ≤ t implies M (y) < t. Therefore, if t is a limit ordinal, 0 (x) ∪
{y ∈ 1 (x) : M (y) ≤ t} = 0 (x) ∪ {y ∈ 1 (x) : M (y) < t} ∈ A (x) .
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ii. If t is not a limit ordinal, then t has an immediate predecessor, t − 1.

Suppose ∀y ∈ [0, x), [y ∈ 1 (x) and M (y) ≤ t] implies M (y) < t.

This would mean that {y ∈ 1 (x) : M (y) ≤ t} = {y ∈ 1 (x) : M (y) < t} =

{y ∈ 1 (x) : M (y) ≤ t− 1}, which contradicts the fact that t is the small-

est ordinal number satisfying 0 (x) ∪ {y ∈ 1 (x) : M (y) ≤ t} ∈ A (x).

Therefore, if t is not a limit ordinal, ∃ȳ ∈ 1 (x) such that M (ȳ) = t.

Since by induction M (ȳ) is odd, this means t is odd and M (x) = t + 1

is even when t is not a limit ordinal.

From i and ii it follows that in both (a ′), (b ′), M (x) is even. Also, M (x)

is very even if t is not a limit ordinal.

Also, since t ≤ ord (x), in both (a ′), (b ′), M (x) ≤ t+ 1 ≤ ord (x) + 1.

C. Suppose x is unsafe (1). Of course, x is automatically non-terminal.

Let r ∈ ord be the smallest member of (ord,≤) satisfying

{y ∈ 0 (x) : M (y) > r} ∈ B (x) .

This implies ∀r′ ∈ ord, if r′ < r then {y ∈ 0 (x) : M (y) > r′} ∈ A (x). Such

an r ∈ ord will exist and r ≤ ord (x) since by induction, ∀y ∈ 0 (x) ,M (y) ≤
ord (y)+1 ≤ ord (x) which implies {y ∈ 0 (x) : M (y) > ord (x)} = φ ∈ B (x) .

(c′) We now define M (x) = r + 1. Since r ≤ ord (x), this implies M (x) ≤
ord (x) + 1.

Still assuming (C) x is unsafe (1), we have the following:

i′ Suppose r is a limit ordinal. Then r is even and M (x) = r + 1 is odd.

ii′ Suppose r is not a limit ordinal. Then r−1 is the immediate predecessor of

r. By the definition of r, {y ∈ 0 (x) : M (y) > r − 1} = {y ∈ 0 (x) : M (y) ≥ r} ∈
A(x). But since {y ∈ ord (x) : M (y) > r} ∈ B (x), this implies ∃ȳ ∈ 0 (x)

such that M (ȳ) = r. Now by induction, ∀ȳ ∈ 0 (x) ,M (ȳ) is even. There-

fore, r = M (ȳ) is even and M (x) = r + 1 is odd.

Notation. Given the abstract normal impartial games Gi = (Pi,≤, Ti, Ai, Bi) , i =

1, 2, · · · , n, let two players play Game A specified in the abstract. The positions in Game

A are denoted (p1, p2, · · · , pn) where ∀i = 1, 2, · · · , n, pi ∈ Pi.

Convention. Suppose (p1, p2, · · · , pn) is a position in Game A. Also, suppose some

of the pi’s are safe (0) and some are unsafe (1). By symmetry we may suppose that

p1, p2, · · · , pk are unsafe and pk+1, · · · , pn are safe where 1 ≤ k < n. Of course, ∀i =

1, 2, · · · , n we say that pi is safe\unsafe if and only if pi is safe\unsafe in Gi. Also,

∀i = 1, 2, · · · , n, when we are dealing with Gi = (Pi,≤, Ti, Ai, Bi) we will sometimes just

call Gi = (P,≤, T, A,B) since it will be obvious which game Gi we are dealing with.
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For the same reason, ∀i = 1, 2, · · · , n, we will call Mi (x) = M (x) , 0i (x) = 0 (x) and

1i (x) = 1 (x) .

