Invariant Relations for the Derivatives of Polynomials

Arthur Holshouser
3600 Bullard St.
Charlotte, NC, USA
Harold Reiter
Department of Mathematics, University of North Carolina Charlotte, Charlotte, NC 28223, USA
hbreiter@email.uncc.edu

1 Introduction

Using the resultant of two polynomials, we show how to calculate a collection of invariant relations for the derivatives of any polynomial $P(x)=\sum_{i=0}^{n} a_{i} x^{i}$.

As a simple example, for the quadratic $Q(x)=a_{2} x^{2}+a_{1} x+a_{0}$, we have

$$
\left(Q^{\prime}(x)\right)^{2}-2 Q^{\prime \prime}(x) \cdot Q(x)=\left(Q^{\prime}(0)\right)^{2}-2 Q^{\prime \prime}(0) \cdot Q(0)=a_{1}^{2}-4 a_{0} a_{2}
$$

As the degree n of the polynomial $P(x)$ increases, the complexity of most of these invariant relations increases very rapidly. For this reason, the majority these invariant relations are mostly of theoretical interest for large n.

2 The Resultant of two Polynomials

The resultant $\rho(P(x), Q(x))$ of two polynomials P, Q is a standard determinant which gives by its zero or non-zero value the necessary and sufficient condition so that P and Q have no roots in common. Also, if $P(x)=a_{n} \cdot \prod_{i=1}^{n}\left(x-r_{i}\right)$ and $Q(x)=b_{m} \cdot \prod_{i=1}^{m}\left(x-s_{i}\right)$, then $\rho(P(x), Q(x))=a_{n}^{m} \cdot b_{m}^{n} \cdot \prod\left(r_{i}-s_{j}\right)$.

This resultant is the tool that we use in this paper.
Lemma 1 Suppose $P(x)=\sum_{i=0}^{n} a_{i} x^{i}$ and $Q(x)=\sum_{i=0}^{m} b_{i} x^{i}$ are arbitrary polynomials. Define $\bar{P}(x)=P(x+b)$ and $\bar{Q}(x)=Q(x+b)$. Then $\rho(\bar{P}(x), \bar{Q}(x))=\rho(P(x), Q(x))$.

Proof. Let $r_{1}, r_{2}, \cdots, r_{n}$ be the roots of $P(x)$ and let $s_{1}, s_{2}, \cdots, s_{m}$ be the roots of $Q(x)$. Also, let $\bar{r}_{1}, \bar{r}_{2}, \cdots, \bar{r}_{n}$ be the roots of $\bar{P}(x)$ and let $\bar{s}_{1}, \bar{s}_{2}, \cdots, \bar{s}_{m}$ be the roots of $\bar{Q}(x)$. Now each $\bar{r}_{i}=r_{i}-b$ and each $\bar{s}_{j}=s_{j}-b$. Also, $\rho(P, Q)=a_{n}^{m} \cdot b_{m}^{n} \cdot \prod\left(r_{i}-s_{j}\right)$. Therefore, $\rho(\bar{P}, \bar{Q})=a_{n}^{m} \cdot b_{m}^{n} \cdot \prod\left(\bar{r}_{i}-\bar{s}_{j}\right)=a_{n}^{m} \cdot b_{m}^{n} \cdot \prod\left(r_{i}-s_{j}\right)=\rho(P, Q)$.

3 Computing Invariant Relations for the Derivatives of a Polynomial

Let us define the polynomial $P(x)=\sum_{i=0}^{n} A_{i} x^{i}$ where $A_{0}, A_{1}, \cdots, A_{n}$ are constants. Now $P(x)=\sum_{i=0}^{n} A_{i}(b)(x-b)^{i}=\sum_{i=0}^{n} \frac{P^{i}(b)}{i!}(x-b)^{i}$ where $P^{i}(b)$ is the i th derivative of $P(x)$ evaluated at $x=b$ and $P^{0}(b)=P(b)$.

