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The authors of [1] consider a special quadratic function property which in-
volves real numbers x, y, and x + y. This property is used to prove a well-
known identity about Fibonacci numbers. They then proceed to show that
under mild restrictions, this property characterizes this type of function.
Here, we consider a property which connects certain types of cubic polyno-
mials with the addition of real numbers. In the spirit of [1], this is followed by
a proof that under very simple conditions (e.g., that the function is bounded
on some open interval (c, d)), this property characterizes certain polynomials
of degree at most 3.

Our first theorem describes this additive connection. It is not new (see [2],
[3], [4]) but the second part spells out in detail a special case which is usually
omitted in the literature. We believe that our other results are essentially
new. Figure 1 goes here.

THEOREM 1. Let f (x) = A + Bx + Cx3, with C 6= 0.

(a) If u 6= v and L is the line through the points (−u, f (−u)) and (−v, f (−v)),
then L intersects the graph of f (x) also at the point (u + v, f (u + v)).

(b) If L is the tangent line to the graph of f (x) at the point (−u, f (−u)),
then L intersects the graph of f (x) also at the point (2u, f (2u)).

Proof.

(a) If the equation of L is y = mx + b, then g (x) = f (x) − mx − b is a
cubic polynomial with quadratic term 0 and two distinct roots at x = −u
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and x = −v. Since the quadratic term of g (x) is 0, the sum of the roots
of g (x) is 0. Therefore, the third root w of g (x) satisfies w − u − v = 0 or
w = u + v. It follows that L intersects the graph of f (x) also at the point
(u + v, f (u + v)).

(b) The equation of the tangent line L to the graph of f (x) at (−u, f (−u))
is

yT = f (−u) + f ′ (−u) (x + u) .

By Taylor’s Formula,

f (x) =
f ′′′ (−u)

3!
(x + u)3 +

f ′′ (−u)

2!
(x + u)2 +

f ′ (−u)

1!
(x + u) + f (−u)

= (x + u)2 [C (x + u)− 3Cu] + yT

= C (x + u)2 (x− 2u) + yT .

Then, since C 6= 0 and g (x) = f (x) − yT = C (x + u)2 (x− 2u), g (x)must
have a double root at x = −u and the remaining root at x = 2u. Hence, L
intersects the graph of f (x) also at the point (2u, f (2u)). �

Part (b) of THEOREM 1 is intended to extend Part (a) to the case where
u = v. Also, it should be noted that in Part (a), the point (u + v, f (u + v))
might coincide with either (−u, f (−u)) or (−v, f (−v)). This occurs when
v = −2u or u = −2v, respectively. When this happens, we get a situation
similar to Part (b).

By THEOREM 1, functions of the form f (x) = A + Bx + Cx3 satisfy:

PROPERTY (F). For all real x and y, the points (−x, f (−x)), (−y, f (−y)),
and (x + y, f (x + y)) are collinear.

This property is a little more general than the result of THEOREM 1 in that
it also clearly applies to straight lines (i.e., functions of the above type with
C = 0). Our second result shows that under a rather minimal additional
restriction on f (x), PROPERTY (F) characterizes functions of the type
f (x) = A + Bx + Cx3, for any constants A, B, C.

THEOREM 2. If f (x) satisfies PROPERTY (F) and f ′ (0) exists, then
there are constants A, B, and C such that f (x) = A + Bx + Cx3 for all real
x.

Proof. Let f (x) be a function which satisfies PROPERTY (F) and assume
that f ′ (0) exists. Then, for all real x and y such that −x, −y, and x + y are
distinct, PROPERTY (F) implies that we may equate the slopes determined
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by the pair (−x, f (−x)) and (x + y, f (x + y)) and the pair (−y, f (−y)) and
(x + y, f (x + y)) to obtain

f (x + y)− f (−x)

2x + y
=

f (x + y)− f (−y)

x + 2y

or
(y − x) f (x + y) = (x + 2y) f (−x)− (2x + y) f (−y) . (1)

Since it is easily checked that condition (1) is also true if at least two of −x,
−y, and x + y are equal, condition (1) is true for all real x and y. Further, a
straightforward computation shows that condition (1) holds for any function
of the form f (x) + M , where M is a fixed constant. As a result, if we let
g (x) = f (x)− f (0), then g (0) = 0, g′ (0) = f ′ (0), and

(y − x) g (x + y) = (x + 2y) g (−x)− (2x + y) g (−y) (1*)

for all real x and y.