Definition 5. Suppose (p1, p2, · · · , pn) is a position in Game A. We say that the

unsafe positions are dominant if (a) all pi’s are unsafe or (b) some pi’s are safe and some

are unsafe and max {M (p1) ,M (p2) , · · · ,M (pk)} > max {M (pk+1) , · · · ,M (pn)}. Note

that ∀i = 1, 2, · · · , k,M (pi) is odd and ∀j = k + 1, · · · , n,M (pj) is even. Therefore,

from Lemma 3, ∀i = 1, 2, · · · , k, ∀j = k+1, · · ·n,M (pi) 6= M (pj) . Also, we say that the

safe positions are dominant if (a′) all pi’s are safe or (b′) some pi’s are safe and some are

unsafe and max {M (p1) ,M (p2) , · · · ,M (pk)} < max {M (pk+1) , · · · ,M (pn)}.

Lemma 5. Suppose (p1, p2, · · · , pn) is a position in Game A and the unsafe positions

are dominant. Then the moving player can move from (p1, p2, · · · , pn) → (p̄1, p̄2, · · · , p̄n)

such that the safe positions of (p̄1, p̄2, · · · , p̄n) are dominant.

Proof. If each pi, i = 1, 2, · · · , n, is unsafe, then ∀i = 1, 2, · · · , n, the moving player can

move from pi → p̄i such that p̄i is safe. Therefore, the safe positions of (p1, p2, . . . , pn)

are dominant. Remember, if pi is unsafe in Gi = (Pi,≤, Ti, Ai, Bi) , then 0i (pi) ∈ Ai (pi),

which implies the moving player can land inside of 0i (pi). Since we know that we are

dealing with Gi, we can shorten this as 0 (pi) ∈ A (pi) which implies the moving player

can land inside of 0 (pi)

Therefore, suppose p1, p2, · · · , pk are unsafe, pk+1, · · · , pn are safe, where 1 ≤ k <

n, and max {M (p1) , · · · ,M (pk)} > max {M (pk+1) , · · · ,M (pn)}. Now if some of the

pi’s,i = k + 1, · · · , n, are terminal positions, these positions are already out of the game

and also M (pi) = 0 for these terminal positions. Therefore, the terminal positions can

be ignored and there is no loss of generality in assuming that each pi, i = k+ 1, · · · , n, is

both safe and non-terminal.

By symmetry let us further assume that M (p1) = max {M (p1) , · · · ,M (pk)} which

implies ∀i = k + 1, · · · , n,M (p1) > M (pi). First, ∀i = 2, 3, · · · , k, the moving player

moves from pi → p̄i such that p̄i is safe, and that is all he has to do with these p̄i’s.

Now ∀i = k+ 1, · · · , n, if the opposing player allows the moving player to move from

pi → p̄i such that p̄i is safe, this can only have the effect of possibly further increasing

the dominance of the safe positions in (p̄1, p̄2, · · · , p̄n). Therefore, we can assume that

∀i = k + 1, · · · , n, the moving player moves from pi → p̄i such that p̄i is unsafe. Using

this assumption, we will now show that the moving player can move from p1 → p̄1, and

∀i = k + 1, · · · , n, move from pi → p̄i such that (1) p̄1 is safe, (2) ∀i = k + 1, · · · , n,

p̄i is unsafe and (3) ∀i = k + 1, · · · , n, M (p̄1) > M (p̄i). This means that the safe



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 10

positions are dominant in the new position (p̄1, p̄2, · · · , p̄n). Let us now focus on a fixed

pi ∈ Pi, Gi = (Pi,≤, Ti, Ai, Bi), where i = k + 1, · · · , n. Now ∀i = k + 1, · · · , n, the

position pi is safe. Therefore, ∀i = k+ 1, · · · , n, ∃ti ∈ ord such that (1) and (2) are true.

(1) If ti is a limit ordinal, M (pi) = ti. Also, from i. in the M (x) definition, 0 (pi) ∪
{y ∈ 1 (pi) : M (y) < ti} ∈ A (pi) .

(2) If ti is not a limit ordinal, M (pi) = ti + 1 and 0 (pi) ∪ {y ∈ 1 (pi) : M (y) ≤ ti} ∈
A (pi) .

Also, (1′) and (2′) are true.

(1′) If ti is limit ordinal, the moving player can move from pi → p̄i such that (by

assumption) p̄i is unsafe and M (p̄i) < ti = M (pi) .

