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2 PLACE VALUE AND BASE 6 REPRESENTATION

1 Introduction

This paper is divided into eight sections. In the second section, we present two
algorithms for expressing a given positive integer n as a base-b numeral. We use a
base of 6 for the examples. In the third section, we present two algorithms for find-
ing the base-b representation of a fraction. In section 4, we discuss three unusual
place value type representations: Fibonacci, Factorial, and Balance-pan represen-
tations, and their arithmetics. In section 5, we discuss the Prime Factorization
method of representation and provide a table of values for all five methods of rep-
resentation in the paper. In section 6, we discuss the relationship between integer
representation and game playing strategies for static one-pile nim. In particular,
we show how finding the right representation often leads to a convenient method
for finding a winning strategy in counter pickup games. In section 7 we present
an introduction to dynamic counter pickup games. These are games for which the
number of counters that can be removed changes according to some game param-
eters as the game is in progress. In section 8, the reader will find a collection of
exercises and problems related to representation of integers and to combinatorial
games. Readers whose main interest is combinatorial games can skip all of the first
four sections except the repeated subtraction method for representing integers and
the Fibonacci representation.

2 Place value and base 6 representation

The place value interpretation of 4273 is 4000 + 200 + 70 + 3, which is a sum of
multiples of powers of 10. The relevant powers of 10, 103 = 1000, 102 = 100, 101 =
10, and 100 = 1 all have coefficients or multipliers, 4, 2, 7, and 3. Thus 4 · 103, 2 ·
102, 7 · 101, and 3 · 100 are multiples of powers of 10 and therefore 4273 is a sum
of multiples of powers of 10. Notice that the digit 3 is the remainder when 4273
is divided by 10. We will see below that the division process enables us to express
a given integer as the sum of multiples of powers of b, where b is a positive integer
bigger than 1.

For convenience, let us assume for sections 2 and 3 that b = 6. The same
procedures work no matter what the value of b is, but fixing the value of b here
makes discussion much easier. The notation 21136 is interpreted as a sum of
multiples of powers of 6, just as the 4273 was above. The subscript 6 must
be attached unless we are using base 10, because 10 is the default value of the
base. Thus 21136 = 2 · 63 + 1 · 62 + 1 · 61 + 3 · 60 = 477. The process of finding
the decimal (ie, base 10) value of a number from its base 6 representation is called
interpreting. Thus we interpreted 21136 as 477. The reverse process, that of finding
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2 PLACE VALUE AND BASE 6 REPRESENTATION

the base 6 representation of an integer expressed in decimal notation is harder and
more interesting. There are two methods, (a) repeated subtraction and (b) repeated
division. Each method has some advantages over the other.

To see how to use repeated subtraction, first make a list of all the integer powers
of 6 that are not bigger than the number we are given. In the case of 477, we need
the powers 60 = 1, 61 = 6, 62 = 36, and 63 = 216. Next repeatedly subtract the
largest power of 6 that is less than or equal to the current number (which changes
during the process). So we have 477 = 216+261. At this point our current number
becomes 261 and we repeat the process. Then 477 = 216 + 261 = 216 + 216 + 45,
and our current number is 45. Repeating the process on 45 gives 45 = 36 + 9 and
incorporating that in the above gives 477 = 2 · 216 + 45 = 2 · 216 + 1 · 36 + 9.
Continuing this with 9 leads to 477 = 2 · 63 + 1 · 62 + 1 · 61 + 3 · 60, which is
a sum of multiples of powers of 6, just what we want. Thus 477 = 21136, just
as we saw above. Repeated subtraction has two advantages over the repeated
division method. First, it is closely related to the definition, hence it leads to a
better conceptualization. Second, it can be used in other situations when repeated
division cannot, as in the case of Fibonacci representation.

