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DISTRIBUTIVE LATTICES GENERATED FROM SINGLE
POLYNOMIALS ON GENERALIZED BASES

HAROLD REITER∗ AND ARTHUR HOLSHOUSER

Abstract. For n = 1, 2, 3, . . . let us define Rn = r1r2 . . . rn where each 0 < ri = pi/qi and each
pi, qi ∈ {1, 2, 3, . . .} and each pi/qi is not necessarily reduced to lowest terms. We call R0 = 1, R,
R2, R3, . . . a generalized base.

In this paper we study both finite and infinite distributive lattices on sets of polynomials

p =

n∑
i=0

aiR
i = N

where N ∈ {0, 1, 2, 3, . . .} or N ∈ Q+ is fixed and each ai ∈ {0, 1, 2, . . .}.
Using the algorithm defined in section 10, we show that all of our lattices have a fractal type

property that allows the entire lattice to be completely generated (ie, constructed) from every poly-
nomial element of the lattice. This is very important. It means that our lattices are qualitatively
different from ordinary lattices. In a closing section, we show how to extend the base further. We
create infinite lattices and we also generalize other parts of the paper.

1. Introduction. During the last 10 years, the concept called Exploding Dots
[2] has taken the pre-college mathematics education community by storm. The idea
easily enables teachers to understand ordinary place value and to build number repre-
sentations and arithmetic which use fractional and negative bases. It’s creator James
Tanton has spoken worldwide on the topic to enthusiastic audiences. This paper
represents our effort to understand these ideas and to begin to ask some technical
questions about the underlying structure.

Let us define R0 = 1 and for n = 1, 2, 3, . . . define Rn = r1r2 . . . rn where each
0 < ri = pi/qi and each pi, qi ∈ {0, 1, 2, . . .} and where pi/qi is not necessarily reduced
to lowest terms. Also no restrictions are added to ri, rj other that the facts that
all pi, qi are positive integers and R0 = 1, R, R2, . . . satisfies a certain convergence
condition which we specify later. It is also possible to drop this convergence condition.
We call R0 = 1, R, R2, R3, . . . a generalized base (or a regular generalized base).

If we place more restrictions on R0 = 1, R, R2, R3, . . . we can prove a larger
number of base related theorems. On the other hand if we place almost no restrictions
on R0 = 1, R, R2, R3, . . . then we can create an extremely large number of distributive
lattices (both finite and infinite) on the following sets of polynomials. In this paper
we have chosen the later option.

These distributive lattices are created on sets of polynomials

p =

n∑
i=0

aiR
i = N

where N ∈ {0, 1, 2, . . .} or N ∈ Q+ is fixed and each ai ∈ {0, 1, 2, . . .}. Q+ is the set
of positive rationals.

All of our lattices have a fractal type property that allows the entire lattice to be
completely generated from every polynomial element of the lattice.

If we require each ri to satisfy, 1 < ri = pi/qi where pi/qi is reduced to lowest
terms and (pipj , qiqj) are relatively prime for all i, j then we call R0 = 1, R, R2, . . . a
strong generalized base. In this paper we have almost no interest in strong generalized
bases.
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We need to mention that the collection of all finite distributive lattices is equiv-
alent to the collection of all finite topological spaces and we only need to use the
t1− spaces. We discuss this near the end of the paper. We have not been able to
prove that our methods will generate all finite or all countably infinite distributive
lattices. In light of Section 10 this conjecture seems reasonable. In a closing section
we generalized our methods and state how to construct infinite distributive lattices.

2. A Basic Definition.
Definition 1. Suppose R0 = 1, R, R2, . . . is a generalized base where Rn =

r1r2 . . . rn for n = 1, 2, 3, . . .. Suppose N ∈ {0, 1, 2, . . .} or N ∈ Q+ is arbitrary but
fixed. If

p =

n∑
i=0

aiR
i = N

and each ai ∈ {0, 1, 2, . . . , pi+1 − 1} we call this polynomial p a base R expansion of
N .

Note that each ai ∈ {0, 1, 2, . . . , pi+1 − 1}. Thus, a0 ∈ {0, 1, 2, . . . , p1 − 1} , a1 ∈
{0, 1, 2, . . . , p2 − 1}, etc.

If R0 = 1, R, R2, . . . is a strong generalized base we can show that if N ∈ {0, 1, . . .}
or N ∈ Q+ and p =

∑n
i=0 aiR

i = N where each ai ∈ {0, 1, 2, . . . , pi+1 − 1} then
the ai’s must be unique. Also if R0 = 1, R, R2, . . . is a strong generalized base
and N ∈ {0, 1, 2, 3, . . .} we can show that a polynomial p =

∑n
i=0 aiR

i = N, ai ∈
{0, 1, 2, . . . , pi+1 − 1} will always exist. Also, when we add the convergence condition
to the regular generalized base R0 = 1, R, R2, . . . we soon show that any N ∈
{0, 1, 2, 3, . . .} can be represented by p =

∑n
i=0 aiR

i = N, ai ∈ {0, 1, 2, . . . , pi+1 − 1}
in any such generalized base. However, as Theorem 2 shows this representation of N
may not always be unique.

Theorem 2. Let R0 = 1, R, R2, . . . be a generalized base and N ∈ {0, 1, 2, . . .}.
Suppose p =

∑n
i=0 aiR

i = N where each ai ∈ {0, 1, 2, . . . , pi+1 − 1}. Then this poly-
nomial p may not necessarily be unique.

Proof. The following is an example of where p is not unique.
Let r1 = 3

1 , r2 = 4
3 , r3 = 7

2 , r4 = 3
2 and N = 15. Then

15 = 1 + 2

(
3

1

)
+ 2

(
3

1

)(
4

3

)
= 1 + 1

(
3

1

)(
4

3

)(
7

2

)
= 1

(
3

1

)
+ 3

(
3

1

)(
4

3

)
.

The reader can check that each ai ∈ {0, 1, 2, . . . , pi+1 − 1}.

3. Representing N ∈ {0, 1, 2, . . .} in the Generalized Base and the De-
rived Partial Order (p

N
,≤).

As always 0 < ri = pi

qi
, pi, qi ∈ {1, 2, 3, . . .} , Rn = r1r2 . . . rn, n = 1, 2, 3, . . . is a

generalized base. Suppose we wish to represent N ∈ {0, 1, 2, 3, . . .} as a polynomial
p =

∑n
i=0 aiR

i = N, ai ∈ {0, 1, 2, . . . , pi+1 − 1}.
Of course, we know that this representation of N may not always be unique.

However, the algorithm that we now give produces a unique representation.
First we observe that pk+1r1r2 . . . rk = qk+1r1r2 . . . rk+1 since pk+1

qk+1
= rk+1.

Therefore, pk+1R
k = qk+1R

k+1.
Let us now arrange containers called R0 = 1, R, R2, R3, . . . sequentially in a row

starting with the R0 = 1 container on the left and going sequentially to the right with
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containers R0 = 1, R, R2, R3, . . . . At any time we will have a0, a1, a2, . . . markers
in containers R0 = 1, R, R2, . . . respectively where a0, a1, a2 . . . ∈ {0, 1, 2, . . .}.

In the following process if a0, a1, a2, . . . , an markers are in containersR0 = 1, R,Rn, . . . , Rn

respectively then these markers correspond to the polynomial p = a0 + a1R+ a2R
2 +

. . . + anR
n = N .We initially place a0 = N markers in container R0 = 1. This

corresponds to the constant polynomial p = a0 = N .
If there are at least p1 markers in the first container R0 = 1 we take p1 of the

markers out of container R0 = 1 and place q1 markers in the R container which is the
2nd container. This corresponds to p1R

0 = q1R.
We continue to follow this same general pattern over and over in any arbitrary

order that we choose so that in general if there are ever at least pk+1 markers in the
Rk container we take pk+1 of these markers out of the Rk container and place qk+1

markers in the Rk+1 container. This corresponds to the equality pk+1R
k = qk+1R

k+1.
We call this transfer pk+1R

k → qk+1R
k+1 a unit forward move or a unit forward

transfer and we call these transformations the unit forward transformations.
We continue this process over and over in any arbitrary order until we cannot

continue the process any further. This occurs when the number of markers ak in each
container Rk satisfies 0 ≤ ak ≤ pk+1 − 1. We now make the convergence assumption
on our generalized base 0 < ri = pi

qi
, Rn = r1r2 . . . rn.

This assumption states that the above process must always come to an end no
matter in what arbitrary order we carry the process out. If we want to stop the
above process at some Rk we can let rk+1 = pk+1

qk+1
= ∞

1 . When we reach the end

of the process we will have defined a polynomial p =
∑n

i=0 aiR
i = N where each

ai ∈ (0, 1, 2, . . . , pi+1 − 1). Of course, we actually only need the convergence condition
to hold for the specific N in question.

