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1 Introduction

In the fall of 1972 at Davidson College, Dr. Howard Eves “tossed out” unpublished work on a point algebra
that he called an equihoop. This paper was intended for undergraduate research and since Dr. Eves never
“tossed out” the same material at too many places, he never published this work.

Arthur Holshouser (a non-student), Dr. Ben Klein (a professor) and Brian White (a student) classified
all commutative equihoops in 1972 and all non-commutative equihoops in the summer of 1973. They never
published this work since they discovered that D.C. Murdoch [3] in 1939 had already classified all medial
quasigroups, a much larger class of structures. This classification uses an underlying Abelian group and
two commutative automorphisms on this group.

In 1974 Marsha Jean Falco [1] invented an 81 card game called SET. The 81 cards of SET contain all
possible combinations of the following four attributes. Number: {one, two, three}, shading: {solid, striped,
open}, color: {red, green, purple}, shape: {ovals, squiggles, diamond}. For example, one card displays
{one, solid, purple, ovals}. The goal of SET is to find collections of cards satisfying the SET rule: Three
cards are called a SET if, with respect to each of the four attributes, the cards are either all the same or all
different. See [1], [2] . One example of a SET is {one, solid, purple, ovals}, {two, solid, purple, squiggles},
{three, solid, purple, diamonds}.

If a, b are cards, let us define a · b = c where c is the third card in the SET. We also define a · a = a.
Then (SET cards, ·) is a commutative equihoop having 81 elements, and all commutative equihoops of 81
elements are isomorphically identical. In general all finite commutative equihoops, (S, ·), have |S| = 3k

elements and for each k, (S, ·) is unique up to isomorphism. In addition to proving this, we study the
structure of the commutative equihoop and in another paper we use this structure to find the maximum
number of cards that contains no SETS. We also define isomorphic subsets in a commutative equihoop, and
show in that later paper that all the maximum collections of cards that contain no SETS are isomorphic.
At the end of this paper, we summarize some of our results.

A web page of David Van Brink [6] states a SET-free collection cannot have more than 20 cards. He
says that he proved this in 1997 with a computer program that took about one week to run on a 90MHz
Pentium computer.

The result that 20 is the largest size of a SET-free collection of cards was actually proved in much
stronger form by G. Pellegrino, [4], without using computers. Pellegrino showed that any set of 21 points
in the projective space of 81 + 27 + 9 + 3 + 1 elements, represented by nonzero 5-tuples in which x and
−x are considered equivalent, has three collinear points. This would correspond to sets of three distinct
points in which the third is the sum or difference of the first two.

This paper has two main sections. The next section builds the basic theory of Commutative Equihoops,
and the final section builds the more specialized theory needed to study the 81 card game of SET.

2 Commutative Equihoops

Basic Definitions. Some of the following definitions are taken unchanged from a “musty” copy of Dr.
Eves’ 1972 handout at Davidson College.
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A Point Algebra, Basis: “A nonempty set S of elements a, b, c, d, · · · and a binary operation (herein
denoted by juxtaposition) is called a Point Algebra if the following three properties are satisfied: .

P1. a (ba) = b for all a, b of S. (left central property of x).

P2. aa = a for all a of S. (idempotent property of x).

P3. (ab) (cd) = (ac) (bd) for all a, b, c, d of S. (medial property of x).”

Dr. Eves listed other definitions, theorems, and conjectures that he labeledD1, D2, · · ·D6; T1, T2, · · · , T77

and C1, C2, some of which we discuss below.
For example, theorem T3 states (ab) a = a (ba) = b. This is proved by b = a (ba) = (aa) (ba) =

(ab) (aa) = (ab) a. This is the right central property of x.
Definition 1 (Eves’ D5). “A hoop is a nonempty set S of elements a, b, c, d, · · · and a binary operation

(herein denoted by juxtaposition) such that

Q1. For all a, b of S, ax = b and ya = b have unique solutions x and y in S.

Q2. aa = a for all a of S.

Q3. (ab) (cd) = (ac) (bd) for all a, b, c, d of S.”

Theorem 1. (Eves’ T77) Every point algebra is a hoop.

Definition 2. (Eves’ D6) A point algebra is called an equihoop.
Dr. Eves provided a model for thinking about equihoops. If a, b are points in the Euclidean plane, then

a · b = c where a, b, c is an equilateral triangle and a → b → c → a has a counter clockwise orientation.

Conjecture 1. (Eves’ C1) If ab = ba for all a, b of S in the equihoop (S, ·), then S is a singleton set.

Dr Eves’ conjecture is wrong, and he knew this, of course. He was just getting the students started.
Definition 3. (ours 1972) A commutative equihoop (S, ·) is an equihoop that satisfies P4. ab = ba

for all a, b of S.

Lemma 1. (SET cards,·) is a commutative equihoop where (·) was defined in the introduction. Therefore,
Eves’ Conjecture 1 is wrong.

To prove Lemma 1, simply check to see that properties P1 to P4 are satisfied.
Definition 4. (Quasigroups). A left quasigroup is a binary operator (S, ·) such that xa = b has

a unique solution (x = b/a) for all a, b of S. (S, ·) is a right quasigroup if ax = b has a unique solution
(x = b \ a) for all a, b of S. Also, (S, ·) is a quasigroup if it is both a left and a right quasigroup. A table
of a quasigroup is called a Latin square. See [5].

Definition 5 (Medial Quasigroup). A medial quasigroup is a quasigroup satisfying (ab)(cd) =
(ac)(bd) for all a, b, c, d of S. See [3]. Some authors use the term ”abelian” quasigroup.

Note that the hoop and the equihoop are medial quasigroups.
Murdoch’s Theorem (1939) [3]. Suppose (S, ·) is a medial quasigroup that has at least one idempotent
element 0 ∈ S. That is, 0·0 = 0. Then ∃ an Abelian group (S, 0,+) and two automorphisms A : (S, 0,+) →
(S, 0,+) , B : (S, 0,+) → (S, 0,+) satisfying A ◦ B = B ◦ A (where ◦ denotes composition of functions)
such that ∀x, y ∈ S, xy = A (x) +B (y) .
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Notation 1. In the rest of this paper, we deal only with commutative equihoops, which we usually call the
CEH. Also, we always denote the CEH by (E, ·). If we wish to single out a particular 0 ∈ E, we will denote
the structure by (E, 0, ·). In a CEH, any element can be so distinguished.

The CEH can be studied either directly or by first defining the underlying Abelian group. We use the
easier Abelian group approach, and we start the reader off on the direct approach. Holshouser, Klein, and
White discovered Theorems 2 - 14 in 1972 - 1973. Theorems 2 through 5 show that the Abelian group
structure and the CEH structure are retrievable from one another in a natural way.

Theorem 2. Suppose (E, 0, ·) is a CEH where 0 ∈ E is arbitrary but fixed. ∀a, b ∈ E define a+ b = 0 (ab).
Then (E, 0,+) is an Abelian group with identity 0 satisfying 3a = a+ a+ a = 0, ∀a ∈ E.

Proof. 1. To see the associativity of +, note that (a+ b) + c = a+ (b+ c) if and only if 0 [(0 (ab)) c] =
0 [a (0 (bc))]. Using the central property, this is true if and only if (0(ab))c = a(0(bc)). Now (0(ab))c =
(0(ab))(0(0c)) = (00)((ab)(0c)) = (00)((a0)(bc)) = (0(a0))(0(bc)) = a(0(bc)).

2. Commutativity. ∀a, b ∈ E, a+ b = 0 (ab) = 0 (ba) = b+ a.

3. Identity. ∀a ∈ E, 0 + a = 0 (0a) = 0 (a0) = a.

4. ∀a ∈ E, 3a = a+ (a+ a) = a+ 0 (aa) = a+ 0a = 0 (a (0a)) = 00 = 0.

Therefore, ∀a ∈ E, a+ (a+ a) = 0. Note that this implies (−a) = a+ a = 2a.

Theorem 3. Suppose (E, 0,+) is an Abelian group with identity 0 satisfying 3a = 0, ∀a ∈ E. ∀a, b ∈ E,
define ab = −a− b. Then (E, ·) = (E, 0, ·) is a CEH with 0 singled out.

Proof. The easy proof is left to the reader.