The repeated division method requires that we repeatedly divide the given
integer by base 6 and record the remainder at each stage. First we divide 477 by
6 to get 477÷ 6 = 79.5. We can interpret this as 477 = 6 · 79 + 3, so the quotient
is 79 and the remainder is 3. Notice that the remainder can never exceed 5 since
in such a case the quotient would have been larger. Next divide the quotient by
6 and record the new quotient and the remainder. Thus 79 = 6 · 13 + 1. Repeat
the process 13 = 6 · 2 + 1 and finally, 2 = 6 · 0 + 2. Next write the remainders in
reverse order, 2, 1, 1, and 3 to get 21136 as the base 6 representation of 477. You’ll
see why the order must be reversed in the following example.

Example 1. Repeated Division To see why 477 = 21136, we can repeat-
edly replace each quotient with its value obtained during the division process. Thus

477 = 6 · 79 + 3

= 6(6 · 13 + 1) + 3

= 6(6(6 · 2 + 1) + 1) + 3

= 6(6 · 6 · 2 + 6 · 1 + 1) + 3

= 6 · 6 · 6 · 2 + 6 · 6 · 1 + 6 · 1 + 3

= 2 · 63 + 1 · 62 + 1 · 61 + 3 · 60

= 21136

The advantage of repeated division is that it is computationally more efficient. Also,
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3 REPEATED MULTIPLICATION AND REPEATED SUBTRACTION

the method of justification can be applied in other situations (synthetic division
and Euclidean algorithm).

3 Repeated Multiplication and Repeated Sub-

traction

In section 2 we saw two methods (algorithms) for writing a given integer in a base
different from 10. Before we consider representing fractions, let’s review the place
value ideas in decimal notation. For example, 5.234 is, as in the first part, a sum
of multiples of powers of 10. This time, the powers have (except one) negative
exponents:

5.234 = 5 · 100 + 2 · 10−1 + 3 · 10−2 + 4 · 10−3.

Using this interpretation as a guide, we can interpret 0.1246 similarly, as a sum of
multiples of (negative) powers of 6. Thus

0.1246 = 1 · 6−1 + 2 · 6−2 + 4 · 6−3

=
1

6
+

2

36
+

4

216
=

36 + 12 + 4

216

=
52

216
=

13

54

As in the discussion of integers, there are two methods for dealing with numbers
in the range 0 < x < 1. They are called (a) repeated subtraction and (b) repeated
multiplication. As before, each has advantages over the other.

Example 2. Repeated Subtraction To use the method of repeated subtrac-
tion on 13/54, first list the powers of 6 with negative integer exponents:

6−1 = 1/6, 6−2 = 1/36, 6−3 = 1/216, . . . .

Find the largest of these powers of 6 and subtract it from the original number.
Thus 13/54− 1/6 = 13/54− 9/54 = 4/54 = 2/27. Therefore, 13/54 = 1/6 + 2/27.
Now repeat the process on the number 2/27. Note that 1/36 = 3/108. Thus,
2/27 − 1/36 = 8/108 − 3/108 = 5/108. Therefore, 2/27 = 1/36 + 5/108. Putting
this together with the arithmetic above, we have

13

54
=

1

6
+

1

36
+

1

36
+

1

54
.
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3 REPEATED MULTIPLICATION AND REPEATED SUBTRACTION

Again dealing with the extra part, 1/54− 1/216 = 4/216− 1/216 = 3/216. At this
point we can anticipate the final arithmetic:

13

54
=

1

6
+

1

36
+

1

36
+

1

216
+

1

216
+

1

216
+

1

216
= 1 · 6−1 + 2 · 6−2 + 4 · 6−3

= 0.1246

The method of repeated multiplication is much quicker and does not require so
much fraction arithmetic.
Example 3. Repeated Multiplication To find the base 6 representation of
13/54, we repeatedly multiply by 6. Following each multiplication by 6, split the
result into its integer part and its fractional part:

13

54
· 6 =

13 · 6
6 · 9

=
13

9
= 1 +

4

9
.