Observation 1: If each 1 < ri = pi

qi
then the convergence assumption will auto-

matically be true. The reason for this is that each unit forward transfer pk+1R
k →

qk+1R
k+1 will give us a smaller total number of markers since 1 < ri = pi

qi
implies

that qk+1 < pk+1. Obviously the total number of markers cannot decrease forever.
We now show that when we carry out the above process to the end that no

matter in what arbitrary order we carry out the process we will always end with
the exact same polynomial p = N . Also, the total number of forward unit transfers
will always be the same and the total number of forward unit transfers from each
pk+1R

k → qk+1R
k+1 will always be the same. We call the following argument the

standard argument and we call the order R0 → R1, R1 → R2, R2 → R3 the standard
order. This standard order and standard type argument is used over and over in this
paper. To prove the above we see that the total number of different markers that lie
in container R0 = 1 (at some time) during the course of our forward transformation
is obviously N since we start with N markers in container R0 = 1. Of course, during

the course of our forward transfers we are going to take out exactly
⌊
N
p1

⌋
p1 markers

from the first container R0 = 1 and we are going to end up with exactly N −
⌊
N
p1

⌋
p1

markers in the first container R0 = 1, where b c is the floor function. Also, the total

number of forward unit transfers from container R0 = 1 to container R1 = R is
⌊
N
p1

⌋
.

Therefore, the number of different markers that lie in the 2nd container R (at some

time) during the course of our forward transformations will be N1 = q1

⌊
N
p1

⌋
. Using

this N1 and reasoning the same way, we see that during the course of our forward

unit moves we are going to take out exactly
⌊
N1

p2

⌋
p2 markers from the 2nd container
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R1 = R and we are going to end with exactly N1 −
⌊
N1

p2

⌋
p2 markers in container

R. Also, we are going to make
⌊
N1

p2

⌋
unit transfers from p2R → q2R

2. Therefore,

the number of different markers that lie in container R2 (at same time) during the

course of our forward transformation of N → p is N2 =
⌊
N1

p2

⌋
q2. This pattern (called

the standard order) continues which reveals the action and proves that no matter in
what order we carry out the forward unit transfers we will always end with the exact
same polynomial p. Also, for each k ≥ 0 we will always carry out the same number
of forward unit transfers pk+1R

k → qk+1R
k+1 from container Rk → Rk+1 and this

will imply that the total number of forward unit transfers will always be the same no
matter in what arbitrary order we carry out the forward transformations of N → p.

Suppose this number of forward unit transfers from N → p is m. Then m is called
the level of the final polynomial p.

The above reasoning also shows that if the convergence condition holds for just
one particular sequence of unit forward transfers then the convergence condition also
holds for any arbitrary sequence of unit forward transfers.

Suppose in forward transforming N → p we transform N → Q → p. Then if we
forward transform Q → p in any arbitrary order the total number of forward unit
transfers pk+1R

k → qk+1R
k+1 of Q→ p will always be the same. Also for each i the

total number of unit forward transfers pi+1R
i → qi+1R

i+1 will always be the same.
We deal much more with this later. Since the number of unit forward transfers of
N → p is always the same we see that when we forward transform from N to the
final polynomial N → p it is obvious that there are no cycles. In other words the
forward transformations cannot go back and repeat a position since each unit forward
transfer takes us one step closer to p. Suppose we now start with our final polynomial
p =

∑n
i=0 aiR

i = N that we have generated where each ai ∈ {0, 1, 2, . . . , pi+1 − 1}
and make unit backward transfers as far as we can go. A unit backward transfer uses
the identity qkR

k = pkR
k−1, k ≥ 1. In a unit backward transfer if ak ≥ qk, k ≥ 1,

we take out qk markers from container Rk, k ≥ 1, and place pk markers in container
Rk−1.

If ak < qk we cannot make a unit backward transfer pkR
k−1 ← qkR

k. We cannot
unit backward transfer from containerR0. To backward transform p→ p =

∑m
i=0 aiR

i

as far as we can go means that each ai, i ≥ 1, satisfies ai ∈ {0, 1, 2, . . . , qi − 1} and
a0 ∈ {0, 1, 2, . . .} .

We initially have a0, a1, . . . an markers in containers R, R, . . .Rn. When we
make our backward transformations from p we can start our backward reasoning by
starting with the an markers in the Rn container of p =

∑n
i=0 aiR

i = N and work
back step by step by going sequentially from containers

Rn → Rn−1 → Rn−2 → · · · → R0 = 1

the same way that we started with the N markers in the R0 = 1 container and worked
forward step by step R0 → R1 → R2 → · · · in the forward transformation of N → p.

This order Rn → Rn−1 → · · · will always be called the standard order and this
standard order allows us to see the entire action.

When we reach the R0 = 1 container we cannot take out any markers from
the R0 = 1 container. Using the standard order and using an argument (called the
standard argument) that is almost exactly the same as for the forward unit transfers of
N → p we see that no matter in what arbitrary order we carry out the unit backward
transfers that we will always end with the same polynomial p. We now show that
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p is N markers in container R0 = 1 which corresponds to the constant polynomial
p = a0 = N . To see that p = N we know that at least one back path from p leads to
N since N was forward transformed into p. Since N cannot be back transformed any
further and since all back paths from p lead to the same p→ p we see that p = N .

Also, from the standard order and the standard argument we see that in general
no matter in what order we make the unit backward transfers from p→ p = N we will

always make the same number of backward unit transfers from each qkR
k → pkR

k−1

and this implies that the total number of unit backward transfers will always be the
same. Of course, we do not need a convergence condition for the backward unit
transfers because when we get to the R0 = 1 container we have hit a wall in the sense
that we cannot make any more backward unit transfers from the R0 = 1 container.

The proceeding paragraph is obvious anyway since the backward unit transfers
p → N are just the reverse order of forward unit transfers of N → p and we already
know all of this for the N → p forward unit transfers.

Again note that the unit forward transformations ofN → p do not have any cycles.
Let p

N
be the set of all polynomials that we get (along the way) when we forward

transform N into the final polynomial p =
∑n

i=0 aiR
i = N, ai ∈ {0, 1, 2, . . . , pi+1 − 1},

in all possible orders. For p,Q ∈ p
N

we say that p ≺ Q if p can be forward transformed
into Q in one unit forward transfer. Since the number of unit forward transfers N → p

is fixed we see that
(
p
N
,≺
)

is a Hasse diagram.

The transitive closure of
(
p
N
,≺
)

defines a partial order
(
p
N
,≤
)

. For p,Q ∈ p
N

we can also say that p ≤ Q if p can be forward transformed into Q in a sequence
of unit forward transfers pk+1R

k → qk+1R
k+1. Also, p = N is the first (or least)

element and p is the final (or greatest) element of the partial order
(
p
N
,≤
)

. Also,

the different levels of the polynomials p ∈
(
p
N
,≤
)

can be defined by the number

of unit forward transfers needed to go from N → p. This is fixed since the number
of unit forward transfers of N → p is fixed. Of course, the unit backward transfers

qkR
k → pkR

k−1 are equivalent to following the Hasse diagram
(
p
N
,≺
)

of the partial

order
(
p
N
,≤
)

backwards.

For all p,Q ∈
(
p
N
,≤
)

we note that p = N,Q = N are also true numerically.

We show in Sections 6, 9 that
(
p
N
,≤
)

is a distributive lattice. We will generalize

Section 3 in Section 4 and also go into much greater detail.

Suppose p,Q ∈
(
p
N
,≤
)

and p ≤ Q. Let

p =

n∑
i=0

aiR
i, Q =

m∑
i=0

aiR
i, n ≤ m.

As always as we explain in Section 4 the standard order in forward transforming

p = (a0, a1, . . . , an)→ Q = (a0, a1, . . . , am)

is to transform in the order

p1R
0 → q1R

1, p2R→ q2R
2, p3R

2 → q3R
3 → · · · .

That is we make all of the unit forward transfers p1R
0 → q1R

1 first, then make all of
the unit forward transfers p2R

1 → q2R
2 second, etc. This allows us to see the action
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when we forward transform p → Q in any arbitrary order. The same definitions are
used in the back transformations of Q → p. In Section 4 we explain in detail all of
the ways to forward transform p→ Q.

From all of the previous information we can see the following.

We see that N can be forward transformed into N → Q if and only if p can be
back transformed into p→ Q.

