Applications of the Cevian Group in a Triangle

Harold Reiter
Department of Mathematics, University of North Carolina Charlotte, Charlotte, NC 28223, USA
hbreiter@email.uncc.edu
Arthur Holshouser
3600 Bullard St.
Charlotte, NC 28208, USA

1 Abstract

We first define and develop the geometric properties of the Cevian group in a triangle. This Abelian group distributes over the plane Euclidean projective space.

We also develop the properties of the basic, the isotomic and the isogonal conjugates of a point in a triangle.

We later proceed to transfer four points on the Euler line to the harmonic axis of the centroid of a triangle. Then using the properties of the Cevian group, we proceed to generate an infinite collection of three or more colinear points in a triangle.

2 Introduction

We first define and develop the basic theory of the Cevian group in a triangle. We are especially interested in the definitions of the harmonic pole and the harmonic axis with emphasis on the harmonic axis of the centroid G.

Next, we define and develop some of the basic properties of the isotomic conjugate, the isogonal conjugate and the basic conjugate of a point in a triangle.

We then apply the isotomic conjugate and the isogonal conjugate to the centroids and the incenters of the medial and the anti- complementary triangles of a triangle $\triangle A B C$ to define an infinite collection of points in $\triangle A B C$. This infinite collection includes many standard points in
a triangle such as the orthocenter, centroid, incenter, circumcenter, Lemoine point, Gergonne point and Nagel point. We then focus our attention on four points on the Euler line three of which are the well known centroid, orthocenter and circumcenter. We then transfer these four points to the harmonic axis of the centroid, and there is a very special reason for doing this. From this translation, we proceed to generate an infinite collection of three or more colinear points in $\triangle A B C$.

This is far more than what one would expect from four points on the Euler line, and this is not even remotely close to being exhaustive.

3 The Cevian Group in a Triangle.

(b)

Fig. 1 Illustrating Ceva's and Menelaus' Theorems
In $\triangle A B C$, suppose point K lies on the directed line segment $B C$, p.151, [1]. We say that K has a Cevian coordinate of r (which we write $K=K(r))$ if $\frac{B K}{K C}=r$ is true in both magnitude and sign. In directed line segments, we note that $B C=-C B, B K=-K B, K C=-C K$, etc. Thus, r is positive if K lies strictly between B and C and r is negative if K lies strictly outside
of the line segment $B C$. Also, $r=0$ if $K=B$ and $r=\infty$ if $K=C$. In Fig. 1 (a), (b), suppose point $K=K(r)$ lies on $B C$, point $L=L(s)$ lies on $C A$ and point $M=M(t)$ lies on $A B$ where $\frac{B K}{K C}=r, \frac{C L}{L A}=s, \frac{A M}{M B}=t$. That is, r, s, t are the Cevian coordinates of points K, L, M. Ceva's Theorem states that $A K, B L, C M$ are concurrent if and only if $\frac{B K}{K C} \cdot \frac{C L}{L A} \cdot \frac{A M}{M B}=r s t=1$ is true in both magnitude and sign, p.159-163,[1]. Menelaus' Theorem states that K, L, M are colinear if and only if $\frac{B K}{K C} \cdot \frac{C L}{L A} \cdot \frac{A M}{M B}=r s t=-1$ is true in both magnitude and sign, p.159-163,[1]. Thus, in Fig. 1, (a), if $r s t=1$ we write $P=P(r, s, t)$, $r s t=1$, and say that (r, s, t) are the Cevian coordinates of the point of concurrency P of $A K, B L, C M$. Also, in Fig. 1, (b), if $r s t=-1$, we say that the line l through K, L, M has Menelaus' coordinates of (r, s, t), $r s t=-1$, and we write this as $l=l(r, s, t), r s t=-1$. For line l we usually use the notation $l=l(l, m, n), l m n=-1$, in the place of (r, s, t) where $\frac{B K}{K C}=l, \frac{C L}{L A}=m, \frac{A M}{M B}=n$.

If $P(r, s, t)$, rst $=1, Q(\bar{r}, \bar{s}, \bar{t}), \overline{r s} \bar{t}=1$, are the Cevian coordinates of the points P, Q then the point $R=P \cdot Q$ is defined by $R=P(r, s, t) \cdot Q(\bar{r}, \bar{s}, \bar{t})=R(r \bar{r}, s \bar{s}, t \bar{t})$, where $(r \bar{r}, s \bar{s}, t \bar{t}),(r \bar{r})(s \bar{s})(t \bar{t})=1$, are the Cevian coordinates of R. Of course, $(r, s, t) \cdot(\bar{r}, \bar{s}, \bar{t})=$ $(r \bar{r}, s \bar{s}, t \bar{t})$ is the standard inner product vector of the two vectors $(r, s, t),(\bar{r}, \bar{s}, \bar{t})$ and the operator (•) is a group when $r, s, t, \bar{r}, \bar{s}, \bar{t} \in R \backslash\{0\}$. We will call $R=P \cdot Q$ the Cevian product or the inner product point of the points P and Q. If $P(r, s, t), r s t=1$, is a point and $l(l, m, n), l m n=-1$, is a line, then $P(r, s, t) \cdot l(l, m, n)=(r l, s m, t n)$ is a line since $(r l)(s m)(t n)=-1$. Also, if $l(l, m, n), l m n=-1$, and $l^{*}\left(l^{*}, m^{*}, n^{*}\right), l^{*} m^{*} n^{*}=-1$, are lines then $l(l, m, n) \cdot l^{*}\left(l^{*}, m^{*}, n^{*}\right)=\left(l l^{*}, m m^{*}, n n^{*}\right)$ is a point since $\left(l l^{*}\right)\left(m m^{*}\right)\left(n n^{*}\right)=1$.