Each integer part is a digit in the representation. Thus 13/54 = 0.1 . . .6. Now
repeat the process using the new fractional part, 4/9:

4

9
· 6 =

24

9
= 2 +

6

9
= 2 +

2

3
.

Thus 13/54 = 0.12 . . .6 . Repeating the process, 2
3
· 6 = 4 + 0. Since the fractional

part is 0, we are done (why?). Thus, 13
54

= 0.1246.
Of course, not all rational numbers have base 6 representations that terminate

(ie, end in all 0’s from some point on). But there is an easy way to tell, and a great
notation to use when the representation does not terminate. Consider the problem
of finding the binary representation of 1

3
. Using repeated multiplication, we get

1
3
· 2 = 0 + 2

3
. Then 2

3
· 2 = 1 + 1

3
. Thus we see the same fractional part 1

3
occur

again. The first two digits are 0 and 1, so we have 1
3

= 0.01 . . .2, but we can see that
the block 01 continues to recur. The slick way to write this number 0.01010101 . . .
is 0.012. When the representation repeats in blocks, the number can be regarded as
the sum of an infinite geometric series. In this case it is 2−2 +2−4 +2−6 + · · ·. There
is a formula for finding the sum of the geometric series a+ar+ar2 +ar3 + · · ·. It is

a
1−r

, and this holds whenever |r| < 1. Thus 2−2 +2−4 +2−6 + · · · = 2−2

1−2−2 = 1/4
3/4

= 1
3
,

just as we knew.
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4 FIBONACCI, FACTORIAL, AND BALANCE-PAN ENUMERATION

4 Fibonacci, Factorial, and Balance-Pan Enumer-

ation

Fibonacci Representation The Fibonacci numbers F1 = 1, F2 = 2, F3 = 3, F4 =
5 . . . are defined so that after the first two, every one is the sum of the last two.
In other words, F1 = 1, F2 = 2 and Fn+2 = Fn + Fn+1. Thus the sequence is
1, 2, 3, 5, 8, 13, 21, 34, 55, 89 . . .. In Fibonacci representation, we need only two dig-
its, 0 and 1. These represent the absence or presence of the corresponding Fibonacci
number. To represent a number in Fibonacci representation, use the method of re-
peated subtraction.
Example 4. Fibonacci Representation To find the Fibonacci representation
of 100, find the largest Fibonacci number less than or equal to 100. Then sub-
tract it and repeat the process. Thus 100 = 89 + 11. Thus 100 = 89 + 11 =
89 + 8 + 3 = 1000010100f . Of course, the 1’s tell us which Fibonacci num-
bers are added, and the 0’s tell us to leave out the number: 1000010100f means
1F10 + 0F9 + 0F8 + 0F7 + 0F6 + 1F5 + 0F4 + 1F3 + 0F2 + 0F1. Notice that the
representation 1000010100f has at least one 0 between each pair of 1’s. Try to
figure out why this is always the case this before reading on. We’ll return to this
representation later. How can we do arithmetic with numbers represented this
way? Addition is not very hard. Lets use the addition 87 + 31.
Example 5. Fibonacci Arithmetic In the notation we (slightly) abuse the
notation by using the coefficient 2 at times.

89 55 34 21 13 8 5 3 2 1
87 1 0 1 0 1 0 1 0 0

+31 1 0 1 0 0 1 0
1 0 2 0 2 0 1 1 0
1 0 2 0 2 1 0 0 0
1 0 2 1 1 0 0 0 0
1 1 1 0 1 0 0 0 0

118 1 0 0 1 0 1 0 0 0 0

The addition process repeatedly makes use of the fact that the sum of two successive
Fibonacci numbers is the next one. In the representation, therefore, you never need
to have two successive 1’s. Another example might be helpful here. How would
you carry out 21 + 21? That is 1000000f + 1000000f = 2000000f = 1110000f =
10010000f = 34 + 8 = 42 Can you devise an algorithm for multiplication?