Theorem 4. Suppose (E, 0, ·) is a CEH with arbitrary 0 ∈ E singled out. Define (E, 0,+) as in Theorem
2. Define (E, 0,⊙) by a⊙ b = −a− b = 2a+ 2b. Then (E, 0, ·) = (E, 0,⊙) with 0 singled out.

Proof. a⊙ b = −a− b = 2a+2b = 0 (aa) + 0 (bb) = (0a) + (0b) = 0 ((0a) (0b)) = 0 ((00) (ab)) = 0 ((ab) 0) =
ab.

Theorem 5. Suppose (E, 0,+) is an Abelian group with identity 0 satisfying 3a = 0, ∀a ∈ E. Define
(E, 0, ·) as in Theorem 3. As in Theorem 2, define

(
E, 0, +̇

)
by a+̇b = 0 (ab). Then (E, 0,+) =

(
E, 0, +̇

)
.

Proof. a+̇b = 0 (ab) = 0 (−a− b) = −0− (−a− b) = a+ b.

Theorems 4, 5 show that the CEH’s (E, 0, ·), with 0 singled out, can be paired 1− 1 with the Abelian
groups (E, 0,+) with identity 0 and satisfying 3a = 0, ∀a ∈ E, by defining ∀a, b ∈ E, a + b = 0 (ab) and
ab = −a− b.

Theorem 6. Suppose (E, ·) = (E, 0, ·) is a CEH and (E, 0,+) is the corresponding Abelian group. Also,
suppose 0 ∈ H ⊆ E. Then (H, ·) = (H, 0, ·) is a CEH if and only if (H, 0,+) is an Abelian group. In other
words (H, ·) is closed under (·) if and only if (H, 0,+) is closed under +. We call such a (H, ·) a sub-CEH
of (E, ·) .

Proof. The proof is obvious.
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Notation 2. Suppose x1, x2, · · · , xk ∈ E where (E, ·) is a CEH. Then g (x1, x2, · · · , xk) denotes the set of
all members of E that can be generated from x1, x2, · · · , xk using the binary operator (·). This is the same
as g (x1, x2, · · · , xk) =

∩
i∈I

Hi, where (Hi, ·) , i ∈ I are all sub-commutative equihoops of (E, ·) that satisfy

{x1, x2, · · · , xk} ⊆ Hi. Of course, (g (x1, x2, · · · , xk) , ·) is a CEH.

Notation 3. Suppose x1, x2, · · · , xk ∈ E where (E, 0,+) is an Abelian group satisfying 3a = 0, ∀a ∈ E.
Then g (x1, x2, · · · , xk) denotes the set of all members of E that can be generated from x1, x2, · · · , xk using
the group operator (+). Of course, (g (x1, x2, · · · , xk) , 0,+) is an Abelian group and g (x1, x2, · · · , xk) ={

k∑
i=1

cixi : ci ∈ {0, 1, 2} , i = 1, 2, · · · , k
}
.

Theorem 7. A. Let (E, 0, ·) be a CEH with an arbitrary 0 ∈ E being singled out, and let (E, 0,+) be the
corresponding Abelian group satisfying 3a = 0, ∀a ∈ E. Suppose
{x0 = 0, x1, x2, · · · , xk} ⊆ E, k ≥ 1. Then g (0, x1, x2, · · · , xk) = g (x1, x2, · · · , xk) where g (0, x1, x2, · · · , xk)
is generated in (E, 0, ·) and g (x1, x2, · · · , xk) is generated in (E, 0,+) .

Proof. We show that (a) g (0, x1, x2, · · · , xk) ⊆ g (x1, x2, · · · , xk) and
(b) g (0, x1, x2, · · · , xk) ⊇ g (x1, x2, · · · , xk) .

(a) Since ∀a, b ∈ E, a · b = −a− b = 2a+ 2b, and since ∀a ∈ E, 0 + a = a and 3a = 0, it is obvious that

each x ∈ g (x0 = 0, x1, x2, · · · , xk) can be written as x =
k∑

i=1
cixi where each ci ∈ {0, 1, 2}. Therefore,

x ∈ g (x1, x2, · · · , xk) .

(b) Since ∀a, b ∈ E, a+b = 0 (ab), it is obvious that each x ∈ g (x1, x2, · · · , xk) satisfies x ∈ g (0, x1, x2, · · · , xk) .

Definition 6. Suppose {x1, x2, · · · , xk} ⊆ E where k ≥ 2 and (E, ·) is a CEH. Then {x1, x2, · · · , xk}
is independent in (E, ·) if ∀i = 1, 2, · · · , k, xi /∈ g (x1, x2, · · · , xi−1, xi+1, · · · , xk). Also, if k = 1, {x1} is
automatically independent in (E, ·) .

Note that if {x1, x2, · · · , xk} , k ≥ 2, is independent in (E, ·), then x1, x2, · · · , xk are distinct.
Definition 7. Suppose {x1, x2, · · · , xk} ⊆ E\ {0} where k ≥ 2 and (E, 0,+) is an Abelian group

satisfying 3a = 0, ∀a ∈ E. Then {x1, x2, · · · , xk} is independent in (E, 0,+) if ∀i = 1, 2, · · · , k, xi /∈
g (x1, · · · , xi−1, xi+1, · · · , xk). If k = 1, {x1} ⊆ E\ {0} is automatically independent in (E, 0,+) .

Note that if {x1, x2, · · · , xk} ⊆ E\ {0} is independent in (E, 0,+), then x1, x2, · · · , xk are distinct.
Theorem 7B. (E, 0, ·) is a CEH and (E, 0,+) is the corresponding Abelian group satisfying 3a = 0, ∀a ∈
E. Suppose x0 = 0, x1, x2, · · · , xk are distinct members of E where k ≥ 1. Then {0, x1, x2, · · · , xk} is
independent in (E, ·) = (E, 0, ·) if and only if {x1, x2, · · · , xk} is independent in (E, 0,+). Of course,
{x1, x2, · · · , xk} ⊆ E\ {0} .

Proof. Suppose that {0, x1, x2, · · · , xk} is not independent in (E, ·) = (E, 0, ·) .
First, suppose x0 = 0 ∈ g (x1, x2, · · · , xk). This means that there is some specific expression e(x1, x2, · · · , xk)

involving x1, x2, · · · , xk and (·) such that 0 = e(x1, x2, · · · , xk). Using ab = −a− b and 3a = 0 repeatedly,

write the formal expression e(x1, x2, · · · , xk) =
k∑

i=1
cixi where each ci ∈ {0, 1, 2}. Suppose in this formal

expansion of e (x1, x2, · · · , xk), it is true that each ci = 0. If each ci = 0, then since this is a formal

4



expression, if we let x1 = x2 = · · · = xk = x, we would have e (x1, x2, · · · , xk) = e (x, x, · · · , x) = 0.
However, since x · x = x, it is easy to use induction to show that e (x, x, · · · , x) = x. Therefore, we have a

contradiction, which means ci ̸= 0 for at least one i. Therefore, (∗) 0 =
k∑

i=1
cixi where each ci ∈ {0, 1, 2},

at least one ci ̸= 0 and each xi ̸= 0. Alternatively, if e (x1, x2, · · · , xk) =
k∑

i=1
cixi where each ci ∈ {0, 1, 2},

the reader can use induction to prove that
k∑

i=1
ci ≡ 1 (mod 3). Now since 2a = −a,∀a ∈ E, and since each

xi ̸= 0, we see that (∗) implies that one xi satisfies xi ∈ g (x1, x2, · · · , xi−1, xi+1, · · · , xk) which implies
that {x1, x2, · · · , xk} is not independent in (E, 0,+).

Next, suppose {0, x1, x2, · · · , xk} is not independent in (E, ·) = (E, 0, ·) and
xi ∈ g (0, x1, · · · , xi−1, xi+1, · · · , xk) where i ̸= 0. Therefore, ∃ a specific expression in (E, 0, ·) such that
xi = e (x0 = 0, x1, · · · , xi−1, xi+1, · · · , xk) =

∑
j∈{1,2,··· ,k}\{i}

cj xj and each cj ∈ {0, 1, 2}. Since {x1, x2, · · · , xk} ⊆

E\ {0}, we see that {x1, x2, · · · , xk} is not independent in (E, 0,+) . This proves the implication in one
direction.