Therefore, $P(x+b)=\sum_{i=0}^{n} A_{i}(b) x^{i}=\sum_{i=0}^{n} \frac{P^{i}(b)}{i!} x^{i}$. Thus, for all $i \in\{0,1,2, \cdots, n\}, A_{i}(b)=$ $\frac{P^{i}(b)}{i!}$. Also, by letting $b=0$, we see that for all $i \in\{0,1,2, \cdots, n\}, A_{i}=A_{i}(0)=\frac{P^{i}(0)}{i!}$ since $P(x)=\sum_{i=0}^{n} A_{i} x^{i}=\sum_{i=0}^{n} A_{i}(0) x^{i}$.

Let us call $Q(x)=P(x+b)=\sum_{i=0}^{n} A_{i}(b) x^{i}=\sum_{i=0}^{n} \frac{P^{i}(b)}{i!} x^{i}$.
From Lemma 1, we see that if $P^{i}(x), P^{j}(x)$ are the i th, j th derivatives of $P(x)$ and $Q^{i}(x), Q^{j}(x)$ are the i th, j th derivatives of $Q(x)$, including $P^{0}=P, Q^{0}=Q$, then $\rho\left(P^{i}(x), P^{j}(x)\right)=\rho\left(Q^{i}(x), Q^{j}(x)\right)$. This follows since $Q^{i}(x)=(P(x+b))^{i}=P^{i}(x+b)$ and $Q^{j}(x)=(P(x+b))^{j}=P^{j}(x+b)$.

Now $\rho\left(P^{i}(x), P^{j}(x)\right)$ is just an algebraic polynomial expression involving the constants $A_{0}, A_{1}, A_{2}, \cdots, A_{n}$ where, of course, each $A_{i}=A_{i}(0)$.

Also, $\rho\left(Q^{i}(x), Q^{j}(x)\right)$ is the exact same polynomial expression except that each $A_{i}, i=$ $0,1,2, \cdots, n$, has been replaced by $A_{i}(b)=\frac{P^{i}(b)}{i!}$.

Therefore, since $\rho\left(P^{i}(x), P^{j}(x)\right)=\rho\left(Q^{i}(x), Q^{j}(x)\right)$ for each $i \neq j, i, j \in\{0,1,2, \cdots, n-1\}$, we see that for each such i, j we have created a polynomial expression that gives an invariant relation for the derivatives of the polynomial $P(x)=\sum_{i=0}^{n} A_{i} x^{i}$. This will become more clear after the illustrations in Section 4.

Observation 1. Suppose C, \bar{C} are any non-zero constants. Then $\rho\left(P^{i}(x), P^{j}(x)\right)=$
$\rho\left(Q^{i}(x), Q^{j}(x)\right)$ implies that $\rho\left(C P^{i}(x), \bar{C} P^{j}(x)\right)=\rho\left(C Q^{i}(x), \bar{C} Q^{j}(x)\right)$.
It is usually more convenient to use this last equality.

4 Illustrating the Invariant Relations for Quadratic and Cubic Polynomials

We first define the quadratic $P(x)=\sum_{i=0}^{2} A_{i} x^{i}=A_{2} x^{2}+A_{i} x+A_{0}$. Also, $Q(x)=P(x+b)=$ $\sum_{i=0}^{2} A_{i}(b) x^{i}=\sum_{i=0}^{2} \frac{P^{i}(b)}{i!} x^{i}$.

$$
\begin{aligned}
& A_{0}(b)=P^{0}(b)=P(b)=A_{2} b^{2}+A_{1} b+A_{0} \\
& A_{1}(b)=\frac{P^{\prime}(b)}{1!}=2 A_{2} x+A_{1} \\
& A_{2}(b)=\frac{P^{\prime \prime}(b)}{2!}=A_{2}
\end{aligned}
$$

Now

$$
\begin{aligned}
\rho\left(P^{\prime}(x), P(x)\right) & =\rho\left(2 A_{2} x+A_{1}, A_{2} x^{2}+A_{1} x+A_{0}\right) \\
& =\left|\begin{array}{ccc}
2 A_{2} & A_{1} & 0 \\
0 & 2 A_{2} & A_{1} \\
A_{2} & A_{1} & A_{0}
\end{array}\right|=\left|\begin{array}{ccc}
0 & -A_{1} & -2 A_{0} \\
0 & 2 A_{2} & A_{1} \\
A_{2} & A_{1} & A_{0}
\end{array}\right| \\
& =A_{2}\left[4 A_{0} A_{2}-A_{1}^{2}\right] .
\end{aligned}
$$