Now when N is forward transformed into N → p in any order we know that the
total number of unit forward transfers is always the same and the total number of
unit forward transfers pk+1R

k → qk+1R
k+1 is always the same for each k. Suppose

Q,S ∈
(
p
N
,≤
)

and also Q ≤ S. Now N ≤ Q ≤ S ≤ p. Suppose N can be forward

transformed into N → Q in θ unit forward transfers. Also, Q can be forward trans-
formed into Q → S in φ unit forward transfers. Also, S can be forward transformed
into S → p in ψ unit forward transfers.

From this, N can be forward transformed into N → p in θ + φ+ ψ unit forward
transfers. Now θ+φ+ψ is fixed for all orders of N → p. Therefore, we see that θ, φ, ψ
must be fixed. This means that all forward transformations of N → Q,Q→ S, S → p
must always use exactly θ, φ, ψ unit forward transfers respectively. Also, the levels
of Q,S, p must be θ, θ,+φ, θ + φ + ψ respectively. The same things are true for the
backward transformations p → S → Q → N . Also, in N → Q,Q → S, S → p the
number of unit forward transfers pk+1R

k → qk+1R
k+1 will be the same for all k no

matter what the arbitrary order is. This is explained in greater detail in Section 4.

4. A More General Partial Order
(
p,≤, p, p

)
. As always Rn = r1r2 . . . rn is

our generalized base. As always the unit forward transfers use pk+1R
k → qk+1R

k+1

and the unit back transfers use qkR
k → pkR

k−1. As always we assume that the
generalized base satisfies the convergence condition.

Instead of starting with N ∈ {0, 1, 2, . . .} we can start with any arbitrary polyno-
mial p =

∑m
i=0 aiR

i = a
b where ai ∈ {0, 1, 2, . . .} and where a

b ∈ Q+.

We back transform p → p as far as we can go in any arbitrary order. Using
the convergence condition we also forward transform p → p as far as we can in any
arbitrary order.

As always to back transform p→ p as far as we can go means that p =
∑m

i=0 aiR
i

where a0 ∈ {0, 1, 2, . . .} and for i ≥ 1, ai ∈ {0, 1, 2, . . . , qi − 1}. To forward transform
p→ p as far as we can go means that p =

∑r
i=0 aiR

i, ai ∈ {0, 1, 2, . . . , pi+1 − 1}.
In this section we assume that p has been forward transformed as far as possible

into p and backward transformed as far as possible into p.

Our standard argument using the standard orders of transformation Rm → Rm−1,
Rm−1 → Rm−2, . . . and R0 → R1, R1 → R2, . . . reveals the action and shows that p, p
are always the same no matter what the arbitrary order is. The standard argument
is analogous to Section 3. From our standard argument using the standard order
R0 → R1, R1 → R2, . . . if p is forward transformed in any arbitrary order as far as
we can go we will always end in the same polynomial T . We show T = p. Now p can
be forward transformed into p and when p is forward transformed in any order as far
as we can go we will always end p→ p. Therefore, T = p.

Likewise if p is back transformed as far as we can go in any order will always
end in p → p . Therefore, if p can be forward transformed into Q we see that
when Q is forward transformed in any order as far as we can go then Q is always
forward transformed into Q → p. This implies that p can be back transformed into
Q. Likewise if p can be back transformed into Q then when Q is back transformed
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in any order as far as we can go then Q will always be back transformed into Q→ p.
Therefore p can be forward transformed into Q.

Again using our standard order R0 → R1, R1 → R2, . . . and our standard ar-
gument we see that in forward transforming p → p that the total number of unit

forward transfers pi+1R
i → qi+1R

i+1 is always the same for each i no matter what
the arbitrary order is. Therefore, in p→ p the total number of unit forward transfers
is always the same no matter what the arbitrary order is. The same is true for the
back transformation of p → p. The back unit transfers of p → p are also created by
just reversing the unit forward transfers of p→ p.

Suppose p→ Q→ R→ p is a forward transformation. Suppose the total number
of unit forward transfers in p→ Q is θ in Q→ R is φ and in R→ p is ψ. Suppose we
now forward transform p → Q in any arbitrary order, forward transform Q → R in
any arbitrary order, and forward transform R → p in any arbitrary order. Then the
total number of unit forward transfers in p→ Q,Q→ R,R→ p will always be θ, φ, ψ
respectively since the number of unit forward transfers of p→ p is θ+φ+ψ. We call θ
the level (or the bottom level) of Q, φ the level of R with respect to Q and ψ the top (or
back) level of R. Again note that θ+φ+ψ is the total number of unit forward transfers
of any arbitrary forward transformation p → p. Also, in p → Q,Q → R,R → p the

total number of unit forward transfers pi+1R
i → qi+1R

i+1 is always the same for all
i. The same is true for the back transformation of p→ R→ Q→ p.

We emphasize that in forward transforming p → p in all possible orders that
there can be no cycles since all forward transformations of p→ p always use the same
number of unit forward transfers. Using the proceeding information we now define(
p,≤, p, p

)
=
(
p,≤

)
as follows. p is the set of all polynomials that p can be forward

transformed into. p is also the set of all polynomials that p can be back transformed
into.

For R,S ∈ p, we say that R ≤ S if R can be forward transformed into S. Note

that for all R ∈ p,R =
∑n

i=0 aiR
i = a

b is also numerically true. Since p → p has

no cycles, it is obvious that
(
p,≤, p, p

)
is a partial order with least element p and

greatest element p. However, much more than this, for each Q ∈
(
p,≤, p, p

)
we say

that the level (or bottom level) of Q is the total number of unit forward transfers
pk+1R

k → qk+1R
k+1 that are needed to forward transform p → Q. This level is the

same for all forward transformations of p → Q.

The Hasse diagram
(
p,≺, p, p

)
of
(
p,≤, p, p

)
is defined by Q ≺ R if Q,R ∈ p and

Q can be forward transformed into R in exactly one unit forward transfer. We show
later that

(
p,≤, p, p

)
is a distributing lattice with least element p and greatest element

p.

Suppose R ∈ p and R can be forward transformed or back transformed into
R→ S. Then S ∈ p. For example, if R can be back transformed into S then since p
can be back transformed into R we see that p can be back transformed into S. This
implies S ∈ p.

Suppose R,S ∈
(
p,≤, p, p

)
, R ≤ S. Also, R =

∑n
i=0 aiR

i = a
b , S =

∑n
i=0 aiR

i =
a
b , ai, ai ∈ {0, 1, 2, . . .}. We now analyze in detail the action of forward transforming
R → S. Of course, since R ≤ S we know that R can be forward transformed into S.
From what we already know about p→ R→ S → p we know the following. The total
number of unit forward transfers in R → S is (level S)– (level R). Also, the total
number of unit forward transfers pi+1R

i → qi+1R
i+1 is always the same for each i no

matter in what arbitrary order we forward transform R→ S.



222 DISTRIBUTIVE LATTICES

As always the standard way to forward transform R = (a0, a1, . . . , an) → S =
(a0, a1, . . . , an) is to start with a0, a1, . . . , an markers in containers R0, R1, R2, . . . .
First we leave a0 markers in the R0 = 1 container and forward transfer the rest to

container R. This will give us a′1 = a1 + q1

[
a0−a0

p1

]
markers, where p1| (a0 − a0), in

the R container. Next we leave a1 markers in the R container and forward transfer

the rest to the R2 container. This will give us a
′

2 = a2 + q2

[
a′1−a1

p2

]
markers, where

p2|a′1 − a1, in the R2 container. We now continue this same pattern until we forward
transform R→ S. Analogous to the standard argument for N → p used in Section 3
where N , N1, N2 . . . are analogous to a0, a′1, a′2, . . . the above standard transformation
of R→ S tells us the number of unit forward transfers from each pi+1R

i → qi+1R
i+1.

As we already know from a few pages back, this number will also be the same for
any arbitrary forward transformation of R→ S since a0, a

′
1, a
′
2, a
′
3 will always be the

same. When R ≤ S we now show that we can forward transform R → S in any
arbitrary order that we choose as long as we never exceed these known number of
unit forward transfers pi+1R

i → qi+1R
i+1, i = 0, 1, 2, . . ., and as long as we always

make valid unit forward transfers. Also, if we follow these two rules there will always
be open to us such a valid forward unit move that we can make until we completely
forward transform R→ S.

Suppose R→ R follows the above rules. Also, suppose

R = a′0 + a′1R+ a′2R
2 + · · ·+ a′nR

n

and

S = a0 + a1R+ a2R
2 + · · ·+ anR

n.

Also, suppose a′0 = a0, a′1 = a1, . . . , a′k−1 = ak−1, a′k 6= ak.

Note that the action that has taken place in containers Rk+1, Rk+2, . . . is of no
concern to us here and we know the complete action that has taken place in containers
R0, R1, R2, . . . , Rk−1. We now focus on containing Rk.