Next, suppose {x1, x2, · · · , xk} is not independent in (E, 0,+). Therefore, k ≥ 2 and ∃i ∈ {1, 2, · · · , k}
such that xi ∈ g (x1, x2, · · · , xi−1, xi+1, · · · , xk).
Therefore, xi = e (x1, x2, · · · , xi−1, xi+1, · · · , xk) where e is a specific expression in (E, 0,+). Using a+ b =
0 (ab) repeatedly and noting that xi ̸= 0, we see that
xi ∈ g (0, x1, x2, · · · , xi−1, xi+1, · · · , xk). Therefore, {0, x1, x2, · · · , xk} is not independent in (E, 0, ·) =
(E, ·) .

Standard Theorem 1. Suppose (E, 0,+) is an Abelian group satisfying 3a = 0, ∀a ∈ E. Then (E, 0,+)
can be written as the direct sum of order 3 cyclic groups.

Corollary 1. If (E, ·) = (E, 0, ·) is a finite CEH then |E| = 3k.

Note. The standard theorem is true when E has an arbitrary cardinality.

Notation 4. ({0, 1, 2, } , 0,+) denotes the order-3 cyclic group defined using modular 3 addition.

Definition. The basic CEH, ({0, 1, 2, } , ·) is the three element CEH defined by 0 · 0 = 0, 1 · 1 = 1, 2 · 2 =
2, 0 · 1 = 1 · 0 = 2, 0 · 2 = 2 · 0 = 1, 1 · 2 = 2 · 1 = 0, and it is denoted by E3.

Suppose ({0, 1, 2} , 0,+) is the order 3 cyclic group defined by modular 3 addition. Then the basic
CEH, ({0, 1, 2, } ·), is defined by ∀a, b ∈ {0, 1, 2} , a · b = −a− b = 2a+ 2b.

Note also that if ({0, 1, 2} , 0,+) is expanded to the entire modular 3 field, we have the field
({0, 1, 2} , 0, 1,+,−,×,÷), and the theory of determinants, matrices, vector spaces, etc., can be used. See
[2] for a different notation of this field.
Applying Standard Theorem 1. Suppose (E, ·) is a CEH. Then (E, ·) = (E, 0, ·) can be written as a
direct product of basic CEH’s. Also, any two CEH’s of the same order are isomorphic. Therefore, if (E, ·)
is any finite CEH, then |E| = 3k, and we denote (E, ·) by Ek

3 where E3 is the basic CEH. We will later
indicate how this can also be proved directly without using the underlying Abelian group. The reader may
wish to practice some CEH multiplication. For example, in E2

3 , (0, 0)(0, 1) = (0, 2), (0, 1)(0, 1) = (0, 1)
and (0, 1)(1, 2) = (2, 0).

Theorem 8. Suppose ((E, 0, ·) , (E, 0,+)) and also
((
E, 0,⊙

)
,
(
E, 0, +̇

))
are associated CEH’s and Abelian

groups satisfying 3a = 0, 3a = 0. Also, suppose |E| =
∣∣E∣∣ .
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Let f : E → E be a 1-1 onto function such that f (0) = 0. Then f is an isomorphism of (E, 0, ·) onto(
E, 0,⊙

)
if and only if f is isomorphism of (E, 0,+) onto

(
E, 0, +̇

)
.

Proof. Very briefly to say that f is an isomorphism of one structure to another means that the two
structures are identical except that the elements x in E have been renamed f (x) in E. Therefore, the
conclusion is fairly obvious since each of (·,+) defines the other and each of

(
⊙, +̇

)
defines the other. We

leave the easy formal details to the reader.

In this paper we use the terms isomorphism and automorphism interchangeably.
Standard Theorem 2. Suppose (E, 0,+) is an Abelian group satisfying 3a = 0, ∀a ∈ E and |E| = 3k

where k ∈ N . Suppose {x1, x2, · · · , xk} ⊆ E\ {0} and x1, x2, · · · , xk are distinct and independent in
(E, 0,+) . Also, suppose

(
E, 0, +̇

)
is an Abelian group satisfying 3a = 0, ∀a ∈ E and

∣∣E∣∣ = 3k. Also,
suppose {x1, x2, · · ·xk} ⊆ E\

{
0
}
and x1, x2, · · ·xk are distinct and independent in

(
E, 0, +̇

)
. Then ∃ an

isomorphism f : (E, 0,+) →
(
E, 0, +̇

)
such that f (0) = 0 and ∀i = 1, 2, · · · , k, f (xi) = xi. Of course, f is

uniquely determined by f (xi) = xi, i = 1, 2, · · · , k.
There are also other related standard results for (E, 0,+) when |E| = 3k. For example, if {x1, x2, · · · , xe} ⊆

E\ {0} are distinct and independent then e ≤ k and |g (x1, x2, · · · , xe)| = 3e. Also, if e < k we can always
add {xe+1, xe+2, · · · , xk} ⊆ E\ {0} such that {x1, x2, · · · , xk} are distinct and independent. Therefore, if
|E| = 3k and {x1, x2, · · · , xk} ⊆ E\ {0} are distinct and independent, then g (x1, x2, · · · , xk) = E.

Theorem 9. Suppose (E, ·) is a CEH and {x1, x2, · · · , xk} ⊆ E are distinct and independent in (E, ·).
Then (g (x1, x2, · · · , xk) , ·) is a CEH and |g (x1, x2, · · · , xk)| = 3k−1.

Proof. Suppose k ≥ 2. Let x1 = 0 and consider the associated (E, 0,+). Now x1 = 0, x2, · · · , xk are
independent in (E, ·) if and only if x2, x3, · · · , xk are independent in (E, 0,+) by Theorem 7B. Also, by
Theorem 7A, g (x1 = 0, x2, · · · , xk) = g (x2, x3, · · · , xk) where g is generated in (E, 0, ·) and g is generated
in (E, 0,+). By standard Abelian group theory, |g (x2, x3, · · · , xk)| = 3k−1. Therefore, |g (x1, x2, · · · , xk)| =
3k−1.

Corollary 2. (E, ·) is a CEH and {x1, x2, · · · , xk} ⊆ E. Then |g (x1, x2, · · · , xk)| = 3e where 0 ≤ e ≤
k − 1, and {x1, x2, · · · , xk} is independent in (E, ·) if and only if e = k − 1. Also, ∃

{
x′1, x

′
2, · · · , x′e+1

}
⊆

{x1, x2, · · · , xk} such that
{
x′1, x

′
2, · · · , x′e+1

}
is independent in (E, ·), and, therefore, g (x1, x2, · · · , xk) =

g
(
x′1, x

′
2, · · · , x′e+1

)
.

Proof. We first observe that if yt+1 ∈ g (y1, y2, · · · , yt) then g (y1, y2, · · · , yt) = g (y1, y2, · · · , yt, yt+1). We
now let the reader finish the proof.

Construction. Let (E, ·) be a finite CEH and |E| = 3k. We wish to construct {x1, x2, · · · , xk+1} ⊆ E
such that x1, x2, · · · , xk+1 are independent in (E, ·) which implies g (x1, x2, · · · , xk+1) = E. Choose x1 ∈
E, x2 ∈ E\g (x1) , x3 ∈ E\g (x1, x2) , x4 ∈ E\g (x1, x2, x3) , · · · , xk+1 ∈ E\g (x1, x2, · · · , xk) . Of course,
(x1, x2, . . . , xk+1) can be constructed in 3k(3k − 1)(3k − 3) · · · (3k − 3k−1) different ways.

Theorem 10. (E, ·) is a finite CEH with |E| = 3k. Suppose {x1, x2, · · · , xk+1} ⊆ E and x1, x2, · · · , xk+1

are distinct and independent in (E, ·). Also, suppose {x1, x2, · · · , xk+1} ⊆ E and x1, x2, · · · , xk+1 are
distinct and independent in (E, ·). Also, x1, x2, · · · , xk+1 and x1, x2, · · ·xk+1 are arranged in an arbitrary
way. Then ∃ an automorphism f : (E, ·) → (E, ·) such that ∀i = 1, 2, · · · , k + 1, f (xi) = xi.
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Note. Since g (x1, x2, · · · , xk+1) = g (x1, x2, · · ·xk+1) = E, we see that f is uniquely determined by
f (xi) = xi, i = 1, 2, · · · , k+1. Also, the above construction shows how to find such {x1, x2, · · · , xk+1} and
{x1, x2, · · ·xk+1}.