Factorial Representation Here the idea is to represent each number as a sum
of multiples of factorials. The basic building blocks are the numbers 1 = 1!, 2 =
2!, 6 = 3!, 24, 120, 720, . . .. The coefficients allowed for n! are the numbers from 1
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up to n. Of course, using n + 1 as a coefficient for n! would not be needed since
(n + 1)n! = (n + 1)!. The table below lists the representations of the first twelve
positive integers. How can we find the factorial base for a positive integer N? The
answer is by repeated division. First, divide by two and write the remainder in
the rightmost position. Of course the remainder is either 1 or 0 depending on the
parity of the N . Next divide the quotient by three, and again write down the
remainder. Continue this process until the quotient is zero.
Example 6. Repeated Division To find the Factorial representation of N = 127
first divide by 2. The first remainder is 1, and the quotient is 63. Dividing 63 by
three yields a quotient of 21 and a remainder of 0. Then dividing 21 by four yields
quotient 5 with remainder 1. Finally, divide by five to get a quotient of 1 and a
remainder of 0. Thus 127 = 10101!. That is, 127 = 5! + 3! + 1!.

Arithmetic in factorial notation is not very hard. Let’s pursue addition.
Example 7. Factorial Arithmetic Consider the problem 65 + 21, which in
factorial notation is 2221! + 311! since 65 = 2 · 4! + 2 · 3! + 2 · 2! + 1 · 1! while
21 = 3 · 3! + 1 · 2! + 1 · 1!. So

2 · 4! + 2 · 3! + 2 · 2! + 1 · 1!
+ 3 · 3! + 1 · 2! + 1 · 1!

2 · 4! + 5 · 3! + 3 · 2! + 2 · 1!

But 5·3! = (4+1)·3! = 4·3!+3! = 4!+3!. So the sum is just 3·4!+2·3!+2! = 3210!.
Balance-Pan Enumeration Now let’s turn our attention to balance-pan enu-

meration. Think about how you would arrange four weights on a two-pan balance
to weigh out each of the numbers from 1 to 40, and what weights would you use for
such a project. Since there are three things you can do with each weight (put it on
the left pan, the right pan, or not use it), there are at most 34 = 81 arrangements
of the four weights. One of these is to do nothing with each weight, and for every
other arrangement, there is the opposite arrangement where each weight on the left
pan is moved to the right pan, and vice-versa. So there are just 40 possible values
to be weighted with four weights. A little playing with this leads to the possibility
of using the first four powers of 3, 30 = 1, 31 = 3, 32 = 9, and 34 = 27. We can
let the digits 0, 1, and 1 mean a) don’t use the weight, b) put the weight on the
left pan, and c) put the weight on the right pan. We’ll always put the object to be
weighed in the right pan, so we will need to arrange the weights so the sum of the
weights in the left pan is at least as large as the sum of the weights in the right
pan. Now the representation 1110b = 1 · 33 +1 · 32− 1 · 31 +0 · 30 = 27+9− 3 = 33,
for example.

Example 8. Balance Pan Arithmetic
1 1 1 1
× 1 0 1
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4 FIBONACCI, FACTORIAL, AND BALANCE-PAN ENUMERATION

1 1 1 1
1 1 1 1 0 0
1 1 1 1 1 1

Of course, this is just a slick way to show that 22× 8 = 176.
To do arithmetic of integers represented in balance-pan representation, we need

the addition and multiplication tables for digits, just as we learned in third grade
for decimal representation.

+ 1 0 1

1 11 1 0

0 1 0 1

1 0 1 11

× 1 0 1

1 1 0 1

0 0 0 0

1 1 0 1

Of course, the balance pan representation of a number is closely related to its
ternary representation. In fact M = (akak−1 . . . a0)b where ai ∈ {0, 1, 1} if and only
if M =

∑
i∈P 3i − ∑

i∈N 3i, where P is the set of indices i for which ai = 1 and N
is the set of indices i for which ai = 1. For yet another example, consider the case
M = 15 = 33 − 32 − 3. Then a3 = 1, a2 = 1, a1 = 1, and a0 = 0.