(2′) If ti is not a limit ordinal, the moving player can move from pi → p̄i such that (by

assumption) p̄i is unsafe and M (p̄i) ≤ ti < ti + 1 = M (pi) .

In both (1′) and (2′), ∀i = k + 1, · · · , n, the moving player can move from pi → p̄i

such that (by assumption) p̄i is unsafe and M (p̄i) < M (pi) .

We now consider p1. However, we need to point out that since the moving player can

move in any order, he will move in Gk+1, Gk+2, · · · , Gn before he moves in G1.

Since p1 is unsafe, ∃ r1 ∈ ord such that M (p1) = r1 + 1. Now M (p1) = r1 + 1 >

M (pi) , i = k + 1, · · · , n. Therefore, r1 ≥M (pi) > M (p̄i) , i = k + 1, · · · , n.

Since r1 > M (p̄i) , i = k+1, · · · , n, we know that r1 > r′1 = max {M (p̄i) : i = k + 1, · · · , n}.
Therefore, since r′1 < r1, we know from the properties of r1 that {y ∈ 0 (p1) : M (y) > r′1} ∈
A (p1). Therefore, the moving player can move from p1 → p̄1, such that p̄1 is safe and

M (p1) > r′1 ≥ M (pi) , i = k + 1, · · · , n. That is, p̄1 is safe and ∀i = k + 1, · · · , n,

pi is unsafe and M (p1) > M (pi). Therefore, the safe positions of p1, p2, · · · , pn are

dominant.

Lemma 6. Suppose (p1, p2, · · · , pn) is a position in Game A and the safe positions

are dominant. Then the opposing player can force the moving player to move from

(p1, p2, · · · , pn) → (p1, p2, · · · , pn) such that the unsafe positions of (p1, p2, · · · , pn) will

be dominant.
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Proof. If some of the pi’s are terminal, then these pi’s are already out of the game and

M (pi) = 0 for terminal positions. Therefore, there is no loss of generality in supposing

that no pi is both safe and terminal. Now if all pi’s are safe, then ∀i = 1, 2, · · · , n, 0i (pi) ∈
Bi (pi), (which we write as 0 (pi) ∈ B (pi)), and the opposing player can force the moving

player to move from pi → pi such that pi is unsafe. Therefore, the unsafe positions of

(p1, p2, · · · , pn) are dominant.

Therefore, we suppose p1, p2, · · · , pk are unsafe and pk+1, pk+1, · · · , pn, 1 ≤ k < n, are

safe and non-terminal.

Since the safe positions are dominant, we know that max {M (p1) , · · · ,M (pk)}
< max {M (pk+1) , · · ·M (pn)}. Now ∀i = k+1, · · · , n, if pi → pi is a move, the opposing

player can force pi to be unsafe since 0 (pi) ∈ B (pi). Now ∀i = 1, 2, · · · , k, if the moving

player moves from pi → pi such that pi is unsafe, this can only have the effect of possibly

further increasing the dominance of the unsafe positions of (p1, p2, · · · , pn). Therefore,

we may assume that ∀i = 1, 2, · · · , k, the moving player moves from pi → pi such that

pi is safe.

By symmetry, we may suppose that M (pn) = max {M (pk+1) , · · · ,M (pn)} .

Therefore, ∀i = 1, 2, · · · , k, M (pi) < M (pn). Since pn is safe and non-terminal, (from

the definition of the M(x) function), there exists a unique tn ∈ ord such that (1′) and

(2′) are satisfied as well as the other properties specified in the definition of the M(x)

function.

(1′) If tn is a limit ordinal, M (pn) = tn, which means M (pn) is even.

(2′) If tn is not a limit ordinal, then tn will be odd and M (pn) = tn + 1, which means

M (pn) is very even.

We now prove (∗∗) .

(∗∗) ∀t′n ∈ ord, if t′n < M (pn), then the opposing player can force a move pn → pn such

that pn is unsafe and M (pn) ≥ t′n.