Since we know by hypothesis that we have not exceeded the known number of
unit forward transfers pi+1R

i → qi+1R
i+1, i = 0, 1, 2, . . ., and also a′k 6= ak we see

that we must have a′k = ak + tpk+1, t = 1, 2, 3, . . .. Therefore, there is a valid forward
unit move that we can make namely pk+1R

k → qk+1R
k+1 that is also compatible

with the rules that we are using since we know by hypothesis that we could not have
already make the known number of unit forward transfers pk+1R

k → qk+1R
k+1 that

must be made to forward transform R into S. Carefully note that we will always have
a situation where a′k = ak + tpi+1, t = 1, 2, 3, . . . and where we have not reached the
number of unit forward transfers pk+1R

k → qk+1R
k+1 that must be made to forward

transform R→ S. Therefore, there is always open to us at least one valid move that
we can make if we follow the rules.

We now show that we can also forward transform

R = (a0, a1, . . . , an)→ S = (a0, a1, . . . an)

in any order using the following rule. If at any time in the forward transformation of
R → R′ → S where R′ = (a′0, a

′
1, a
′
2, . . . , a

′
n, ) we have a′i > ai and a′i > pi+1 we can

forward unit transfer

R′ = (a′0, a
′
1, . . . , a

′
n)→

(
a′0, a

′
1, . . . , a

′
i−1, a

′
i − pi+1, a

′
i+1 + qi+1, a

′
i+2, . . . a

′
n

)
.
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Also if we follow this rule, there will always be open to us such a move that we
can make until we completely forward transform R→ S.

The proof of this is really just a corollary of the first proof. The following proof
is optional.

To start the action suppose R = (a0, a1, . . . , an) ≤ S = (a0, a1, . . . an) and ai > ai
and ai ≥ pi+1. Since R ≤ S from the first proof such a situation will always exist.
Now a valid unit forward transfer is

R = (a0, a1, . . . , an)→ R1 = (a0, . . . , ai−1, ai − pi+1, ai+1 + qi+1, ai+2, . . . , an) .

Also, this unit forward transfer pi+1R
i → qi+1R

i+1 must be made sometime in
forward transforming R→ S. Otherwise we would end with too many markers in the
Rk container to forward transform R→ S.

From the first proof we are justified to make this unit forward transfer at the very
beginning and this is compatible with the first proof. Also, from the first proof we can
now do the same thing with R1 → S until we forward transform R → R1 → R2 →
· · · → S by following the rules. In Section 11 we give a simple idea which greatly
extends the structure

(
p,≤, p, p

)
given in this section.

We need to point out that
(
p,≤, p, p

)
has a fractal type property that each Q ∈(

p,≤, p, p
)

has embedded in itself the property that the entire structure
(
p,≤, p, p

)
can be generated from Q. Thus seems remarkable since

(
p,≤, p, p

)
can be arbitrary

large or even be infinite if we drop the covergence condition on the base.

5. Preliminary Results for Proving that
(
p
N
,≤
)
,
(
p,≤

)
are Lattices.

Lemma 1. Let
(
p,≤, p, p

)
=
(
p,≤

)
be the partial order defined in Section 4. The par-

tial order
(
p
N
,≤
)

of Section 3 is a special case of this. Suppose p =
∑r

i=0 biR
i = a

b ,
a
b ∈ Q+, is the least element of (p,≤, p, p). Suppose p =

∑n
i=0 aiR

i = a
b , Q =∑m

i=0 aiR
i = a

b are any two members of
(
p,≤

)
. This means that p can be for-

ward transformed into p and Q. Suppose a0 = a0, a1 = a1, . . . , ak−1 = ak−1, ak >
ak. Let us represent p,Q as markers (a0, a1, a2, . . .) , (a0, a1, a2, . . .) in containers
R0, R1, R2, R3, . . .. Then from container Rk for p that contains ak markers we can
remove tpk+1 markers, t ∈ {1, 2, 3, . . .}, and place tqk+1 markers in container Rk+1 so
that ak − tpk+1 = ak.

Proof. We represent p as markers (b0, b1, b2, . . .) in containers R0 = 1, R1, R2, R3,

. . . We now forward transform p into p,Q in the standard order R0 → R1, R1 → R2,

R2 → R3, . . .
In other words we first remove markers from the R0 = 1 container and leave

a0 = a0 markers in the R0 = 1 container and place markers in the R container. We
continue this process until we have

a0 = a0, a1 = a1, a2 = a2, . . . , ak−1 = ak−1, b
∗
k

markers in containers

R0 = 1, R1, R2, . . . , Rk−1, Rk.

Starting with the b∗k markers in the Rk container, let us continue to remove
markers in the standard order from containers Rk, Rk+1, . . . until we have completely
forward transformed p into p and p into Q. Since ak > ak we may suppose b∗k =
kpk+1 + a where k ∈ {1, 2, 3, . . .} and a ∈ {0, 1, 2, . . . , pk+1 − 1}.
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Then, ak = a+ k′pk+1 > a+ kpk+1 = ak where k ≥ k′ > k. For polynomial p it
is now obvious that we can remove

(
k′ − k

)
pk+1 markers from the Rk container of p

and place
(
k′ − k

)
qk+1 markers in the Rk+1 container of p so that

ak −
(
k′ − k

)
pk+1 = (a+ k′pk+1)−

(
k′ − k

)
pk+1 = a+ kpk+1 = ak,

as required
Lemma 2.Suppose

(
p,≤, p, p

)
=
(
p,≤

)
is the partial order of Section 4. Let

p,Q ∈ p be from Lemma 1 where

p =

n∑
i=0

aiR
i =

a

b
, Q =

m∑
i=0

aiR
i =

a

b

and where a0 = a0, a1 = a1, . . . , ak−1 = ak−1, ak > ak. Since ak = ak + tpk+1,
t ∈ {1, 2, 3, . . .}, we can forward transform

p = a0 + a1R+ · · ·+ ak−1R
k−1 + akR

k + · · ·+ anR
n

into

p∗ = a0 +a1R+ · · ·+ak−1R
k +akR

k +(ak+1 + tqk+1)Rk+1 +ak+2R
k+2 + · · ·+anR

n.

Thus, p is forward transformed into p∗ by using tpk+1R
k → tqk+1R

k+1. Of course,

p < p∗. Suppose x =
r∑

i=0

xiR
i, x ∈ p, is any upper bound of both p and Q. That is,

p ≤ x,Q ≤ x and this means that both p and Q can be forward transformed into x.
Then x is an upper bound of both p∗ and Q. That is p < p∗ ≤ x,Q ≤ x. This means
that both p∗ and Q can be forward transformed into x.

Proof. We can forward transform both p and Q into x in the standard order as
explained in Sections 3, 4. Since a0 = a0, a1 = a1, . . . , ak−1 = ak−1, ak > ak, when we
forward transform p and Q into x and agree to use the standard order R0 → R,R→
R2, R2 → R3, . . ., we see that the forward transfers R0 → R,R→ R2, . . . Rk−1 → Rk

must be identical for both p and Q.
Also, when we try to forward transform p∗ → x the above transfers R0 → R,R→

R2, . . . Rk−1 → Rk that were used for p and Q must also be used for p∗ → x since
p∗, p,Q all have the same coefficients a0 = a0, a1 = a1, . . . , ak−1 = ak−1. When we
reach the Rk container suppose when we forward transform Q→ x that we take out
t′pk+1 markers from the Rk container and place t′qk+1 markers in the Rk+1 container.

Since by Lemma 1, ak = ak + tpk+1, t ∈ {1, 2, . . .}, when we forward transform
p→ x we must take out an additional tpk+1 markers from theRk container. Therefore,
in forward transforming p → x we must take out a total of t′pk+1 + tpk+1 markers
from container Rk and place t′qk+1 + tpk+1 markers in container R+1.

From this it is very easy to see that we can forward transform both p and p∗ into
x since in the very beginning we made the forward transfer p → p∗ by making the
forward transfer tpk+1R

k → tqk+1R
k+1 and also p, p∗ are exactly the same except for

this one forward transfer tpk+1R
k → tqk+1R

k+1.

6. Proving that
(
p,≤, p, p

)
is a Lattice.

Lemma 3. The partial order
(
p,≤, p, p

)
=
(
p,≤

)
of Section 4 is a lattice. The

partial order
(
p
N
,≤
)

is a special case.
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Proof. We must show for each p,Q ∈ p that p and Q have a least upper bound
denoted by p ∧ Q and a greatest lower bound denoted by p ∨ Q. Of course, p is one
upper bound of p,Q and p is one lower bound of p,Q.