Two problems.

1. Two hundred coins are identical except that their weights are an integer num-
ber of ounces, 1, 2, 3, . . . , 200. An integer set of weights W = {w1, w2, . . . , wk}
is required to be used with a two-pan balance so that if you were given just
one coin c from the set, you could determine its weight using just c and W.
The number of times the balance need be used for any coin is immaterial.
What is the size of the smallest set of weights?

2. What is the cardinality of the smallest set of positive integers P such that
for each integer n, 1 ≤ n ≤ 200, it is possible to find two disjoint subsets
A, B of P such that n = S(A) − S(B), where S(X) denotes the sum of the
members of the set X.
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6 STATIC ONE-PILE NIM

5 Prime Notation

Here is perhaps the most interesting of the four methods of enumeration. We are
all well aware of the uniqueness of prime factorization of positive integers. If we
agree to write all the primes in every factorization, making use of the fact that
p0 = 1, we get a representation of positive integers. 1 = 20, 2 = 21, 3 = 3120, 4 =
22, 5 = 513020, and 6 = 3121. Now write the list of exponents in the same order
as above: 1 = 0p, 2 = 1p, 3 = 10p, 4 = 2p, 5 = 100p, and 6 = 11p. In this system,
multiplication is especially easy. For example, 12101p× 21001p = 33102p. Can you
figure how we did this?

The columns in the table provide the representation of the numbers from 1 to
12 for the systems of enumeration discussed above. Of course, the entries in column
A are decimal representations.

Base6 Fibonacci Factorial Balance-Pan Prime Factorization
1 1 1 1 1 0
2 2 10 10 11 1
3 3 100 11 10 10
4 4 101 20 11 2
5 5 1000 21 111 100
6 10 1001 100 110 11
7 11 1010 101 111 1000
8 12 10000 110 101 3
9 13 10001 111 100 20

10 14 10010 120 101 101
11 15 10100 121 111 10000
12 20 10101 200 110 12

6 Static one-pile nim

The point of this section is to provide a nearly trivial example that illustrates the
ideas we encounter in the next section, and also to develop some notation. Static
one-pile nim is a counter pickup game contested by two players. The initial number
of counters, denoted by n, can change from game to game. The maximum number
of counters k that can be removed on each turn is fixed throughout the game. The
notation N4 (20) means that there are initially n = 20 counters and that up to
k = 4 counters can be removed on each turn. The winner, as in all the games
we discuss here, is the last player to make a move (i.e., the player who takes the
last counter). The games Nk (n) of static one pile nim are completely understood.
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6 STATIC ONE-PILE NIM

They are among the simplest of combinatorial games. Chess , checkers , tic-tac-toe,
and go are more complicated examples. The ‘solution’ of N4 (20) is obtained by
first noting that there are 21 “positions” in the game, represented by the integers
0, 1, 2, · · · , 20. We call 20 the initial position and 0 the terminal position of N4 (20).
The sequence of positions 20 7→ 18 7→ 15 7→ 14 7→ 10 7→ 9 7→ 5 7→ 2 7→ 0, such
that for each x 7→ y a pile of size y is obtainable from a pile of size x, is called
a ‘play’ of the game. Notice that there are eight moves in this play of the game.
Since eight is an even number, the second player wins this game. In fact any such
game with an even number of moves is won by the second player, and those plays
of the game with an odd number of moves are won by the first player. Thus, the
issue is whether the first player can play in such a way as to force the game to have
an odd number of moves. Alternatively, the second player would like to force the
game to end after an even number of moves.