(a) First, suppose tn is not a limit ordinal. Then M (pn) = tn + 1 and 0 (pn) ∪
{y ∈ 1 (pn) : M (y) < tn} = 0 (pn) ∪ {y ∈ 1 (pn) : M (y) ≤ tn − 1} ∈ B (pn),

since tn − 1 < tn. Therefore, the opposing player can force a move pn → pn

such that pn is unsafe and M (pn) ≥ tn = M (pn)− 1, which proves (∗∗) since

M (pn)− 1 is the immediate predecessor of M (pn) .
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(b) If tn is a limit ordinal, then ∀t′n ∈ ord, if t′n < tn = M (pn), then 0 (pn) ∪
{y ∈ 1 (pn) : M (y) ≤ t′n} ∈ B (pn) . Therefore, if t′n is an ordinal such that

t′n < M (pn) = tn, then the opposing player can force a move pn → pn such

that pn is unsafe and M (pn) > t′n. Therefore, in both (a), (b), (∗∗) is true.

∀i = 1, 2, · · · , k, let the moving player move from pi → pi and suppose pi is

safe. Since ∀i = 1, 2, · · · , k, pi is unsafe, M (pi) = ri +1, where ri ∈ ord. Now

∀i = 1, 2, · · · , k, {y ∈ 0 (pi) : M (y) > ri} ∈ B (pi). Therefore since we are

assuming that ∀i = 1, 2, · · · , k, pi is safe, we know that ∀i = 1, 2, · · · , k, the

opposing player can force M (pi) ≤ ri = M (pi)− 1. That is, ∀i = 1, 2, · · · , k,
(assuming pi is safe), the opposing player can force M (pi) ≤M (pi)− 1. Now

∀i = 1, 2, · · · , k,M (pi) < M (pn). Therefore, ∀i = 1, 2, · · · , k, the moving

player can be forced to move pi → pi such that pi is safe (by assumption) and

M (pi) ≤M (pi)− 1 < M (pi) < M (pn) .

Now ∀i = 1, 2, · · · , k, it is true that M (pi) ≤M (pi)− 1 < M (pi) ≤
max {M (p1) , · · · ,M (pk)} < M (pn). From (∗∗) the opposing player can force

a move pn → pn such that pn is unsafe and max {M (p1) , · · · ,M (pk)} ≤
M (pn) .

Therefore, ∀i = 1, 2, · · · , k,M (pi) < M (pn) .

Main Theorem 1. Suppose (p1, p2, · · · , pn) is the initial position in Game A, and

(p1, p2, · · · , pn) is non-terminal. Then (1) the first moving player can win with perfect

play if the unsafe positions of (p1, p2, · · · , pn) dominate, and (2) the second moving player

can win with perfect play if the safe positions of (p1, p2, · · · , pn) dominate.

Proof. Of course, the game can have only a finite number of moves. Also, observe that

for any terminal position (p1, p2, · · · , pn), the safe positions dominate since each pi is safe

in Gi, i = 1, 2, · · · , n, when (p1, p2, · · · , pn) is terminal. The player who is destined to

win simply uses Lemmas 5, 6 over and over until he wins.

Finding all concrete normal impartial games. As defined previously, a concrete

normal impartial game can be thought of as a directed graph (V,E) with vertex set V and

directed edge set E. Each vertex corresponds to a position in the game, and the directed

edges correspond to the moves in the game. The followers of a vertex are those positions

joined by an outgoing edge, and ∀p, q ∈ V , we denote p → q if there is a directed edge

from p to q. A move in the game consists of going from p to any q such that p→ q.
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The reader will note that (V,E) must be acyclic (i.e., have no directed cycles) since

there can be no infinite sequence of moves.

We define a terminal position of (V,E) to be a position that has no followers. We

must now find all (V,E) such that ∀p0 ∈ V , there exist no infinite sequence p0 → p1 →
p2 → · · · , where each pi ∈ V. Of course, as this paper demonstrated, this amount of

information is often far more than is needed. See [3] for a derivation of the abstract

version starting with very primitive assumptions.

Lemma 7. Suppose (V,E) represents a concrete normal impartial game. Suppose

V ⊆ V and
(
V ,E

)
denotes the graph (V E) that is restricted to the vertex set V . That

is, ∀p, q ∈ V , p → q in
(
V ,E

)
if and only if p → q in (V,E). Then

(
V ,E

)
has at least

one terminal position.