We show that p,Q have a least upper bound. The proof that p,Q have a greatest
lower bound is true by the duality of the unit forward and unit backward transfers
pk+1R

k � qk+1R
k+1 and the duality of p and p.

In other words we just turn the partial order upside down and call ≤=≥.
From Lemma 1 if

p = a0 + a1R+ · · ·+ ak−1R
k−1 + akR

k + · · ·+ anR
n,

Q = a0 + a1R+ · · ·+ ak−1R
k−1 + akR

k + · · ·+ anR
n

where ak > ak we can forward transform p → p∗ where p∗ = a0 + a1R + · · · +
ak−1R

k−1 + akR
k + [ak+1 + tqk+1]Rk+1 + ak+2R

k+2 + · · · anRn and t ∈ {1, 2, 3, . . .}.
Of course, p < p∗. Note we use the same n for p,Q. Also, if p ≤ x,Q ≤ x then from
Lemma 2 p < p∗ ≤ x,Q ≤ x. That is, x is an upper bound of both p,Q iff x is also
an upperbound of both p∗, Q.

Note that p,Q have the same coefficients a0, a1, a2, . . . , ak−1 but ak > ak.
However, p∗, Q have the same coefficients a0, a1, a2, . . . , ak−1, ak. Also, if p ≤ x,
Q ≤ x then p < p∗ ≤ x, Q ≤ x.

We just continue this exact same pattern over and over by defining

p < p∗ < p∗∗ < · · · < p∗∗∗∗

and

Q < Q∗ < Q∗∗ < · · · < Q∗∗∗

where eventually (as we show below) p∗∗∗∗ = Q∗∗∗ so that if p ≤ x and Q ≤ x then

p < p∗ < p∗∗ < · · · < p∗∗∗∗ ≤ x

and

Q < Q∗ < Q∗∗ < · · · < Q∗∗∗ ≤ x.

Since p∗∗∗∗ = Q∗∗∗ and p ≤ p∗∗∗∗ ≤ x,Q ≤ Q∗∗∗ ≤ x we see that p ∧ Q = p∗∗∗∗ =
Q∗∗∗.

Thus we have constructed the least upper bound p ∧Q of p and Q.
The reason that eventually we must have p∗∗∗∗ = Q∗∗∗ is that by the convergence

condition placed on our generalized base R0 = 1, R, R2, R3, . . . we cannot keep
forward transforming forever. In other words in our finite partial order

(
p,≤

)
we

cannot construct an infinite sequence of different levels A < B < C < D < · · · .
The last statement in the proof is also true for another more basic reason which

is true even when our generalized base does not satisfy the convergence condition.
Suppose p =

∑n
i=0 aiR

i = a
b , Q =

∑n
i=0 aiR

i = a
b where we sum from 1 to n in

both sums. Since n is the same in both sums eventually in the proof we will reach a
point where p→ p∗∗∗∗, Q→ Q∗∗∗ and where

p∗∗∗∗ =

(
n−1∑
i=0

a∗iR
i

)
+ a′nR

n =
a

b
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and

Q∗∗∗ =

(
n−1∑
i=0

a∗iR
i

)
+ a

′′

nR
n =

a

b
.

Therefore, a′n = a
′′

n and p∗∗∗∗ = Q∗∗∗.

We soon show that the lattice
(
p,≤

)
is distributive. Of course, the lattice

(
p
N
,≤
)

of Section 3 is a special case of
(
p,≤

)
.

7. Transforming p into Q, p,Q ∈
(
p,≤

)
. Suppose p,Q ∈

(
p,≤

)
. Then we

can always transform p→ Q by using a sequence of unit forward and unit backward
transfers. A simple way to do this is to first forward transform p into p∧Q and then
backward transform p ∧ Q into q. Or we can first backward transform p into p ∨ Q
and then forward transform p ∨Q into Q.

We show later that both of these two methods take the same number of unit
transfers and also these two methods use the smallest possible total number of unit
transfers. Lemma 4 is very optional.

Lemma 4.Suppose p,Q ∈
(
p,≤

)
. Also suppose

p = a0 + a1R+ · · ·+ ak−1R
k−1 + akR

k + ak+1R
k+1 + · · ·+ anR

n,

Q = a0 + a1R+ · · ·+ ak−1R
k−1 + akR

k + ak+1R
k+1 + · · ·+ amR

m.

If ak > ak then from Lemma 1 we can forward transform p→ p∗ such that

p∗ = a0 + a1R+ · · ·+ ak−1R
k−1 + akR

k + a∗k+1R
k+1 + ak+2R

k+2 + · · ·+ anR
n.

We now show that if ak < ak then we can backward transform p→ p∗ such that

p∗ = a0 + a1R+ · · · ak−1Rk−1 + akR
k + a∗k+1R

k+1 + · · ·+ a∗rR
r,

r ≤ n.
Proof. We know that p = b0+b1R+· · ·+btRt can be forward transformed into both

p and Q in the standard order in which the unit forward transfers pk+1R
k → qk+1R

k+1

are made in the order R0 → R, R→ R2, R2 → R3, . . . .
The first k steps R0 → R, R → R2, . . .Rk−1 → Rk are identical for both p → p

and p → Q. In these first k steps R0 → R1, R1 → R2, . . . , Rk−1 → Rk we leave a0
markers in container R0, we leave a1 markers in container R, we leave a2 markers in
container R2, . . . , we leave ak−1 markers in container Rk−1 and place some additional
markers in the Rk container.

At this point in the forward transfers of both p→ p, p→ Q we have a0 markers

in R0, a1 markers in R, a2 markers in R2, . . . , ak−1 markers in Rk−1 and b∗k markers in
Rk, bk+1 markers in Rk+1, bk+2 markers in Rk+2, . . . and bt markers in Rt. In p → p

the next move Rk → Rk+1 takes out tpk+1 markers from Rk and in p → Q the next

move Rk → Rk+1 takes out tpk+1 markers from Rk where t > t must be true since
ak < ak. Thus, ak = b∗k − tpk+1 and ak = b∗k − tpk+1 where t > t.

At this point in the forward transformation p→ p′ → p we see that

p′ = a0 +a1R+ · · ·+ak−1R
k−1 +akR

k +
(
bk+1 + tqk+1

)
Rk+1 + bk+2R

k+2 + · · ·+ btR
t

where ak = b∗k − tpk+1.
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We now note that ak +
(
t− t

)
pk+1 = b∗k − tpk+1 = ak. Therefore, by making

the back transfers on p′ of
(
t− t

)
qk+1R

k+1 →
(
t− t

)
pk+1R

k we see that p′ is back
transformed into p′ → p∗ where p∗ satisfies the conditions of the lemma.

Now p′ can be forward transformed into p′ → p. Therefore, the back transforms
p → p′ → p∗ will back transform p → p∗ where p∗ satisfies the conditions of the
lemma.

The reader might like to think about backward transforming p → p∗ in the
smallest number of unit backward transfers.

Observation 2: For p,Q ∈
(
p,≤

)
suppose p = a0+a1R+ · · ·+anRn+an+1R

n+1+
· · ·+ amR

m = a
b , Q = a0 + a1R+ · · ·+ anR

n = a
b where m ≥ n, ai ≥ 0.

Since p and Q have the same numerical value p = a
b , Q = a

b and since ai ≥ 0, Ri >
0 we see that an+1 = an+2 = · · · = am = 0. Therefore, lemmas 1, 4 show another way
to transform p into Q in a sequence of unit forward and unit backward transfers.

8. Efficiently Transforming p into Q, p,Q ∈
(
p,≤

)
. If p,Q ∈

(
p,≤

)
we

know that we can transform p → Q by building a sequence of unit forward and
unit backward transfers. In the transforming p → Q for each Ri, Ri+1, suppose we
make xi unit forward transfers pi+1R

i → qi+1R
i+1 and yi unit backward transfers

pi+1R
i ← qi+1R

i+1. Let ti = xi − yi. Then in p → Q we are making the equivalent
of ti unit transfers pi+1R

i→←−qi+1R
i+1. If ti > 0 this means we make the equivalent of

ti unit forward transfers pi+1R
i → qi+1R

i+1. If ti < 0 this means that we make the
equivalent of |ti| unit backward transfers pi+1R

i ← qi+1R
i+1. If ti = 0, we make the

equivalent of no transfers at all.

In any transformation of p → Q we soon show that the ti-values ti = xi − yi,
i = 0, 1, 2, . . . are always the same. As the example below makes clear, this means
that if we know the ti-value ti, i = 0, 1, 2, . . . of p → Q then the ti unit transfers
pi+1R

i→←−qi+1R
i+1, i = 0, 1, 2, . . . in any arbitrary order will transform p→ Q.