One approach to solving counter pickup games like these is to find a handy rep-
resentation for the pile sizes and an easily understood method for finding optimal
moves. The following example illustrates the idea.
Example 9. Consider the game N4 (20) again. Notice that each number l =
0, 1, 2, · · · , 20 can be represented in the form l = 5t + u where l is the size of the
pile and 0 ≤ t ≤ 4 and 0 ≤ u ≤ 4. With this in mind, for example, we could write
17 = 5 · t + u = 5 · 3 + 2, or 32(three 5’s and two 1’s) or 111 :. (The final dot is a
‘period’.) The numbers 5 through 13 can be written using this notation as follows:
5 = 1 (1 summand); 6 = 1 · (2 summands); 7 = 1 : (2 summands); 8 =

1
... (2 summands);

9 = 1 :: (2 summands); 10 = 11 (2 summands); 11 = 11· (3 summands); 12 = 11 :

(3 summands) and 13 = 11
... (3 summands). Each 1(representing 5) is a summand

and each set of dots ·, :, ..., :: is a summand.
With this understanding, it is easy to see that a move from the position 20 =

1111 cannot reduce the number of summands. This is true because each of the
representations for 19, 18, 17 and 16 has four summands, just as 20 does. Denote
the set of relevant multiples of five by S. Thus S = {0, 5, 10, 15, 20}. Let U denote
the rest of the attainable positions. Now it is easy to see that each move from a
position in S results in a position in U . On the other hand, from each position
p in U there is some move that reduces the number of summands, for example:
111 : 7→ 111. In other words, a player confronted with a pile size of 5, 10, 15, or
20 cannot reduce the number of summands, but a player confronted with a pile
size that is not a multiple of 5 (all the other positions) can reduce the number of
summands. Delightfully, the positions (pile sizes) are divided into two subsets S
and U (called safe and unsafe) so that the following diagram describes the moves.
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Every Move

Some Move

Fig. 1

These are

bad moves

In the game N4 (20) , S = {0, 5, 10, 15, 20} and U = {1, 2, 3, 4, 6, 7, · · ·}. Note
that each move from U to S reduces the number of summands in the repre-
sentation, whereas none of the moves from positions of S reduce the number of
summands. Notice also that if a player is able to make such a summand-reducing
move, he can continue to make such moves on succeeding turns.

The S vs U classification of the positions is the classic method for solving
combinatorial games. Our main contribution is to note that in certain dynamic
games, there is a representation of the pile size (we call these g-base representations)
for which one of the players can repeatedly reduce/not increase the number of
summands while the opposing player cannot reduce/must increase the number of
summands.

7 Dynamic Nim

We finally come to the application part of the handout. Two players are engaged
in a single pile game of Nim in which the number of counters that can be removed
varies during the play of the game. The rules for this game specify a function
f , called the move function, that is used to determine the maximum number of
counters that can be removed as a function of the number removed on the previous
move. The winner is the last player to make a move. Dynamic one-pile nim with
move function f and staring pile size n is denoted Nf (n).

We focus here on the two games Ni(n) and Nd(n) where i is the identity function
and d is the doubling function. The positions in the game are ordered pairs (t, k)
where t is the pile size and k is the maximum number of counters that can be
removed on the next turn. A move is an ordered pair of positions (t, k) 7→ (t −
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7 DYNAMIC NIM

r, f(r)), where r ≤ k. The position (t−r, f(r)) results from taking r counters from
the pile of t counters.