Proof. Let x1 = 0 and x1 = 0 and consider the usual pairs ((E, 0, ·) , (E, 0,+))
and

((
E, 0, ·

)
,
(
E, 0, +̇

))
. Now x1 = 0, x2, · · · , xk+1 are independent in (E, 0, ·) which implies x2.x3, · · · , xk+1

are independent in (E, 0,+) by Theorem 7B.
Also, x1 = 0, x2, · · · , xk+1 are independent in

(
E, 0, ·

)
which implies x2, x3, · · ·xk+1 are independent

in
(
E, 0, +̇

)
. Therefore, by Standard Theorem 2, ∃ an isomorphism f : (E, 0,+) →

(
E, 0, +̇

)
such that

f (x1) = f (0) = 0 = x1 and ∀i = 2, 3, · · · , k + 1, f (xi) = xi.
By Theorem 8, f : (E, 0, ·) →

(
E, 0, ·

)
is also an automorphism such that f (x1) = f (0) = 0 = x1 and

∀i = 2, 3, · · · , k + 1, f (xi) = xi.

The homogeneous nature of the automorphisms makes Theorem 10 the most remarkable automorphism
theorem we have seen. It will later help us to find, by trivial arithmetic calculations, the maximum number
of cards in the game SET that contains no SETS and also show that any two such maximum collections are
isomorphic. Of course, by fixing {x1, x2, . . . , xk+1} we immediately know that if (F, ◦) is the group of all
automorphisms f : (E, ·) → (E, ·), then |F | = 3k(3k − 1)(3k − 3) · · · (3k − 3k−1). Some readers might have
observed that (F, ◦) is also the group of affine transformations on the abelian group (E, ◦,+), a concept
used in reference [2].

Definition 8. Suppose (E, ·) is a CEH, S ⊆ E and S ⊆ E. We say that S and S are isomorphic in
(E, ·), denoted S ∼= S, if ∃ an automorphism f : (E, ·) → (E, ·) such that f (S) = S.

Of course, ∼= is an equivalence relation. The paper [2], which does not consider the CEH, uses the term
“similar” instead of isomorphic.

From group theory, we know that the number of distinct S ⊆ E such that S is isomorphic to S equals
the number of automorphisms f : (E, ·) → (E, ·) divided by the number of these automorphisms that satisfy
f(S) = S. In general, suppose (F, ◦) = ({f1, f2, . . . , fn}, ◦) is a group of permutations on a set X, where ◦
denotes the composition of functions. Suppose A ⊆ X. Then stabilizer(A) = ({fi1 , fi2 , . . . , fit}, ◦) where
fi1 , fi2 , . . . , fit are those member of F satisfying fij (A) = A. Also, orbit(A) = {fi(A) : i = 1, 2, . . . n}. Note
that the relation ARB if B ∈ orbit(A) is an equivalence relation on 2X , the power set of X. It is easy to
use Lagrange’s (coset) theorem to prove that |F | = |stabilizer(A)| · |orbit(A)|.

Definition 9. Suppose (E, ·) is a CEH and S, S ⊆ E. Then the product of two sets S, S is defined as
follows: S · S =

{
xy : x ∈ S, y ∈ S

}
. Also if a ∈ E, a · S =

{
ay : y ∈ S

}
.

Remark. The product S ·S in definition 9 is a true set. However, it is sometimes useful to consider S, S,
and S · S to be multisets, which are sets with repetition of the elements allowed. As an example, suppose
S, S ⊆ E4

3 are true sets with |S| = |S|, and we wish to quickly guess whether S and S are isomorphic in
E4

3 . In our work, we create the profiles of these sets as follows: profile(S) = ((S ·S)(S ·S))((S ·S)(S ·S))
and profile(S) = ((S ·S)(S ·S))((S ·S)(S ·S)), where S ·S, etc are multisets. We then express each profile
as an 81-vector. If S and S are isomorphic, then it is necessary that these two 81-vectors be similar in the
same way that (1, 2, 2, 4, 4, 4, 9, 9) and (2, 9, 1, 4, 2, 4, 9, 4) are similar. However, since these profiles are so
complex, we assume that similarity of profiles is also sufficient for S, S to be isomorphic in E4

3 .
Definition 10. Suppose (E, ·) is a CEH and (H, ·) is a sub-commutative equihoop. That is, H ⊆ E

and (H, ·) is a CEH. We define E/H = {xH : x ∈ E} . The sets in E/H are called the cosets of H. They
can also be called the CEH cosets of H
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In definition 10, let 0 ∈ H and consider the usual pairs (E, 0, ·) , (E, 0,+) where ∀a ∈ E, 3a = 0. Since
(H, 0, ·) is closed under (·), we see that (H, 0,+) is closed under (+). Therefore, (H, 0,+) is a subgroup.
Now the (group) cosets of (H, 0,+) are {x+H : x ∈ E}. Also, the CEH cosets of (H, ·) = (H, 0, ·) are
{−x+H : x ∈ E} since xH = −x−H = −x+H. Therefore, the CEH cosets of H in (E, ·) are identical
to the group cosets of H in (E, 0,+). From this we know that the members of E/H partition E, and
∀K ∈ E/H, |H| = |K| .

Theorem 11. In Definition 10, suppose K ∈ E/H. Then (K, ·) is a CEH.

Proof. Let 0 ∈ H and consider the usual pairs (E, 0, ·) , (E, 0,+) where ∀a ∈ E, 3a = 0. Now ∃x ∈ E
such that K = xH = −x − H = −x + H. We show that (K, ·) is closed. Suppose a, b ∈ K. Then
a = −x+ h, b = −x+ h, h, h ∈ H. Now ab = −a− b = (x− h) +

(
x− h

)
= 2x− h− h = −x+

(
−h− h

)
since 3x = 0. Now −h− h ∈ H since H is closed under both (·) and (+) .

Note. The reader can easily prove Theorem 11 directly from (·) without using (+) .

Theorem 12. Suppose K,L ∈ E/H and define KL = {xy : x ∈ K, y ∈ L}, as in Definition 9. Then
KL ∈ E/H. This means in the CEH (E, ·), the product of two cosets of H is a coset of H.

Proof. We use 0 ∈ H and (E, 0, ·) , (E, 0,+). Now KL = (−x+H)·(−y +H) = − (−x+H)−(−y +H) =
x+ y −H −H = x+ y +H = − (−x− y) +H, which is a member of E/H.

Notation 5. (E/H, ·) denotes the coset multiplication on the cosets of H.

Theorem 13. A (E/H, ·) is a CEH, which we call the factor or quotient CEH defined from H. We also
call (E/H, ·) a coset CEH.

Proof. By choosing representatives of the cosets, it is obvious that (E/H, ·) satisfies the central, idempotent,
medial and commutative properties.

Observation Define E/H = {H = H1,H2,H3, · · · ,H3t}. Then ∀i, j ∈
{
1, 2, · · · 3t

}
,

E/Hi = E/Hj and (E/Hi, ·) = (E/Hj , ·). In other words, ∀i = 1, 2, · · · 3t, Hi generates the same cosets as
H = H1. This homogeneous property is very different from the cosets in group theory.

If E/H = {H = H1, H2, · · · ,H3t}, then we refer to this collection as a family of cosets since each coset
generates the other cosets in a homogeneous way.

Definition 11. Suppose H,K,L are distinct cosets in a family of cosets. We say that H,K,L are
mutual cosets if H = KL, which is equivalent to K = HL and also equivalent to L = HK by the central
property.

IfH,K,L are mutual cosets (and therefore distinct), then (H ∪K ∪ L, ·) is a CEH having 3 |H| elements
since (·) is closed on H ∪ K ∪ L. Also, if H,K are distinct cosets in a family of cosets, then H,K, and
L = H ·K are mutual cosets.
Theorem 13B. Suppose (E, ·) and

(
E,⊙

)
are CEHs and f : (E, ·) →

(
E,⊙

)
is an isomorphism. Suppose

{H1,H2,H3, · · · } is a family of cosets in (E, ·). Then {f (H1) , f (H2) , f (H3) , · · · } is a family of cosets in(
E,⊙

)
.