For example if t0 = 2, t1 = −1, t2 = 1 then we can make the four unit transfers
p1R

0 → q1R
1, p1R

0 → q1R
1, p2R

1 ← q2R
2, p3R

2 → q3R
3 in any arbitrary order.

Of course, most of these unit transfers will not be compatible with the fact that
pi+1R

i → qi+1R
i+1 is possible iff ai ≥ pi+1 and pi+1R

i ← qi+1R
i+1 is possible iff

ai+1 ≥ qi+1.

Let us call |t0| + |t1| + · · · + |tn−1| = t the total t-value of p → Q and say that
p→ Q is an efficient transformation if it uses exactly t unit transfers. Also, in p→ Q,
a unit transfer p → p∗ is an efficient unit transfer if it reduces the total t-values of
p→ Q by 1.

If p → p1 → p2 → · · · → pt−1 → Q is an efficient transformation of p → Q then
Q → pt−1 → · · · → p2 → p1 → p is an efficient transformation Q → p having the
same total t-value.

If the ti-values of p → Q are (t0, t1, t2, . . . , tn−1) then the ti-values of Q → p are
(−t0,−t1,−t2, . . . ,−tn−1).

For p,Q ∈
(
p,≤

)
we now show that the ti-values of p→ Q are the same for any

arbitrary transformation of p→ Q.

Let p = a0+a1R+a2R
2+ · · ·+anRn = a

b , Q = a0+a1R+a2R
2+ · · ·+anRn = a

b .
Note that we are using the same exponent Rn for both p and Q.

As always we use the standard order R0 → R1 → R2 → · · · .
For p → Q and for all case of a0, a0 we know the ti-value t0 of the number of

unit transfers p1R
0→←−q1R that must be made so that p has the correct a0 value. After

these t0 unit transfers p1R
0→←−q1R are made we now know the ti-value t1 of the number
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of unit transfers p2 R→←−q2R
2 that we must make so that p has the correct a1 value.

After these t1 unit transfers p2R→←−q2R
2 are made we now know the ti-value t2 of the

number of unit transfers p3R
2→←−q3R

3 that we must make so that p has the correct a2
value.

This pattern continues until p has been transformed into

p→ Q = a0 + a1R+ · · ·+ an−1R
n−1 + a∗nR

n.

Since p = Q = a
b is true numerically we see that a∗nR

n = anR
n must be true. Thus,

we know all of t0, t1, t2, . . . tn−1.
We now show by induction on t = |t0| + |t1| + · · · that for any p,Q ∈

(
p,≤

)
an

efficient transformation of p → Q is possible. Of course, since p,Q ∈ (p,≤), at least
an inefficient transformation of p into Q is possible and the ti values actually exist.

If t = 0 then p = Q and there is nothing to prove. Therefore for p→ Q suppose
|t0|+ |t1|+ · · · = t ≥ 1.

Of course, an efficient transformation of p → Q is possible iff an efficient trans-
formation of Q→ p is possible.

By symmetry suppose that p = a0+a1R+· · ·+ak−1Rk−1+akR
k+ak+1R

k+1+· · · ,
Q = a0+a1R+ · · ·+ak−1Rk−1+akR

k +ak+1R
k+1+ · · · where ak > ak. From Lemma

1, we know that ak = ak + rkpk+1, rk ∈ {1, 2, 3, . . .}.
Now obviously t0 = t1 = · · · tk−1 = 0 and tk for p→ Q is tk = rk ≥ 1. Therefore,

the unit forward transfer pk+1R
k → qk+1R

k+1 is a possible move and it transforms
p→ p∗. Of course, p∗ ∈

(
p,≤

)
.

If (t0, t1, . . . , tk−1, tk, tk+1, . . .) are the t-values for p → Q then tk ≥ 1 and the
t-values for p∗ → Q are (t0, t1, . . . , tk−1, tk − 1, tk+1, . . .) and |t0|+ |t1|+ · · ·+ |tk − 1|+
|tk+1|+ · · · = t− 1.

Thus, p → p∗ is an efficient unit transfer of p → Q. Since p∗, Q ∈
(
p,≤

)
, by

induction on t we know that p∗ can be efficiently transformed into Q in exactly t− 1
unit transfers. Also, p was transformed into p∗ in exactly one unit transfer. Therefore,
p can be transformed into Q in exactly (t− 1) + 1 = t unit transfers.

Also, p can be efficiently transformed into Q iff Q can be efficiently transformed
into p. Note that we assumed that ak > ak. If ak < ak we just reverse the roles
of p and Q. Let (t0, t1, . . .) be the ti-values of p → Q. Since p can be efficiently
transformed into Q for any p,Q ∈

(
p,≤

)
, we know that there is always open to p

at least one efficient unit transfer either a unit forward transfer or a unit backward
transfer.

Of course, an efficient unit transfer reduces the total t-value by 1.
In a moment we show that for any p,Q ∈

(
p,≤

)
there is always open to p in the

transformation p → Q both an efficient unit forward transfer and an efficient unit
backwards transfer if some ti are positive and some ti are negative. We now carry the
preceding ideas much further.

Suppose p,Q ∈
(
p,≤

)
. We now show that p → p ∧ Q → Q is an efficient

transformation of p→ Q if we first transform p→ p∧Q by a sequence of unit forward
transfers and then transform p ∧ Q → Q by a sequence of unit backward transfers.
The same is true for p→ p ∨Q→ Q.

We note that p→ p ∧Q→ Q is an efficient transformation iff Q→ p ∧Q→ p is
an efficient transformation. Therefore, we have the licence to prove Q → p ∧ Q → p
is an efficient transformation if this is convenient for us.

We first use induction on |t0| + |t1| + |t2| + · · · = t to show that there exists at
least one efficient transformation of p → Q that transforms p → p ∧ Q → p where
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we first transform p → p ∧ Q by some sequence of unit forward transfers and then
transform p ∧Q→ Q by some sequence of unit back transfers.

If t = 0 then p = Q and there is nothing to prove. Therefore, suppose t ≥ 1.

By symmetry we can suppose that p = a0 + a1R + · · · + ak−1R
k−1 + akR

k +
ak+1R

k+1+· · ·+anRn, Q = a0+a1R+· · ·+ak−1Rk−1+akR
k+ak+1R

k+1+· · ·+anRn

where ak > ak. If ak < ak we just deal with Q→ p ∧Q→ p.

As always ak = ak + rkpk+1, rk ∈ {1, 2, 3, . . .}.
Define p∗ = a0 + a1R+ · · ·+ (ak − pk+1)Rk + (ak+1 + qk+1)Rk+1 + ak+2R

k+2 +
· · ·+ anR

n. Lemma 2 uses a slightly different p∗ but we can reason with Lemma 2 to
see that p < p∗ ≤ p∗ ∧Q = p ∧Q.

Also, p→ p∗ uses one unit forward transfer.

Also, the total t-value of p∗ → Q is t− 1.

By induction on |t0|+ |t1|+ · · · = t− 1, p∗ → p∗ ∧Q = p ∧Q→ Q is an efficient
transformation of p∗ → Q if we transform p∗ → p∗ ∧ Q = p ∧ Q by a sequence of
unit forward transfers and then transform p∗ ∧Q = p∧Q→ Q by a sequence of unit
backward transfers. By induction on |t0|+ |t1|+ · · · = t−1, p∗ → p∗∧Q = p∧Q→ Q
can transform p∗ → Q in exactly t− 1 unit transfers.

Since p → p∗ uses one unit forward transfer we see that p → p∗ → p∗ ∧ Q =
p ∧Q→ Q transforms p→ Q in exactly 1 + (t− 1) = t unit transfers.

Therefore, p → p∗ → p∗ ∧Q = p ∧Q → Q is a least one efficient transformation
of p→ Q.

However, much more general than this, since p ≤ p ∧ Q we know from Section
4 that any forward transformation of p → p ∧ Q uses exactly the same number of
unit forward transfers. Also, since p ∧Q ≥ Q any back transformation of p ∧Q→ Q
uses exactly the same number of unit back transfers. Therefore, any transformation
p→ p∧Q→ Q that first forward transforms p→ p∧Q in a sequence of unit forward
transfers and then back transforms p∧Q→ Q in a sequence of unit back transfers is
an efficient transformation of p→ Q that uses |t0|+ |t1|+ · · · = t unit transfers.

We also need to note that since p→ p ∧Q→ Q is an efficient transformation of
p→ Q and since p→ p∧Q only uses unit forward transfers on p and p∧Q→ Q only
uses unit backward transfers on p then there could not be any interaction between
these two types of transfers on p since that would not be efficient. This means that
the forward unit transfers on p in p→ p∧Q and the back unit transfers on p in p∧Q
→ Q must be completely independent in order to efficiently transfer p→ Q in exactly
|t0|+ |t1|+ · · ·+ |tn−1| = t unit transfers.