We can ignore the A_{2} that is factored out since $A_{2}=A_{2}(b)$. Therefore, we have the invariant relation $4 A_{0}(b) A_{2}(b)-\left(A_{1}(b)\right)^{2}=4 A_{0} A_{2}-A_{1}^{2}$ where $A_{0}=A_{0}(0), A_{1}=A_{1}(0)$, and $A_{2}=A_{2}(0)$. Of course, this implies that

$$
\begin{aligned}
\frac{4 P(b) P^{\prime \prime}(b)}{2}-\left(P^{\prime}(b)\right)^{2} & =2 P(b) P^{\prime \prime}(b)-\left(P^{\prime}(b)\right)^{2} \\
& =2 P(0) P^{\prime \prime}(0)-\left(P^{\prime}(0)\right)^{2}
\end{aligned}
$$

This is the same invariant relation that we gave in the Abstract except that we called $P=Q$ and called $b=x$.

Next, we define the cubic polynomial $P(x)=\sum_{i=0}^{3} A_{i} x^{i}=A_{3} x^{3}+A_{2} x^{2}+A_{1} x+A_{0}$.

Also, $Q(x)=P(x+b)=\sum_{i=0}^{3} A_{i}(b) x^{i}=\sum_{i=0}^{3} \frac{P^{i}(b)}{i!} x^{i}$.
Now

$$
\begin{aligned}
& A_{0}(b)=P^{0}(b)=P(b)=A_{3} b^{3}+A_{2} b^{2}+A_{1} b+A_{0} \\
& A_{1}(b)=\frac{P^{\prime}(b)}{1!}=3 A_{3} b^{2}+2 A_{2} b+A_{1} . \\
& A_{2}(b)=\frac{P^{\prime \prime}(b)}{2!}=3 A_{3} b+A_{2} . \\
& A_{3}(b)=\frac{P^{\prime \prime \prime}(b)}{3!}=A_{3} .
\end{aligned}
$$

We will study both $\rho\left(P, P^{\prime}\right)$ and $\rho\left(P, P^{\prime \prime}\right)$. Of course, $\rho\left(P^{\prime}, P^{\prime \prime}\right)$ is already taken care of since P^{\prime} is a quadratic. Also $\rho\left(P, P^{\prime \prime \prime}\right)$ is a degenerate case since $P^{\prime \prime \prime}(x)=A_{3}$ is a constant.

Now $\rho\left(P, P^{\prime}\right)$ is just the discriminant of $P(x)=A_{3} x^{3}+A_{2} x^{2}+A_{1} x+A_{0}$. We can ignore the A_{3} term that factors out of this discriminant since $A_{3}=A_{3}(b)$.

Therefore,

$$
\rho\left(P(x), P^{\prime}(x)\right)=-27 A_{0}^{2} A_{3}^{2}+18 A_{0} A_{1} A_{2} A_{3}-4 A_{0} A_{2}^{3}-4 A_{1}^{3} A_{3}+A_{1}^{2} A_{2}^{2}
$$

See p.117, [2] for this standard discriminant of a cubic. Therefore, we have relation

$$
\begin{aligned}
& -27 A_{0}(b)^{2} A_{3}(b)^{2}+18 A_{0}(b) A_{1}(b) A_{2}(b) A_{3}(b) \\
& -4 A_{0}(b) A_{2}(b)^{3}-4 A_{1}(b)^{3} A_{3}(b)+A_{1}(b)^{2} A_{2}(b)^{2} \\
= & -27 A_{0}^{2} A_{3}^{2}+18 A_{0} A_{1} A_{2} A_{3}-4 A_{0} A_{2}^{3} \\
& -4 A_{1}^{3} A_{3}+A_{1}^{2} A_{2}^{2} .
\end{aligned}
$$