Let’s play Ni(100) first. So make 100 marks on your paper, decide which player
moves first and let them choose some number of markers less than 100. The second
player can then take only as many as was taken on the previous play. Suppose the
first player takes 1 counter. Then the rest of the moves are completely determined,
and the second player will continue to move to the positions with an even number
of counters, including (eventually) the zero position. So the first player must not
take 1. Suppose he takes an odd number of counters. Then the second player
can take 1 counter, and we are back to the same situation as above, a win for the
second player. Thus, the first player must take an even number of counters and,
by the same reasoning, each move after that should also be an even number of
counters. Hence, we may as well assume that the counters are glued together in
pairs, and that we start with only 50 pairs. Applying the same reasoning, the first
player cannot take just 1 of these pairs. In fact he must take an even number,
and so must the second player. Hence we may as well be playing the game Ni(25)
with counters that are glued together in bunches of four. Now there is a move for
the first player that clearly wins: he must take one bunch of four. This translates
into the move (100, 99) 7→ (96, i(4)) = (96, 4). The number 99 in the move above
is arbitrary. It simply means that player 1 cannot win on the first move. This
gluing ideas brings to mind the possibility of using binary notation. Suppose we’re
playing Ni(100) and the first player can take up to 10 counters. Then we denote
the first position (100, 10). Write 100 in binary form to get 26 +25 +22 = 11001002

(three summands). Thus one move the first player can make is to (11000002, 4),
by taking 4 counters, reducing the number of summands from three to two. Note
that the next player cannot reduce the number of summands. In fact, the next
move results in 95, 94, 93, or 92 counters, and all these have binary representations
with at least five summands, the least value of which is either 1 or 2. Thus, the
first player can again reduce the number of summands, and following that, the
second player cannot. We can use the following theorem to play this game. An
easy-to-remember rule for winning Ni(n) is to remove the largest power of 2 that
divides the pile size.

Theorem 1. Consider the game Ni(n) where n = elel−1 · · · e0 =
j=l∑
j=0

ej · 2j be

the binary representation of the pile size n. Then the first player has a winning
move from the position (n, k) if and only if 2t ≤ k where et = 1 and for all j < t,
ej = 0. In other words, if the player can reduce the number of summands in the
binary representation of n, then he can win. If not, he can’t win.
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7 DYNAMIC NIM

The second example Nd (100; 10) is a game we call Fibonacci Nim. The subscript
d in this case means doubling , the 100 is the number of counters at the start and
10 is the maximum size of the first move. This dynamic one pile nim is of the type
(a) where the size of a move is determined by the size of the previous move. Here
we allow a player to take as many as twice the number taken on the previous move,
thus the ”doubling function”. The best way to denote a position in this game is as
an ordered pair (n, k) where n is the size of pile and k is the maximum number of
counters that can be removed on the next turn. Thus (100, 10) 7→ (92, 16) means
that the first player removed 8 counters, thus allowing the second player to remove
up to 2 × 8 = 16 counters. Incredibly, this doubling game Nd (n, k) can be solved
using Fibonacci representation. The number 100 has been represented as the sum of
three Fibonacci numbers. If the first player removes 3 counters, (100, 10) 7→ (97, 6)
the number of summands has been reduced to two (97 = 89 + 8). Note that the
second player can remove no more than 6, so that player cannot reduce the number
of summands. In our paper [?], we prove that once a player in the game Nd (n, k)
has been able to reduce the number of summands (Fibonacci numbers), he will
be able to do this repeatedly on all future turns. Thus the game might go as
follows: (100, 10) 7→ (97, 6) = (89 + 8, 6) 7→ (89 + 4, 8) 7→ (89, 8) 7→ (81, 16) =
(55 + 21 + 5, 16) 7→ (55 + 21, 10) 7→ . . . . Note that each odd move beginning with
the first one reduces the number of summands.

Just as one can express every position integer as a sum of distinct powers of 2,
one can also write every such number as a sum of Fibonacci numbers. The method
of repeated subtraction we discussed in section 1 works nicely. Pick the largest
Fibonacci number not exceeding the given integer, then subtract the Fibonacci
number and continue the process with the difference. For example, to write 100 in
Fibonacci, list the Fibonacci numbers up to 100: {1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . .}.
Then subtract the largest member of the list from 100. So, we have 100 = 89 + 11
and we continue the process with the obtained differences: 100 = 89+11 = 89+8+3
which we could write as 1·89+0·55+0·34+0·21+0·13+1·8+0·5+1·3+0·2+0·1 =
1000010100f . The winning strategy for Nd(n) is analogous to the winning strategy
for Ni(n), and is given by Theorem 2.