Proof. Suppose
(
V ,E

)
has no terminal positions. Then ∀p0 ∈ V , there exists an infinite

sequence of moves p0 → p1 → p2 → · · ·where each pi ∈ V ⊆ V , a contradiction.

Theorem 2. Suppose (V,E) represents a concrete normal impartial game. Then ∃
a well-ordering on V , call it (V,≤), such that ∀p, q ∈ V , if p→ q in (V,E) then p > q in

(V,≤), where p > q means p ≥ q and p 6= q.

Remark From Theorem 2, we see that the model given in Concrete Normal Impartial

Games 1 specifies all concrete normal impartial games.

Proof of Theorem 2. We first use transfinite induction on (ord,≤) to begin our

well-ordering on V . Since ord is a proper class, it is bigger than any set since any set can

be well-ordered and ord contains all ordinal numbers. Let us define the sets Tx, x ∈ ord,
as follows.

(1) T0 is the set of all terminal positions of (V,E). T0 is not empty.

(2) Suppose we have specified Ty for all y ∈ [0, x), and suppose ∀y ∈ [0, x) , Ty is

non-empty. Then Tx is specified as follows.

(a) If V =
⋃

y∈[0,x)

Ty, the transfinite induction on (ord,≤) stops at x, and we do

not define Tx.

(b) If V \
⋃

y∈[0,x)

Ty is non-empty, we define Tx to be the set of all terminal po-

sitions of

(
V \

⋃
y∈[0,x)

Ty, E

)
, the restriction of (V,E) to the vertex set V =
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V \
⋃

y∈[0,x)

Ty. By Lemma 7, Tx is non-empty.

Since each Tx that we specify will be non-empty, since Tx ∩ Ty = φ when x > y, and

since ord is bigger than any set V , eventually the transfinite induction on (ord,≤) must

come to an end. This means that ∃a ∈ ord such that ∀x ∈ [0, a) , Tx is non-empty and⋃
y∈[0,a)

Tx = V.

Of course, the sets Tx, x ∈ [0, a), are well-ordered by (ord,≤). That is, ∀x, y ∈ [0, a),

we say that Tx ≥ Ty if and only if x ≥ y in (ord,≤) .

Now ∀x ∈ [0, a) ,∀p, q ∈ Tx, it is obvious that p 9 q, q 9 p in (V,E) since Tx is the

set of terminal positions of (V,E) restricted to V \
⋃

y∈[0,x)

Ty.

Suppose x, y ∈ [0, a) and x > y. Also, suppose p ∈ Tx, q ∈ Ty. Since q is a terminal

position of V \
⋃

i∈[0,y)

Ti and since p ∈ Tx ⊆ V \
⋃

i∈[0,y)

Ti, it is obvious that q → p is

impossible in (V,E) .

Let us now well-order each Tx, where x ∈ [0, a), in any arbitrary way. Let us now

well-order V =
⋃

i∈[0,a)

Ti in the following standard lexicographical way, and let us call this

lexicographical ordering on V, (V,≤) .

(a) ∀p, q ∈ V , if p, q are members of the same Tx, we order p, q in (V,≤) by the well

ordering that we have defined on Tx.

(b) ∀p, q ∈ V , if p ∈ Tx, q ∈ Ty and x > y in (ord,≤), then p > q in (V,≤) .

It is easy to see that this (V,≤) is a well-ordering. Also, it is easy to see that if p→ q

in (V,E), then p > q in (V,≤). This shows that the model given in Concrete Normal

Impartial Games 1 classifies all concrete normal impartial games. 2
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Appendix.

(0) x

•

•

1

_
t is a limit ordinal t is not a limit ordinal •1

•1

•1

•1

•1

•

•

•

•0

•0

•0

•0

•0

•0

(ord,≤)

t

t′, any t′ < t

O(x) ∈ B(x)

1(x)

B(x)A(x) A(x)

If t is not a limit ordinal, M(x) = t+ 1 (very even). If t is a limit ordinal, M(x) = t

(even).
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B(x)

1(x)

A(x)

•

^

^

1

•1

•

(1) x

•1

•1

•1

••0

•0

•0

•0

•0

•0

•

•

(ord,≤)

r′, any r′ < r

r
O(x) ∈ A(x)

M(x) = r + 1 (odd)

Fig 1 A suggestive drawing of M(x)
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