Proof. An isomorphism of a structure is the same structure with a renaming of the elements of the structure.
We leave the formal details to the reader.
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Corollary 3. Suppose {H1,H2, · · · } ,
{
H1, H2, · · ·

}
are two families of cosets in (E, ·) and f : (E, ·) →

(E, ·) is an automorphism. Then
{
H1, H2, · · ·

}
= {f (H1) , f (H2) , · · · } if and only if ∃Hi,Hj such that

f (Hi) = Hj. This is true since any coset in a family of cosets completely determines the other cosets in that
family of cosets and since {f (H1) , f (H2) , · · · } is also a family of cosets. Also, of course, {H1,H2, · · · } =
{f (H1) , f (H2) , · · · } if and only if ∃Hi,Hj such that f (Hi) = Hj .

Proving our Theorems directly from the CEH structure. Any theorem that we have stated that
does not involve the underlying Abelian group can be proved directly from the binary operator of (E, ·).
Let (E, ·) be a CEH and let (H, ·) be a sub-commutative equihoop. Let 0 ∈ H, 0∗ /∈ H. Let us write H as
H = {x1, x2, · · ·xt} = {0 (x10) , 0 (x20) , · · · , 0 (xt0)}. Let K = {(00∗) (x10) , (00∗) (x20) , · · · , (00∗) (xt0)}
and L = {0∗ (x10) , 0∗ (x20) , · · · , 0∗ (xt0)} .

The reader can use mathematical induction on |E| with the above idea to prove many of our theorems
directly when |E| is finite. The above idea led Arthur Holshouser, Ben Klein and Brian White to classify
all finite CEH’s in the form given in the observation preceding Theorem 8 in the few weeks after Dr Eves’
1972 lecture.

We invite the reader to use the group theory ideas of orbits and stabilizer to prove the answer to
the following problem, which is related to proposition 4 of [2]. Problem. Let (E, ·) be a finite CEH of
cardinality 3n and let R ⊆ E be a fixed sub-CEH of E of cardinality 3r, where 0 ≤ r ≤ n. Let m be fixed
such that r < m ≤ n. Find the number of distinct sub-CEHs H ⊆ E satisfying R ⊆ H and |H| = 3m. The
answer is

(3n − 3r)(3n − 3r+1) · · · (3n − 3m−1)

(3m − 3r)(3m − 3r+1) · · · (3m − 3m−1)
.

The reader might also like to solve problem 11, page 173, of reference [7]: If m,n are positive integers, then
(x− 1)(x2 − 1) · · · (xm − 1) divides (xn − 1)(xn+1 − 1) · · · (xn+m−1 − 1).

3 Using the CEH to study SET

In section 3 we develop the additional machinery on the structure of the CEH that is needed in part II to
study the 81 card game SET. There are many interesting questions one can ask about the 81 card SET
game. One popular problem is to determine the largest possible collection of cards that contains no SET.
In the language of the CEH, three cards a, b, c is a SET if a = bc, which is equivalent to b = ac and c = ab.
Of course, all cards in SET are distinct. However, we are also interested in the deeper problem of finding
up to isomorphism (Def. 8) all maximum collections of cards that contain no SET. We show here that
the solution is unique when |E| ∈ {1, 3, 9, 27}, and in a part II we deal with the isomorphism problem
for |E| = 81. In part II we show that any 21 cards in the 81-card SET deck contain a SET and there
exists only one collection (up to isomorphism) of 20 cards that do not contain a SET. We also show how
to construct all automorphisms on the 81 cards that map a given SET-free, 20-card collection onto itself.
Recall that this is called the stabilizer of the collection.

Definition 12. (E, ·) is a CEH and S ⊆ E. We say that S is SET-free if ∀ distinct a, b, c ∈ S, ab ̸= c.
Definition 13. (E, ·) is a finite CEH and S ⊆ E. We say that S is a maximum SET-free subset of E

if S is SET-free and if S ⊆ E is any SET-free subset of E then
∣∣S∣∣ ≤ |S| .

An alternate but not equivalent definition would be to say that S is a maximal SET-free subset of E
if S is SET-free and if S ⊆ S ⊆ E together with S is SET-free implies that S = S
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Problem 1. (E, ·) is a finite CEH and |E| = 3k. Therefore, (E, ·) ∼= Ek
3 where E3 is the basic CEH defined

earlier. Find |S| where S is a maximum SET-free subset of E. We will denote this maximum cardinality
if M (k) .

Problem 2. For |E| = 3k, let {S1, S2, · · · , St} be the collection of all maximum SET-free subsets of E.
Partition {S1, S2, · · · , St} into isomorphic equivalence classes.

Problem 3. For |E| = 3k, let S be the collection of all SET-free subsets of E. Partition S into isomorphic
equivalence classes and construct the Hasse diagram for the partially ordered set of equivalence classes,
where we use the partial ordering A ≤ B if A is isomorphic to a subset of B.

Before solving these problems 1 and 2 for k = 1, 2, 3, we state one more theorem.

Theorem 14. Suppose (E, ·) is a CEH and (H, ·) is a sub-CEH where H is a proper subset of E. Suppose
x ∈ E \ H. Then (g (H,x) , ·) contains 3|H| elements where (g (H,x) , ·) is the sub-CEH generated by H
and x.

Proof. Consider the 3 mutual cosets, H,xH and (xH)H. It is easy to see that g (x,H) = H ∪ (xH) ∪
((xH)H) and also H ∪ (xH) ∪ ((xH)H) is closed under (·) .

Figure 1 is used repeatedly in both this paper and part II in solving the problems we pose.
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a4 a∗4

A∗
4

a∗3 A∗
3

L

K

H

H∗

a1

a∗1

A∗
1

a2
a∗2

A∗
2

a3

(a) (b)

Fig. 1 Cosets in (E, ·). |E| = 9 |H∗| , |E| = 3|H|.

In figure (a), E = H∗
4∪

i=1
A∗

i . In (b) H ∪K ∪ L = E. In figure (b), H,K,L are three mutual coset in

(E, ·). In figure (a), H∗ is a sub-commutative equihoop of (E, ·) and ai, a
∗
i , i = 1, 2, 3, 4 are the 8 cosets of

H∗ in (E, ·). Also, ∀i = 1, 2, 3, 4,H∗, ai, a
∗
i are mutual cosets. Also, ∀i = 1, 2, 3, 4, A∗

i = ai ∪ a∗i . Of course,
∀i = 1, 2, 3, 4, if x ∈ A∗

i then H∗ ∪ A∗
i = g (x,H) where g (x,H) denotes the elements of (E, ·) that are

generated from x and H.
For convenience as the solutions to the problems progress, the reader should draw (a) or (b) on paper

and place the number of dots in H∗, ai, a
∗
i ,H,K,L that the proof calls for.

Theorem 15. Suppose (E, ·) ∼= Ek
3 and S ⊆ E is maximum SET-free. Then g (S) = E.

Proof. Suppose g (S) ̸= E. Then ∃x ∈ E\g(S). We show that S = S ∪ {x} is SET-free, contradicting the
assumption that S is maximum SET-free. Now ∀a, b ∈ S, ab ∈ g (S). Therefore, if a ̸= b then ab /∈ S since
S is SET-free and also ab ̸= x since x /∈ g (S) . Therefore, S is SET-free.
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Corollary 4. Suppose (E, ·) is a CEH, |E| = 3k and S ⊆ E is maximum SET-free. Then there exists
{x1, x2, · · · , xk+1} ⊆ S such that the members of {x1, x2, · · · , xk+1} are distinct and independent in (E, ·)
and, therefore, g(x1, x2, · · · , xk+1) = E.

Proof. Now g (S) = E. Using the construction given after the corollary of theorem 9, it is easy to sequen-
tially produce subsets of S, namely {x1} , {x1, x2} , · · · {x1, x2, · · · , xk+1} such that each {x1, x2, · · · , xi}
has distinct and independent elements and, therefore, g (x1, x2, · · · , xi) = 3i−1.

Problems 1, 2. (k = 1) Obviously M (1) = 2. Also, it is easy to see that the following is a representative

of the isomorphic equivalence class of maximum SET-free S’s.
• •
0 1 2

Problems 1, 2. (k = 2) Now (E, ·) = E2
3 . Now if S ⊆ E is maximum SET-free then g (S) = E.