Substituting

$$
\begin{aligned}
A_{0}(b) & =P(b), A_{1}(b)=P^{\prime}(b), A_{2}(b)=\frac{P^{\prime \prime}(b)}{2}, A_{3}(b)=\frac{P^{\prime \prime \prime}(b)}{6} \\
A_{0} & =A_{0}(0)=P(0), A_{1}=A_{1}(0)=P^{\prime}(0) \\
A_{2} & =A_{2}(0)=\frac{P^{\prime \prime}(0)}{2}, A_{3}=A_{3}(0)=\frac{P^{\prime \prime \prime}(0)}{6}
\end{aligned}
$$

gives us one invariant relation involving the derivatives of the cubic $P(x)=A_{3} x^{3}+A_{2} x^{2}+$ $A_{1} x+A_{0}$.

Now

$$
\begin{aligned}
\rho\left(\frac{P^{\prime \prime}(x)}{2}, P(x)\right) & =\rho\left(3 A_{3} x+A_{2}, A_{3} x^{3}+A_{2} x^{2}+A_{1} x+A_{0}\right) \\
& =\left|\begin{array}{cccc}
3 A_{3} & A_{2} & 0 & 0 \\
0 & 3 A_{3} & A_{2} & 0 \\
0 & 0 & 3 A_{3} & A_{2} \\
A_{3} & A_{2} & A_{1} & A_{0}
\end{array}\right| \\
& =\left|\begin{array}{cccc}
0 & -2 A_{2} & -3 A_{1} & -3 A_{0} \\
0 & 3 A_{3} & A_{2} & 0 \\
0 & 0 & 3 A_{3} & A_{2} \\
A_{3} & A_{2} & A_{1} & A_{0}
\end{array}\right| \\
& =A_{3}\left[2 A_{2}^{3}-9 A_{1} A_{2} A_{3}+27 A_{0} A_{3}^{2}\right] .
\end{aligned}
$$

We again ignore A_{3} since $A_{3}=A_{3}(b)$.
Therefore, we have the relation

$$
\begin{aligned}
& 2 A_{2}(b)^{3}-9 A_{1}(b) A_{2}(b) A_{3}(b)+27 A_{0}(b) A_{3}(b)^{2} \\
= & 2 A_{2}^{3}-9 A_{1} A_{2} A_{3}+27 A_{0} A_{3}^{2} .
\end{aligned}
$$

Again by substituting $A_{0}=P(b), A_{1}(b)=P^{\prime}(b), A_{2}(b)=\frac{P^{\prime \prime \prime}(b)}{2}, A_{3}(b)=\frac{P^{\prime \prime \prime}(b)}{6}, A_{0}=$ $A_{0}(0)=P(0), A_{1}=A_{1}(0)=P^{\prime}(0), A_{2}=A_{2}(0)=\frac{P^{\prime \prime}(0)}{2}, A_{3}=A_{3}(0)=\frac{P^{\prime \prime \prime}(0)}{6}$, we have a second invariant relation involving the derivatives of the cubic polynomial $P(x)=$ $A_{3} x^{3}+A_{2} x^{2}+A_{1} x+A_{0}$. Of course, as stated previously, $\rho\left(P^{\prime}, P^{\prime \prime}\right)$ will fall under the classification of the invariant for quadratic polynomials since $P^{\prime}(x)$ is a quadratic.

5 Discussion

As n gets larger, most of these invariant relations increase very rapidly in complexity. However, one of these invariants, namely $\rho\left(P, P^{n-1}\right)$, can be computed easily. The reader may enjoy doing this. For example, the reader might like to compute $\rho\left(P, P^{\prime \prime \prime}\right)$ for the fourth degree polynomial. This complexity makes most of these invariant relations mostly of theoretical interest for large n.

References

[1] Barbeau, E. J. Polynomials, (Problem Books in Mathematics) (Paperback), Springer Verlag, New York, 1989.
[2] Weisner, Louis, Introduction to the Theory of Equation, The MacMillan company, New York, 1949.