Therefore, in efficiently transforming p → p ∧ Q all of the positive ti-values of
p→ Q are used and in efficiently transforming p∧Q→ Q all of the negative ti-values
of p→ Q are used. Also, when all of the positive ti-values of p→ Q are used and no
negative ti-values are used we will always end in p ∧ Q no matter in what order we
make the unit forward transfers. Of course, we must always make valid moves along
the way.

The proof for p→ p∨Q→ Q follows by the duality between pk+1R
k → qk+1R

k+1

and pk+1R
k ← qk+1R

k+1 and the duality of p and p. Let (t0, t1, · · · ) be the ti-values
of p→ Q .

From the above we also see that for any p,Q ∈
(
p,≤

)
by using p → p ∧ Q

→ Q, p → p ∨ Q → Q there is always open to p in transforming p → Q and efficient
unit forward transfer it any of the ti-values ti are positive and there is always open
to p an efficient unit backward transfer if any of the ti-values ti are negative.

Let (t0, t1, · · · ) be the ti-values of p → Q with total ti-values of t. To efficiently
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transform p → Q we can in general proceed as follows. We use the above list of
ti-values to keep track of what we are doing.

We know there is open to p at least one valid efficient unit transfer either one
unit forward or one unit backwards or both if some ti > 0 and some ti < 0.

The first move can be to arbitrarily choose any valid efficient unit transfer p→ p∗

that is available to p. This reduces the total t-value of p → Q by 1 and also reduces
the magnitude of one of the ti-values by 1. Also, p∗ ∈

(
p,≤

)
. Since the total t-value

of p∗ → Q is t − 1 we then do the same thing to p∗ to transfer p∗ → p∗∗. We then
do the same thing to p∗∗ → p∗∗∗. This creates a sequence of exactly t unit transfers
p→ p∗ → p∗∗ → p∗∗∗ → · · · → Q.

Suppose p,Q ∈
(
p,≤

)
and we want to construct p ∧ Q. First we compute the

ti-values of p → Q which are (t0, t1, t2, . . .). We now efficiently forward transform
p → p ∧ Q by pretending to efficiently transform p → Q. In efficiently transforming
p→ Q we first make all of the unit forward transfers which correspond to the positive
ti-values. Such forward unit transfers will always be available to us. This can be done
in any arbitrary order that is available to us As long as all of the positive ti-values
are used and no negative ti-values are used we end in the same polynomial. When we
have finished this we will have forward transformed p = p∧Q. Each of these efficient
unit forward transfers of p→ Q will reduce one of the positive ti-values of p→ Q by
1. We use the list (t0, t1, t2, . . .) to keep track of our unit forward transfers of p→ Q.
By duality in efficiently transforming p → p ∨Q we efficiently transform p → Q and
first make all of the unit back transfers which correspond to the negative ti-values.
We keep track of this by using our list (t0, t1, t2, . . .). Let θ be the total number of
unit forward transfers of p → Q and φ be the total number of unit back transfers of
p → Q. Then level p ∧ Q− level p = level Q− level p ∨ Q = θ. Also, level (p ∧ Q)−
level Q = level p− level p ∨Q = φ. Let (t0, t1, . . .) be the ti-values of p→ Q. Then

level Q− level p =

n∑
i=0

ti.

Also, by arranging θ+’s and φ−’s in any arbitrary sequence we see that in effi-
ciently transforming p→ Q we can create a path that oscillates up and down between
adjacent levels of

(
p,≤

)
according to this arbitrary sequence of +’s and −’s. We

conclude this section by noting that if p ≤ p ≤ p ∧ Q and Q ≤ Q ≤ p ∧ Q, then
P ∧Q = P ∧Q.

9. Proving that
(
p,≤

)
is Distributive. In this proof we use the obvious fact

that if the ti-values of p→ Q are (t0, t1, . . .) and the ti-values of Q→ R are
(
t0, t1, . . .

)
then the ti-values of p→ R are

(
t0 + t0, t1 + t1, . . .

)
.

Suppose that p ∈
(
p,≤

)
is fixed. Let Q,R ∈

(
p,≤

)
be arbitrary. Let (t0, t1, t2, . . .)

be the ti-values of p→ Q and let
(
t0, t1, t2, . . .

)
be the ti-values of p→ R. From the

above statement it is obvious that
(
t0 − t0, t1 − t1, t2 − t2, . . .

)
must be the ti-values

of Q→ R.
From the end of Section 8 we know how to compute the ti-values of Q→ Q ∧ R

when we know the ti-values
(
t0 − t0, t1 − t1, . . .

)
ofQ→ R. The ti-values ofQ→ Q∧R

called (t∗0, t
∗
1, t
∗
2, . . .) are computed as follows. If ti−ti ≥ 0 then t∗i = ti−ti. If ti−ti ≤ 0

then t∗i = 0.
Since the ti-values of p → Q are (t0, t1, t2, . . .), the ti-values of p → Q ∧ R must

be (t0, t1, t2, . . .) + (t∗0, t
∗
1, t
∗
2, . . .) = (t0 + t∗0, t1 + t∗1, t2 + t∗2, . . .).

If ti − ti ≥ 0 then ti + t∗i = ti +
(
ti − ti

)
= ti.
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If ti − ti ≤ 0 then ti + t∗i = ti + 0 = ti. In both cases the ti-values of p→ Q ∧R
are

(
max

(
t0, t0

)
,max

(
t1t1

)
, . . .

)
.

The proof that the ti-values of p→ Q ∨ R must be
(
min

(
t0, t0

)
,min

(
t1t1

)
, . . .

)
is almost exactly the same.

It is well known that the max (x, y) and min (x, y) operators distribute over one
another. Therefore

(
p,≤

)
is a distribute lattice.

In summary suppose
(
p,≤, p, p

)
is generated by p ∈ p. Then as always each Q ∈ p

can be represented by the ti-values of p → Q. That is, each Q ∈ p is represented by

Q = (t0, t1, t2, . . .), ti ∈ Z. Suppose Q ∈ p is represented by Q =
(
t0, t1, t2, . . .

)
. Then

Q ≤ Q iff ti ≤ ti, i = 0, 1, 2, . . ..

If Q = (t0, t1, t2, . . .) ∈ p,Q =
(
t0, t1, t2, . . .

)
∈ p then

Q ∧ Q = lub
(
Q,Q

)
=
(
max

(
t0, t0

)
, . . .max

(
tn, tn

))
∈ p and Q ∨ Q = glb

(
Q,Q

)
=(

min
(
t0, t0

)
, . . .min

(
tntn

))
∈ p. Thus

(
p,≤ p, p

)
is closed under the two max,min

operators, lub and glb.

Any collection of real n-tuples with the above closure property on max,min defines
a distributive lattice. Finally we note that (level Q)− (level p) = t0 + t1 + · · ·+ tn.

10. A Simplified Construction. This section gives a simple but massive ex-
tension of our methods.

In Section 4 we used a polynomial p = a0 + a1R + · · · + anR
n, ai ∈ {0, 1, 2, . . .}

to generate a distributive lattice
(
p,≤, p, p

)
.

We used both unit forward and unit backward transfers from p.

Suppose now that we allow only unit forward transfers to be made from p.

This will generate a subpartial order
(
p∈,≤, p, p

)
⊆
(
p,≤, p, p

)
with least element

p and greatest element p, where p is the same in both (p∈,≤, p, p) and (p ≤, p, p).

Suppose Q,R ∈
(
p∈,≤

)
. Then Q,R ∈

(
p,≤, p, p

)
and Q ∧R and Q ∨R exist in(

p,≤, p, p
)
. Now p ≤ Q ≤ Q ∧ R, p ≤ R ≤ Q ∧ R in

(
p,≤, p, p

)
and this implies that

p can be forward transformed into Q ∧ R. Therefore, Q ∧ R ∈
(
p∈,≤

)
which means

that a least upper bound Q ∧R exists for Q,R in
(
p∈,≤

)
.

Likewise Q∨R ∈
(
p,≤, p, p

)
. Now p ≤ Q, p ≤ R implies p ≤ Q∨R in

(
p,≤, p, p

)
.

Therefore, p can be forward transformed into Q ∨ R. Therefore, Q ∨ R ∈
(
p∈,≤

)
which means that a greatest lower bound Q ∨ R exists for Q,R in

(
p∈,≤

)
. Also,

Q∧R and Q∨R are the same in both
(
p,≤

)
and

(
p∈,≤

)
Also, p is the least element

of
(
p∈,≤

)
and the p of

(
p,≤, p, p

)
is the greatest element of

(
p∈,≤

)
. Also,

(
p∈,≤

)
is a distributive lattice.