From corollary 4, let X = {x0, x1, x2} ⊆ S be independent in (E, ·). Of course, g (x0, x1, x2) = E.
Now (0, 0) , (0, 2) , (2, 0) are independent in E2

3 . From Theorem 10 let f : (E, ·) → (E, ·) be the unique
automorphism defined by f (x0) = (0, 0) , f (x1) = (2, 0) , f (x2) = (0, 2). Now S is isomorphic to f (S) and
also f (S) is SET-free. Therefore, f (S) must also be maximum SET-free. We now focus on f(S).

2 (0, 2) a1 a2
1 × × a3
0 (0, 0) × (2, 0)

0 1 2
Fig. 2 f(X) = {(0, 0), (0, 2), (2, 0)}

Now f(S) could not contain any of the 3 ×’ed squares since f(S) has no SETs. It is obvious that
each of f(X) ∪ {ai} is maximum SET-free where by obvious geometric symmetry one of f(X) ∪ {a1}
and f(X) ∪ {a3} is redundant. We now show that f(X) ∪ {a1} ∼= f(X) ∪ {a2}, where ∼= denotes
isomorphic and ∼= is an equivalence relation. Define the automorphism f : E2

3 → E2
3 by f(0, 0) =

(0, 0), f(2, 0) = (2, 0), f(0, 2) = a1. Therefore, f(a2) = f((0, 0)((0, 2)(2, 0))) = f(0, 0)(f(0, 2)f(2, 0)) =
(0, 0)((a1)(2, 0)) = (0, 0)(0, 1) = (0, 2) . Therefore, M(2) = 4 and the following is a representative of the

isomorphic equivalence class of maximum SET-free S ’s:

2 • •
1
0 • •

0 1 2

.

Note. Lemmas 2 and 3 are included only to illustrate the use of Fig. 1.
Problems 1, 2. (k = 3)

Lemma 2. Suppose (E, ·) = E3
3 , S ⊆ E, |S| = 10 and S is SET-free. Also, suppose (H, ·) is a sub-CEH

of (E, ·) and |H| = 9. Then |H ∩ S| = 4.

Proof. Consider the mutual cosets H,K,L in Fig. 1-b where |H| = [K] = |L| = 9. Now |K ∩ S| ≤
4, |L ∩ S| ≤ 4 from the E2

3 solution since S is SET-free. Therefore, |H ∩ S| ≥ 2. Therefore, ∃ a CEH
(H∗, ·) with H∗ ⊆ H, |H∗| = 3 and |H∗ ∩ S| = 2. We now use Fig. 1-a with H∗ and A∗

4 = H\H∗. As
always for convenience one can place 2 dots in H∗ since |H∗ ∩ S| = 2.

Now (H∗ ∪ A∗
i , ·), i = 1, 2, 3, 4, are CEH’s with each containing 9 elements. Since S is SET-free, then

|(H∗ ∪ A∗
i ) ∩ S| ≤ 4, i = 1, 2, 3, 4. Since |H∗ ∩ S| = 2, this implies |A∗

i ∩ S| ≤ 2, i = 1, 2, 3, 4. Now

|S ∩ (
4∪

i=1
A∗

i )| = 8. Therefore, |(H∗ ∪ A∗
i ) ∩ S| = 4, i = 1, 2, 3, 4, and in particular |(H∗ ∪ A∗

4) ∩ S| =

|H ∩ S| = 4.

11



Lemma 3. Suppose (E, ·) = E3
3 , S ⊆ E, and |S| = 10. Then S cannot be SET-free.

Proof. Suppose S is SET-free. Consider Fig. 1-b with |H| = |K| = |L| = 9. From Lemma 2, |S ∩H| =
|S ∩K| = |S ∩ L| = 4, a contradiction.

We now show that M(3) = 9 and simultaneously show that if S, S are maximum SET-free subsets of
E3

3 then S ∼= S. This proves lemma 3 directly since it is clear that for all a in E \ S, S ∪ {a} cannot be
SET-free.

Lemma 4. Suppose (E, ·) is a CEH, |E| = 27, S ⊆ E, |S| = 7 and S is SET-free. Then ∃H ⊆ E such
that (H, ·) is a CEH, |H| = 9 and |H ∩ S| = 4

Later, we will tighten lemma 4 to |S| = 6 after we develop our final machinery.

Proof. Consider Fig. 1-a with |H∗| = 3 and |H∗ ∩ S| = 2. Of course each (H∗ ∪ A∗
i , ·), i = 1, 2, 3, 4, is a

CEH containing 9 elements. Now |S| = 7, |H∗ ∩ S| = 2 implies ∃t ∈ {1, 2, 3, 4} such that |A∗
t ∩ S| ≥ 2. Of

course, |A∗
t ∩ S| = 2 since each (H∗ ∪A∗

t , ·) can contain at most 4 members of the SET-free S. We now let
H = H∗ ∪A∗

t .

Lemma 5. (E, ·) = E3
3 , S ⊆ E, |S| = 9 and S is SET-free. Suppose H ⊆ E, (H, ·) is a CEH, |H| = 9 and

|H ∩ S| ≥ 2. Then |H ∩ S| ≥ 3.

Proof. Now ∃H∗ ⊆ H such that (H∗, ·) is a CEH, |H∗| = 3 and |H∗ ∩ S| = 2. Consider Fig. 1-a with
H = H∗ ∪A∗

4. The reader may wish to place 2 dots in H∗.
Now |A∗

i ∩S| ≤ 2, i = 1, 2, 3, since |H∗ ∩S| = 2, (H∗ ∪A∗
i , ·) is a CEH,|H∗ ∪A∗

i | = 9 and S is SET-free.
Now |A∗

4 ∩ S| = 0 and |A∗
i ∩ S| ≤ 2, i = 1, 2, 3 implies that |S| ≤ 8, which contradiction the assumption

that |S| = 9.

Solution to Problems 1, 2 (k = 3) Let us now suppose S ⊆ E3
3 = E, |S| = 9 and S is SET-free.

Now by Lemma 4, ∃H ⊆ E such that (H, ·) is a CEH, |H| = 9 and |H ∩S| = 4. Using this H, consider
the Fig. 1-b mutual cosets H,K,L. Now if both |K ∩S| ≥ 2 and |L∩S| ≥ 2 then by Lemma 5, |K ∩S| ≥ 3
and |L ∩ S| ≥ 3. However, since |H ∩ S| = 4 and |S| = 9, this is impossible.

Therefore, by symmetry we may assume that |H ∩ S| = |K ∩ S| = 4, |L ∩ S| = 1. Since
|H ∩ S| = 4, since |H| = 9, and since all maximum SET-free subsets of (H, ·) are isomorphic, we can write
H ∩ S = {x1, x2, x3, x4} where x1, x2, x3 are independent in (E, ·) and x4 = x1(x2, x3). Also, L∩ S = {x5}
and x1, x2, x3, x5 are independent in (E, ·). Let f : (E, ·) → (E, ·) be the unique automorphism that satisfies
f(x1) = (0, 0, 0), f(x2) = (2, 0, 0), f(x3) = (0, 2, 0) and f(x5) = (1, 1, 2). Of course, f(x4) = f(x1(x2x3)) =
f(x1) ((f(x2))(f(x3))) = (0, 0, 0)((2, 0, 0)(0, 2, 0)) = (0, 0, 0)(1, 1, 0) = (2, 2, 0). Since H,K,L are mutual
cosets in (E, ·), by Theorem 13-B we know that f(H), f(K), f(L) are mutual cosets in (E, ·). Now f(H) =
f(g(x1, x2, x3)) = g(f(x1), f(x2), f(x3)) = g((0, 0, 0), (2, 0, 0), (0, 2, 0)) = {(x, y, 0) : x, y ∈ {0, 1, 2}}. Also,
f(K) = {(x, y, 1) : x, y ∈ {0, 1, 2}} and f(L) = {(x, y, 2) : x, y ∈ {0, 1, 2}}.

Of course, f(S) is a maximum SET-free subset of (E, ·) and |f(H) ∩ f(S)| = 4, |f(K) ∩ f(S)| =
4, |f(L) ∩ f(S)| = 1. We now study Fig. 3.

2 • = f(L)

12



× ×
1

× ×
=

•
• •

•
= f(K)

2 • •
0 1

0 • •
0 1 2

= f(H).