Theorem 2. Consider the game Nd(n) where n =
j=l∑
j=1

ej · Fj, where F1 =

1, F2 = 2, . . . , is the sequence of Fibonacci numbers. In other words, elel−1
· · · e1 is

the Fibonacci representation of n. Then the next player has a winning move from
the position (n, k) if and only if Ft ≤ k where et = 1 and for all j < t, ej = 0.
In other words, if the player can reduce the number of summands in the Fibonacci
representation of n, then he can win. If not, he can’t win.

For proofs of these theorems, see the paper Dynamic One-Pile Nim, with Arthur
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Holshouser and James Rudzinski, in The Fibonacci Quarterly, a copy of which can
be found at

http://www.math.uncc.edu/~hbreiter/dynamic.pdf

14



8 PROBLEMS

8 Problems

1. Notice that the only digits needed to write the integers in base 6 are 0, 1, 2, 3, 4
and 5.

(a) Explain why, using the repeated subtraction method, it can never hap-
pen that a power of 6 is subtracted more than 5 times.

(b) Explain why, using the repeated division method, it can never happen
that the remainder is more than 5.

(c) Explain why, using the repeated multiplication method, it can never
happen that the integer part is more than 5.

2. Choose a four-digit base 6 number abcd6. Of course the digits a, b, c and d
are all in the range 0, 1, 2, . . . , 5, and a 6= 0.

(a) Interpret abcd6 to get its decimal equivalent.

(b) Next use repeated subtraction to find the base 6 representation of the
decimal you obtained in part (a).

(c) Finally, use repeated division on the number obtained in part (a) to get
the base 6 representation in a different way.

3. For each of the integers in the first column, use repeated division or repeated
subtraction to find the base 2, base 4 and base 8 representations.

n base 2 base 4 base 8
104 1101000 1220 150
105
106
107
108
109
110
111
112

4. Devise a method to find the base 8 and base 4 representations of a number
based on its binary (i.e., base 2) representation without converting first to
decimal.

15
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5. Devise a method to find the binary representation given its quartic (i.e., base
4) representation without converting first to decimal.

6. Devise a method to find the binary representation given its octal (i.e., base
8) representation without converting first to decimal.

7. Find positive integers a, b, c, and d all less than 10 such that

a · 93 + b · 92 + c · 9 + d = 2005.

8. In this problem, we explore representation of integers in a negative base.
For convenience, we use b = −6. Use repeated division to find the base −6
representation of the number 2004. Division by −6 requires some extra care.
The crucial observation is that the remainders must always be in the range
0 to 5, just as in the base 6 case. Next see if repeated subtraction works as
it did for positive bases.

9. Choose a four-digit base 6 number .abcd6. Of course the digits a, b, c and d
are all in the range 0, 1, 2, . . . , 5, and a 6= 0.

(a) Interpret .abcd6 to get its decimal equivalent.

(b) Next use repeated subtraction to find the base 6 representation of the
decimal you obtained in part (a).

(c) Finally, use repeated multiplication on the number obtained in part (a)
to get the base 6 representation in a different way.

10. For each of the integers in the first column, use repeated multiplication or
repeated subtraction to find the base 2, base 4 and base 8 representations.

n base 2 base 4 base 8
1
3

.012 0.14 0.258

1
4

1
5

2
7

3
8

6
17
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11. Find positive integers a, b, c, and d all less than 6 such that

a

6
+

b

36
+

c

216
+

d

1296
=

437

1296
.

12. Find the decimal equivalent of 1/7 using repeated multiplication.

13. Find the decimal equivalent of each of the fractions below using repeated
multiplication. Explain the patterns.

(a) 1/27 (b) 1/81 (c) 1/243
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