By setting y = 0 in (1*), we get

−xg (x) = xg (−x)

for all x and hence (since g (0) = 0),

g (−x) = −g (x) (2)

for all real x. Then, when x 6= y, (1*) becomes

g (x + y) =
x + 2y

x− y
g (x) +

2x + y

y − x
g (y)

and we have

g (x + y)− g (x)

y
=

3

x− y
g (x) +

2x + y

y − x
· g (y)

y

=
3

x− y
g (x) +

2x + y

y − x
· g (y)− g (0)

y
(3)

when y 6= x, 0. Therefore, for x 6= 0 and B = g′ (0),

g′ (x) = lim
y→0

[
3

x− y
g (x) +

2x + y

y − x
· g (y)− g (0)

y

]
=

3

x
g (x)− 2B (4)
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For x > 0, (4) is a homogeneous differential equation which can be solved by
using the substitution g (x) = x3z. Its general solution is

g (x) = Bx + Cx3, (5)

for some arbitrary constant C. Then, condition (2) and the fact that g (0) = 0
imply that (5) is true for all real x. Finally, if A = f (0), then for all real x,

f (x) = g (x) + A = A + Bx + Cx3.

�

In this proof, the key step is to show that condition (1) and the existence
of f ′ (0) imply that g (x) = f (x) − f (0) satisfies a first order differential
equation. For another simple example of this approach, see [5].

The next few results show some ways to relax the condition that f ′ (0)
exists and still get the desired conclusion.

COROLLARY 3. If f (x) satisfies PROPERTY (F) and f ′ (a) exists for at
least one real number a, then there are constants A, B, and C such that
f (x) = A + Bx + Cx3 for all real x.

Proof. We may suppose that a 6= 0. If g (x) = f (x) − f (0), then as in the
proof of THEOREM 2, condition (3) holds for x = a. Therefore,

g (a + y)− g (a)

y
=

3

a− y
g (a) +

2a + y

y − a
· g (y)− g (0)

y

or equivalently,

g (y)− g (0)

y
=

y − a

2a + y
· g (a + y)− g (a)

y
+

3

2a + y
· g (a)

for y 6= 0, a, or −2a. As a result,

f ′ (0) = g′ (0) = lim
y→0

[
y − a

2a + y
· g (a + y)− g (a)

y
+

3

2a + y
· g (a)

]
= −1

2
g′ (a) +

3

2a
g (a) .

The conclusion now follows from THEOREM 2. �

LEMMA 4. If f (x) satisfies PROPERTY (F) and f (x) is continuous at

x = a, where a 6= 0, then f ′
(
−a

2

)
exists.
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Proof. Since f (x) is continuous at x = a, lim
h→0

f (a− h) = f (a). Then, apply

PROPERTY (F) to x =
a

2
and y =

a

2
− h (with h chosen so that −x, −y,

and x + y are distinct) to obtain

f (−y)− f (−x)

x− y
=

f (x + y)− f (−x)

2x + y

or
f

(
−a

2
+ h

)
− f

(
−a

2

)
h

=
f (a− h)− f

(
−a

2

)
3a
2
− h

.

Therefore,

f ′
(
−a

2

)
= lim

h→0

f (a− h)− f
(
−a

2

)
3a
2
− h

=
2

3
·
f (a)− f

(
−a

2

)
a

. �

LEMMA 5. If f (x) satisfies PROPERTY (F) and f (x) is bounded on some
open interval (c, d), then for any non-zero point a ∈ (c, d), f (x) is continuous

at x = −a

2
.

Proof. Let a ∈ (c, d) with a 6= 0. As in LEMMA 4, for appropriately chosen

values of h, we may apply PROPERTY (F) to x =
a

2
and y =

a

2
− h to get

f
(
−a

2
+ h

)
− f

(
−a

2

)
h

=
f (a− h)− f

(
−a

2

)
3a
2
− h

or

f
(
−a

2
+ h

)
= f

(
−a

2

)
+ h ·

f (a− h)− f
(
−a

2

)
3a
2
− h

.

Therefore,

lim
h→0

f
(
−a

2
+ h

)
= lim

h→0

[
f

(
−a

2

)
+ h ·

f (a− h)− f
(
−a

2

)
3a
2
− h

]
= f

(
−a

2

)
since

lim
h→0

h
3a
2
− h

= 0
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and f (a− h) − f
(
−a

2

)
is bounded for small values of h. It follows that

f (x) is continuous at x = −a

2
. �

By combining COROLLARY 3 and LEMMAS 4 and 5, we have

THEOREM 6. If f (x) satisfies PROPERTY (F) and f (x) is bounded on
some open interval (c, d), then there are constants A, B, and C such that
f (x) = A + Bx + Cx3 for all real x.

Note that if f (x) satisfies PROPERTY (F) and f (x) is not a polynomial
of degree at most 3, then f (x) must be unbounded on every open interval
(c, d). Such a function would have to be quite wild.

Our final results show that THEOREMS 1 and 6 can be extended in a
natural way to general cubic polynomials.

THEOREM 7. Let f (x) = A + BX + Cx2 + Dx3, with D 6= 0.

(a) If u 6= v and L is the line through the points (−u, f (−u)) and (−v, f (−v)),

then L intersects the graph of f (x) also at the point

(
u + v − C

D
, f

(
u + v − C

D

))
.

(b) If L is the tangent line to the graph of f (x) at the point (−u, f (−u)), then

L intersects the graph of f (x) also at the point

(
2u− C

D
, f

(
2u− C

D

))
.