Fig. 3. E3
3 = ({(x, y, z) : x, y, z ∈ {0, 1, 2}}, ·)

Now since f(H ∩S) = {(0, 0, 0), (0, 2, 0), (2, 0, 0), (2, 2, 0)}, f(L∩S) = {(1, 1, 2)} and since f(S) is SET-
free, we know that f(K ∩ S) cannot contain any of the 4 elements that we have ruled out. Also, since
|f(S) ∩ f(K)| = 4 and f(S) is SET-free, it is obvious that (1, 1, 1) /∈ f(S). Therefore, f(S) ∩ f(K) =
{(1, 0, 1), (0, 1, 1), (1, 2, 1), (2, 1, 1)}.

Therefore, any S satisfying S ⊆ E, |E| = 33, |S| = 9 and S is SET free is isomorphic to the set of 9
points in E3

3 shown in Fig. 3.

Lemma 6. Suppose (E, ·) is a CEH, |E| = 27, S ⊆ E, |S| = 9 and S is SET-free. Also, suppose H,K,L
are mutual cosets in (E, ·) and |H| = |K| = |L| = 9. Then {|H ∩ S|, |K ∩ S|, |L ∩ S|} equals {4, 4, 1} or
{3, 3, 3}.

Proof. First, suppose one of |H ∩ S|, |K ∩ S|, |L ∩ S| exceeds 3. By symmetry suppose |H ∩ S| > 3.
Therefore, |H ∩ S| = 4. Also, by Lemma 5, it is easy to see that both |K ∩ S| and |L ∩ S| cannot
exceed 1. Therefore, {|K ∩ S|, |L ∩ S|} = {1, 4}. Now if none of |H ∩ S|, |K ∩ S|, |L ∩ S| exceeds 3, then
{|H ∩ S|, |K ∩ S|, |L ∩ S|} = {3, 3, 3}. The following also shows that {3, 3, 3} is possible:

2
1 •
0 • •

0 1 2
0

•
• •
0 1 2

1

•
• •

0 1 2
2

.

Note. The SET-free sets S ⊆ E3
3 , |S| = 9, have far more properties than we list here. We also list a

few more at the end of the paper.

1. The sets S are 2-transitive. That is, ∀a, b, a, b ∈ S, if a ̸= b, a ̸= b, then there exists an automorphism
f : (E, ·) → (E, ·) satisfying f(S) = S and f(a, b) = (a, b).

2. From 1, it is easy to prove that E\S is transitive. That is, ∀a, a ∈ E\S, there exists an automorphism
f : (E, ·) → (E, ·) satisfying f(E \ S) = E \ S and f(a) = a.

3. The reader can use the basic Lagrangian property of orbits to show that E \ S cannot possibly be
2-transitive.

4. The number of automorphisms f : (E, ·) → (E, ·) satisfying f(S) = S equals 144. That is,
|stabilizer(S)| = 144.

13



5. Since S ⊆ E = E3
3 , |S| = 9, and S is SET-free is unique up to isomorphism, since the group of all

automorphisms f : (E, ·) → (E, ·) has 27·26·24·18 = 303,264 elements and since |stabilizer(S)| = 144,
we know from group theory that the number of distinct S ⊆ E3

3 , |S| = 9, and S is SET-free must
equal 303,264÷ 144 = 2106.

Problems 1, 2. (k = 4) In part II we show that if (E, ·) = E4
3 , S ⊆ E, |S| = 20 and S is SET-free, then

S is unique up to isomorphism. It then follows that M(4) = 20 since for all a ∈ E \ S, S ∪ {a} is not
SET-free.

In order to illustrate our final machinery, we show directly that M(4) < 22 and also that lemma 4
remains true when |S| = 6. However, we first prove Lemma 7 for |S| = 21.

Lemma 7. Suppose S ⊆ E, (E, ·) is a CEH, |E| = 34, |S| = 21 and S is SET-free. Then ∃H ⊆ E such
that (H, ·) is a CEH, |H| = 9 and |H ∩ S| = 4.

Proof. Consider Fig. 1-b with mutual cosets H,K,L satisfying |H| = |K| = |L| = 27. Since |S| = 21, by
symmetry we may suppose |H ∩ S| ≥ 7. By Lemma 4 ∃H∗ ⊆ H such that (H∗, ·) is a CEH, |H∗| = 9 and
|H∗ ∩ S| = 4.

We will use Fig. 4 with the lettering a, b, c, d, · · · , i repeatedly in the rest of this paper and in the
subsequent part II.

2 a b c
1 d e f
0 g h i

0 1 2

or •
g

y
↑

→
x

•h • i

•
f

•
e

• d

•
a

• b •
c

2

1

0
0 1 2

(a) (b)
Fig. 4. Drawings of E2

3 , the CEH of 9 elements.
Using the letters a, b, · · · , i, it is obvious that ab = c, ge = c, bd = i, ah = f, fe = d, etc. We use the

proof of the easy Lemma 8 to introduce the reader to the remaining machinery that we will use. We explain
the proof in detail so that we can slightly abbreviate the corresponding proofs later in the subsequent part
II.

Lemma 8. Suppose (E, ·) is a CEH, |E| = 34, S ⊆ E and |S| = 22. Then S is not SET-free.

Proof. We assume that S is SET-free. By lemma 7 let us use Fig. 1-a with |H∗| = |ai| = |a∗i | = 9, i =
1, 2, 3, 4,and |H∗ ∩ S| = 4. Then |A∗

i | = 18, i = 1, 2, 3, 4 .
Of course, ∀i = 1, 2, 3, 4, (A∗

i ∪H∗, ·) is a CEH and |A∗
i ∪H∗| = 27. Therefore, ∀i = 1, 2, 3, 4, |A∗

i ∩S| ≤ 5
since |H∗ ∩ S| = 4 and S is SET-free.
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By symmetry, we can assume ∀i ≤ j, |A∗
i ∩ S| ≥ |A∗

j ∩ S| and ∀i, |ai ∩ S| ≥ |a∗i ∩ S|.
Therefore, since |S| = 22, |H∗ ∩ S| = 4 and each |A∗

i ∩ S| ≤ 5, we know that |A∗
1 ∩ S| = |A∗

2 ∩ S| = 5.
Since each (H∗ ∪A∗

i , ·) is a CEH containing 27 elements, since |H∗ ∩ S| = 4, since |A∗
1 ∩ S| = |A∗

2 ∩ S| = 5,
since ∀i = 1, 2, 3, 4, |ai ∩ S| ≥ |a∗i ∩ S| and since ∀i = 1, 2, 3, 4,H∗, ai, a

∗
i are mutual cosets in (E, ·), from

Lemma 6 we know that |a1 ∩ S| = |a2 ∩ S| = 4 and |a∗1 ∩ S| = |a∗2 ∩ S| = 1.
Now the factor CEH ({H∗, a1, a

∗
1, · · · , a4, a∗4}, ·) contains 9 elements. Also, the cosets H∗, a1, a2 are

independent in this 9 element coset CEH. Therefore, ∃ an isomorphism f : ({H∗, a1, a
∗
1, · · · , a4, a∗4}, ·) → E2

3

of Fig. 4 such that f(H∗) = a, f(a1) = b, and f(a2) = d. Of course, f(a∗1) = f(H∗ · a1) = f(H∗)f(a1) = c
and f(a∗2) = g.

Of course, the set {f(a3), f(a∗3)} equals one of the two sets {e, i} or {f, h} and {f(a4), f(a∗4)} equals
the other of these two sets. Define the non-negative integers a, b, · · · , i as follows. a = |f−1(a) ∩ S| =
|H∗ ∩ S|, b = |f−1(b) ∩ S| = |a1 ∩ S|, c = |f−1(c) ∩ S| = |a∗1 ∩ S|, d = |f−1(d) ∩ S| = |a2 ∩ S|, etc. That
is, ∀j ∈ {a, b, . . . , i}, j = |f−1(j) ∩ S|. It will be convenient to place dots in the square of Fig. 4-a as we
proceed. That is, we place a dots in square a, b in b, etc.. We know the following: a = b = d = 4, c = g = 1.
Also, e+ f + h+ i = 8. Now f−1(b), f−1(d), f−1(i) are mutual cosets in the original (E, ·), which implies
b+ d+ i ≤ 9. Therefore, i ≤ 1 since b = d = 4. Therefore, e+ f +h ≥ 7. We show that e ≥ 2, f ≥ 2, h ≥ 2.