Of course p will generate
(
p∈,≤

)
. We can also generate

(
p∈,≤

)
from every

element Q ∈
(
p∈,≤

)
if we use the following algorithm. Let p = a0+a1R+· · ·+amRm.

This defines m for us. Of course, n ≤ m
Also, let p→ p have ti-values of

(
t0, t1, . . . , tm−1

)
where each ti ≥ 0.

We now write p as a matrix,

p =

[
a0 a1 a2 · · · am−1 am
t0 t1 t2 · · · tm−1 0

]
.
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For any Q ∈
(
p∈,≤

)
, let us first forward transform Q as far as we can go.

This will transform Q into p. Starting with p, we now make unit backward transfers
piR

i−1 ← qiR
i where we can make any valid unit backward transfers p → Q1 →

Q2 → · · ·Qt in the usual way except that

p =

[
a0 a1 a2 · · · am−1 am
t0 t1 t2 · · · tm−1 0

]
→ Qt =

[
b0 b1 b2 · · · bm−1 bm
t0 t1 t2 · · · tm−1 0

]
must satisfy the added restriction that ti ≤ 0 and ti + ti ≥ 0, where t0, t1, t2, . . . tm−1
are the ti-values of Qt with respect to p. The material in Section 8 can be rigorously
used to show that these unit back transfers define the Hasse diagram of the partial

order
(
p∈,≤

)
.

Since
(
p∈,≤

)
is a finite distributive lattice we will see from the finite topological

t1-space of Section 11 that
(
p∈,≤

)
has all or most of the other properties mentioned

in this paper. Finally we mention that we can probably create infinite distributive lat-
tices by starting with an infinite symbolic polynomial p =

∑∞
i=0 aiR

i, ai ∈ {0, 1, 2, . . .}
and using only forward unit transfers pk+1R

k → qk+1R
k+1.

11. Topological Spaces. In 1997 we discovered that all finite distributive lat-
tices are equivalent to the collection of all finite topological t1-spaces. A finite topo-
logical t1-space(u, t) has the property that (u, t) is a topological space on the finite set
u. Also, of course φ ∈ t, u ∈ t. Also, if A,B ∈ t then A,B ⊆ u, A∪B ∈ t, A∩B ∈ t.

The t1-property states that for all a, b ∈ u if a 6= b there exists A ∈ t such that
a ∈ A, b /∈ A or a /∈ A, b ∈ A. This is called a separation axiom.

The finite set u can be represented by the n-tuple u = {u1, . . . , un} = (1, . . . , 1).
Also, all A ∈ t can be represented by the n-tuple A = (a1, a2, . . . , an) where each
ai = 1 if ui ∈ A and ai = 0 if ui /∈ A.

If A = (a1, a2, . . . , an) ∈ t, B = (b1, b2, . . . , bn) ∈ t then A ≤ B iff A ⊆ B iff ai ≤ bi
for all i and lub (A,B) = A∪B = A∧B = (max (a1, b1) ,max (a2, b2) . . . ,max (an, bn)).
Also, glb (A,B) = A ∩B = A ∨B = (min (a1, a2) ,min (a2, b2) , . . . ,min(an, bn).

All or most of the properties in this paper are satisfied by this finite t1-space.
However, we do not know how to generate the finite topological t1-space from every
member set of this space.

12. Further Generalizations Including Infinite Distributive Lattices.
We can see no reason why every idea in this paper cannot be generalized. This
leads to much more mathematics than what we have in this paper.

If we allow our polynomial coefficients to satisfy ai ∈ Z instead of ai ∈ {0, 1, 2, . . .}
it appears that we get infinite distributive lattices.

We can generalize our base further. Fig. 1 will make this base easier to under-
stand.

For each i ∈ {1, 2, 3, . . .} let 0 < ri = pi

qi
. For each i ∈ {0, 1, 2, . . .}, 0 < r−i = q−i

p−i
.

We can let pi, qi ∈ {1, 2, 3, . . .} or pi, qi ∈ Q+ or pi, qi ∈ R+.
Also, for n ≥ 1,

R0 = 1,

Rn = r1r2 . . . rn =
p1
q1

p2
q2
· · · pn

qn
,

R−n = r0r−1r−2 · · · r−n+1 =
q0
p0

q−1
p−1
· · · q−n+1

p−n+1
.
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Also, pi+1R
i = qi+1R

i+1, i ∈ Z,

R−2 R−1 R0 R1 R2

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

p−1→←−q−1 p0→←−q0 p1→←−q1 p2→←−q2

Fig. 1. An extended generalized base.

We call this base an extended generalized base.

We deal with polynomial p =
n∑

i=m

aiR
i, where m ≤ n,m, n ∈ Z.

We can restrict ai ∈ {0, 1, 2, 3, . . .} or ai ∈ Q+ ∪ {0} or ai ∈ R+ ∪ {0} or ai ∈ Z
or ai ∈ Q or ai ∈ R.

We use the identity pi+1R
i = qi+1R

i+1 to transform a polynomial p→ Q.
As always we can represent a polynomial p as markers am, am+1, . . . an in con-

tainers Ri, m ≤ i ≤ n, m,n ∈ Z.
Starting with a given polynomial p =

∑n
i=m aiR

i, m ≤ n,m, n ∈ Z, we create
the set of all polynomial p that p can be transformed into.

In the substitution pi+1R
i = qi+1R

i+1 we call this substitution a forward unit
transfer if we replace pi+1R

i → qi+1R
i+1 and call this substitution a backward unit

transfer if we replace pi+1R
i ← qi+1R

i+1. We say that p ≤ Q if we can transform
p → Q by a sequence of forward unit transfers. We can use a convergence condition
in one or both directions, or use no convergence condition at all.

Although we have not done so we can see no reason why we cannot show that
with or without convergence conditions that each p,Q ∈ p has a least upper bound
p ∧ Q and a greatest lower bound p ∨ Q. Also, we can see no reason why ∧ and ∨
do not distribute over each other. Everything in this paper especially the material in
Section 8 probably generalizes for . . .R−3, R−2, R−1, R0, R, R2, R3, · · · . Suppose
we start with p =

∑n
i=m aiR

i, m ≤ n,m, n ∈ Z and use pk+1R
k = qk+1R

k+1 to
generate a set p. Suppose the convergence condition does not hold. In this case if we

agree to put an upper bound on the highest exponent Rk that we can allow in p and
also put a lower bound on the lowest exponent Rt that we can allow in p then p will

generate a finite distributive lattice
(
p,≤

)
exactly the same way that p generates a

finite distributive lattice when we do have convergence conditions in both directions.
If we do not put bounds on Rk, Rt and the upper and/or lower convergence conditions
do not hold for p then p will probably generate on infinite distributive lattice in one
or both directions. If we use ri = 1

0 , i = 1, 2, 3, . . . we can use symbolic polynomials
p = a0 + a1R+ · · ·+ anR

n, ai ∈ {0, 1, 2, . . .} and we can use the unit forward transfer
1 ·Ri → 0 ·Ri+1. Thus starting with p = 2 + 2R we can use unit forward transfers to
generate the following simple 2× 2 tile lattice.

Also we can create an infinite tile lattice by embedding the lattices

g (1 +R) ⊆ g (2 + 2R) ⊆ g (3 + 3R) ⊆ g (4 + 4R) ⊆ · · ·

where g(n+ nR) is the lattice generated by n+ nR.
In general we can embed lattices

g (p1) ⊆ g (p1 + p2) ⊆ g (p1 + p2 + p3) ⊆ g (p1 + p2 + p3 + p4) ⊆ · · ·
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Fig. 2.

to create infinite lattices when g(p1 + p2 + · · · + pn) is a superset of g(p1 + p + 2 +
· · ·+ pn−1).

The reader might like to experiment with ri = 0
1 , i = 0, 1, 2, . . . and the unit

forward transfers 0 ·Ri → 1 ·Ri+1 and the initial polynomial p = 1.

13. A Concluding Remark. We are not even remotely close to proving that
our methods will generate all finite distributive lattices. However, the generalized
construction of Section 10 with adjustments like Fig. 2 will generate all of the finite
distributive lattices that we ourselves have recently studied.

One difficulty in solving this problem is to find a way to generate all finite distribu-
tive lattices from every single member of the lattice which is equivalent to generating
all finite topological t1-spaces from every single member of the space.

Section 10 generates such a massive number of finite distributive lattices that it
would almost seem surprising if our methods could not generate at least all finite
distributive lattices.
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