Proof. We leave the details to the reader. One possibility is to imitate the
approach used in THEOREM 1, using the fact that if
g (x) = Ā + B̄x + C̄x2 + D̄x3, with D̄ 6= 0, then the sum of the roots of g (x)

is − C̄

D̄
. Another suggestion is to show that the function f̄ (x) = f

(
x− C

D

)
satisfies THEOREM 1 and use this to produce the desired conclusions.

As in our previous situation, arbitrary cubic polynomials satisfy the fol-
lowing more general property.

PROPERTY (FF). There is a constant K such that for all real x and
y, the points (−x, f (−x)) (−y, f (−y)), and (x + y −K, f (x + y −K)) are
collinear.

The last result shows that PROPERTY (FF) essentially characterizes
cubic polynomials.

THEOREM 8. If f (x) satisfies PROPERTY (FF) and f (x) is bounded on
some open interval (c, d), then there are constants A, B, C, and D such that
f (x) = A + BX + Cx2 + Dx3 for all real x.

6



Proof. Let f̄ (x) = f

(
x− K

3

)
for all real x. Then, if we apply

PROPERTY (FF) to the points x +
K

3
and y +

K

3
, the result is that(

−x− K

3
, f

(
−x− K

3

))
,

(
−y − K

3
, f

(
−y − K

3

))
, and

(
x + y − K

3
, f

(
x + y − K

3

))
are collinear, i.e.,

(
−x− K

3
, f̄ (−x)

)
,

(
−y − K

3
, f̄ (−y)

)
, and

(
x + y − K

3
, f̄ (x + y)

)
are collinear. Let L be a line containing these 3 points and LK be the line

obtained by translating L horizontally by
K

3
units. Since (x̄, ȳ) is on L if

and only if

(
x̄ +

K

3
, ȳ

)
is on LK , it follows that the points

(
−x, f̄ (−x)

)
,(

−y, f̄ (−y)
)
, and

(
x + y, f̄ (x + y)

)
are on LK and hence, these points are

collinear also. Therefore, f̄ (x) satisfies PROPERTY (F). Further, since

f (x) is bounded on (c, d), f̄ (x) is bounded on

(
c +

K

3
, d +

K

3

)
. By

THEOREM 6, there are constants Ā, B̄, and C̄ such that
f̄ (x) = Ā + B̄x + C̄x3 for all real x. Finally, for all real x,

f (x) = f̄

(
x +

K

3

)
= Ā + B̄

(
x +

K

3

)
+ C̄

(
x +

K

3

)3

= A + Bx + Cx2 + Dx3,

for appropriate constants A, B, C, and D. �

Observe that if the details of the last step of this proof are carried out, we

get C = C̄K and D = C̄. If D 6= 0, it follows that K =
C

D
, which connects

our result with THEOREM 7. We might also note that there is an algebraic
connection between THEOREMS 1 and 7. It is an exercise in many abstract
algebra books to show that for any constant K, x⊕ y = x+ y−K is a group
operation on R and that the groups (R,⊕) and (R, +) are isomorphic. Hence,
general cubic polynomials produce a group operation on R which reduces to
real addition when the polynomial has no quadratic term.

THEOREM 1 can be generalized as follows. Suppose p (x, y) = 0 is a
curve satisfying (1) p (x, y) is a polynomial in x and y, (2) each term cxayb of
p (x, y) satisfies c 6= 0, 0 ≤ a, 0 ≤ b, and 0 ≤ a + b ≤ 3, (3) at least one term
cxayb satisfies a + b = 3, and (4) p (x, y) cannot be factored as a product of
two non-constant polynomials. These curves are called elliptic curves (see
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[6]). Also, suppose p (x, y) = 0 has a true inflection point (as opposed to
a cusp) which we call 0̄. It is possible, using a continuous monotone scale,
to turn any such curve p (x, y) = 0 into an adding machine. Of course, this
would normally be extremely clumsy as compared with our simple scale.

REFERENCES

1. C. Alsina and R. B. Nelson, On Candido’s Identity, this Magazine 80
(2007) 226 - 228.

2. D. S. Macnab, The Cubic Curve and an Associated Structure, The Math-
ematical Gazette 50 (1966) 105 - 110.

3. H. Reiter and A. Holshouser, Turning the Cubic Curve into an Adding
Machine, Math. Teacher, May 2009, p. 651.

4. virtualmathmuseum.org/Curves/cubic/Addition on Cubic Curves.pdf.

5. D. T. Bailey, E. M. Campbell, C. R. Diminnie, and A. L. Holshouser,
Problem and Solution 1193, The Pi Mu Epsilon Journal, Volume 12, Number
10, (Spring 2009), 637 - 638.

6. http://mathworld.wolfram.com/EllipticCurve.html

7. Howard Eves, Curves and Surfaces, CRC Standard Math. Tables, 26th.
edition (1981), 263 - 278.

8



........................−5 −4 −3 −2 −1 1 2 3 4 5

........................

−4

−3

−2

−1

1

2

3

4

Fig. 1. The cubic curve is an adding machine.
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