The reasoning is the same (i.e., symmetric) in each case. Therefore, by this symmetry of reasoning,
let us suppose e ≤ 1. Then f + h ≥ 6, which implies a + f + h ≥ 10. Now f−1(a), f−1(f), f−1(h)
are mutual cosets in (E, ·), which implies a + f + h ≤ 9, a contradiction. Therefore, we now know that
e ≥ 2, f ≥ 2, h ≥ 2.

Also, if two of e, f , h exceeds 2, we would also have a contradiction. Again the reasoning is the same
(i.e., symmetric) in each case. So by symmetry let us suppose e ≥ 3, h ≥ 3. Now f−1(b), f−1(e), f−1(h)
are mutual cosets in (E, ·) and b = 4. Therefore, b + e + h ≥ 10 is a contradiction since b + e + h ≤ 9.
Therefore, two of e, f , h must equal 2 and the third is 3 or more. We now show that this is impossible.
Again, the reasoning is the same (i.e., symmetric) in each case. So by symmetry let us suppose e = f = 2
and h ≥ 3. Now f−1(b)f−1(e), f−1(h) are mutual cosets in (E, ·). Therefore, b+ e+ h ≤ 9, which implies
that e = 2 and h = 3. But from Lemma 6, b = 4, e = 2, h = 3 is impossible.

The ideas used in the above proof are used repeatedly in part II. The reader will observe that Lemma
8 was proved by using only trivial arithmetic calculations. Before we deal with |S| = 20 in another paper,
we need to tighten up on Lemma 4. We do this now to further illustrate the machinery.

Lemma 9. Suppose (E, ·) is a CEH,|E| = 27, S ⊆ E, |S| = 6 and S is SET-free. Then ∃H ⊆ E such that
(H, ·) is a CEH, |H| = 9, and |H ∩ S| = 4.

Proof. Let us assume that the conclusion of lemma 9 is false for S. Now ∃H∗ ⊆ E such that (H∗, ·) is
a CEH, |H∗| = 3 and |H∗ ∩ S| = 2. Use Fig 1-a with this H∗. Since |S| = 6, |H∗ ∩ S| = 2, and lemma
9 is false for S, it is easy to see that ∀i = 1, 2, 3, 4, |A∗

i ∩ S| = 1. Also, assuming |ai ∩ S| ≥ |a∗i ∩ S|,
i = 1, 2, 3, 4, we see that |ai ∩ S| = 1 and |a∗i ∩ S| = 0, i = 1, 2, 3, 4. Let us define the unique isomorphism
f : ({H∗, a1, a

∗
1, . . . , a4, a

∗
4}, ·) → E2

3 (of Fig 4-a) such that f(H∗) = a, f(a1) = b, and f(a2) = d. Also,
a, b, c, . . . , i are defined exactly as before. That is j = |f−1(j)∩S|, j = a, b, . . . , i. We now know the following

about a, b, c, . . . , i: a = 2, b = d = 1, c = g = 0, e + i = 1, f + h = 1. By geometric symmetry, .........
.........

.........
.........

.....

, we may
assume that f = 1, h = 0. We consider two cases for (e, i): either (e, i) = (1, 0) or (e, i) = (0, 1). In case 1 we
see that b+e+h = 2 and in case 2 we see that c+f+i = 2. Therefore in case 1, (f−1(b)∪f−1(e)∪f−1(h), ·)
is a CEH of 9 elements containing exactly 2 elements of S. In case 2, (f−1(c)∪f−1(f)∪f−1(i), ·) is a CEH
of 9 elements containing exactly 2 elements of S. In either case, ∃H ⊆ E such that |H| = 9, (H, ·) is a
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CEH and |H ∩ S| = 2. Now ∃H∗ ⊆ H such that |H∗| = 3, (H∗, ·) is a CEH and |H∗ ∩ S| = 2. We use Fig
1-a with A∗

4 = H\H∗. Therefore, since |S| = 6, |H∗ ∩ S| = 2 and |A∗
4 ∩ S| = 0, we see that ∃i ∈ {1, 2, 3}

such that |A∗
i ∩ S| = 2. Using H = H∗ ∪A∗

i , we see that |H| = 9, (H, ·) is a CEH and |H ∩ S| = 4.

4 Concluding Remarks

The two techniques of Fig 1 and Fig 4, when combined with the other ideas of this paper are quite effective
in studying the 27 and 81 card SET games. The basic ideas of group theory can be added later, as well.
The following is a sample of results that these techniques yield. Some of these will be proved in another
paper.

1. The classification up to isomorphism and the construction of the Hasse diagram for the SET-free
subsets of E3

3 .

2. The proof that for any S ⊆ E4
3 if |S| = 21, then S is not SET-free.

3. Any two SET-free subsets of E4
3 of cardinality 20 are isomorphic.

4. If S and S are two such SET-free subsets of E4
3 of cardinality 20, and a ∈ S and a ∈ S, there is an

isomorphism f of E4
3 such that f(S) = S and f(a) = a. Letting S = S, we see that S is transitive.

It turns out that S is not 2-transitive, but it is “almost” 2-transitive.

5. Any two SET-free subsets of E4
3 of cardinality 19 are isomorphic.

6. If S and S are two SET-free subsets of E4
3 of cardinality 19, then ∃x ∈ S, x ∈ S such that ∀a ∈

S \ {x},∀a ∈ S \ {x} there is an isomorphism f of E4
3 such that f(S) = S and f(a) = a. Letting

S = S, we might say that S is “almost” transitive.

7. If S ⊆ E4
3 is SET-free and has cardinality 19, there is a unique a ∈ E4

3 \ S such that S ∪ {a} is
SET-free.

8. If S ⊆ E4
3 is SET-free and |S| = k, then there is a subCEH H of E4

3 of cardinality 27 such that
|H ∩ S| ≥ h where (k, h) is any of the ordered pairs (19, 9), (16, 8), (13, 7), (10, 6), (7, 5), (4, 4).

9. If S ⊆ E4
3 is SET-free and |S| = 9, then there is a subCEH H of E4

3 of cardinality 27 such that
|H ∩ S| ≥ 6 if and only if there is a subCEH H∗ of E4

3 of cardinality 9 such that |H∗ ∩ S| = 4.

10. If S is a SET-free subset of E4
3 of cardinality 20, andH,K, and L are mutual cosets of E4

3 of cardinality
27, then {|H ∩ S|, |K ∩ S|, |L ∩ S|} = {9, 9, 2} or {|H ∩ S|, |K ∩ S|, |L ∩ S|} = {6, 6, 8}.

11. If S is a SET-free subset of E4
3 of cardinality 20 andHi, i = 1, 2, . . . , 9 is a family of nine cosets of E4

3 all
of cardinality 9, then the multiset {|Hi∩S| : i = 1, 2, . . . , 9} is one of {0, 1, 1, 1, 1, 4, 4, 4, 4}, {0, 0, 2, 3, 3, 3, 3, 3, 3}, {2, 2, 2, 2, 2, 2, 2, 2, 4}.
The reader might like to solve the analogous problem for E3

3 when |S| = 9 and |Hi| = 3.

12. In 11, we have detailed information about the structure of {|Hi ∩ S| : i = 1, 2, . . . , 9}.

13. We have results analogous to those of 9, 10, and 11 for S ⊆ E4
3 when S has cardinality 19 and

SET-free.
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14. In E3
3 we found all theorems analogous to the following example. Suppose S ⊆ E3

3 , |S| = 7 and S is
SET-free. Then there exists three mutual cosets H,K, and L all with cardinality 9 in E3

3 such that
|H ∩ S| = 4, |K ∩ S| = 3, and |L ∩ S| = 0.

15. In E3
3 we have found, up to isomorphism, all S ⊆ E3

3 such that S is maximal SET-free, where maximal
SET-free is defined in definition 13.

16. If S is a SET-free subset of E4
3 of cardinality 20, there is a simple construction that finds all automor-

phisms f : E4
3 → E4

3 that satisfy f(S) = S. The number of these isomorphisms equals 20·18·8 = 2880.

17. Using 16, we know that the number of distinct set-free subsets of E4
3 of cardinality 20 equals (81 · 80 ·

78 · 72 · 54)÷ (20 · 18 · 8) = 682,344.
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