Thus, we can expand our group (\cdot) to deal with $(r, s, t) \cdot\left(r^{*}, s^{*}, t^{*}\right)=\left(r r^{*}, s s^{*}, t t^{*}\right)$ when $r s t= \pm 1, r^{*} s^{*} t^{*}= \pm 1$. We continue to call this group the Cevian group, and we call the multiplication of two terms of the group the Cevian product.

If $P(r, s, t), r s t=1$, is a point, the harmonic axis of P is the line $l(-r,-s,-t)$, where $(-r)(-s)(-t)=-1$. Also, if $l(l, m, n), \operatorname{lmn}=-1$, is a line, then the point $P(-l,-m-n),(-l)(-m)(-n)=1$, is the harmonic pole of $l(l, m, n)$. In this paper, we are especially interested in the harmonic axis of the centroid $G(1,1,1)$ which has Menelaus' coordinates of $(-1,-1,-1)$. This line $(-1,-1,-1)$ lies at infinity.

Lemma 1 In $\triangle A B C$ of Fig. 1.(a), suppose $|A B|=c,|A C|=b$, where c, b are the lengths of sides $A B, A C$ of $\triangle A B C$. Then $\frac{\sin \theta_{2}}{\sin \theta_{1}}=\frac{B K}{K C} \cdot \frac{b}{c}$.

Proof. From $\triangle A K B, \frac{\sin \theta_{2}}{B K}=\frac{\sin B}{A K}$. Also, from $\triangle A K C, \frac{\sin \theta_{1}}{K C}=\frac{\sin C}{A K}$. Therefore, $\frac{\sin \theta_{2}}{\sin \theta_{1}}=$ $\frac{B K}{K C} \cdot \frac{\sin B}{\sin C}=\frac{B K}{K C} \cdot \frac{b}{c}$.

Corollary 1 In Fig. 1.(a), $A K, B L, C M$ are concurrent if and only if $\frac{\sin \theta_{1}}{\sin \theta_{2}} \cdot \frac{\sin \phi_{1}}{\sin \phi_{2}} \cdot \frac{\sin \psi_{1}}{\sin \psi_{2}}=1$. Proof. The proof uses Lemma 1 with Ceva's theorem.

4 Three Conjugates in a Triangle

We first define the isotomic conjugate of a point P. Using Fig. 1,(a), suppose $P(r, s, t), r s t=1$, are the Cevian coordinates of a point P in $\triangle A B C$. Define points \bar{K} on $B C, \bar{L}$ on $C A$ and \bar{M} on $A B$ such that $B K=\bar{K} C, C L=\bar{L} A$ and $A M=\bar{M} B$ are true in both magnitude and sign. Then it is obvious that $\bar{K}\left(\frac{1}{r}\right), \bar{L}\left(\frac{1}{s}\right), \bar{M}\left(\frac{1}{t}\right)$ are the Cevian coordinates of the points $\bar{K}, \bar{L}, \bar{M}$. Also, $A \bar{K}, B \bar{L}, C \bar{M}$ are concurrent since $\left(\frac{1}{r}\right)\left(\frac{1}{s}\right)\left(\frac{1}{t}\right)=1$. Calling \bar{P} the point of concurrency of $A \bar{K}, B \bar{L}, C \bar{M}$ we have $\bar{P}=\bar{P}\left(\frac{1}{r}, \frac{1}{s}, \frac{1}{t}\right)$ and we define \bar{P} to be the isotomic conjugate of the point $P(r, s, t)$. It is easy to see that $\bar{P}=P^{-1}$ where P^{-1} is the inverse of P in the Cevian group. Let I be the incenter of $\triangle A B C$. Also, in $\triangle A B C$ let $|B C|=a,|C A|=b,|A B|=c$. It is standard that the Cevian coordinates of I are $I\left(\frac{c}{b}, \frac{a}{c}, \frac{b}{a}\right)$ since $\frac{B K}{K C}=\frac{c}{b}, \frac{C L}{L A}=\frac{a}{c}, \frac{A M}{M B}=\frac{b}{a}$.

Also, $G(1,1,1)$ are the Cevian coordinates of the centroid $G . G(1,1,1)$ is the identity element in the Cevian group.

We now define the isogonal conjugate of a point P. From Fig. 1, (a), we now use the angles $\theta_{1}, \theta_{2}, \phi_{1}, \phi_{2}, \psi_{1}, \psi_{2}$. Suppose we reverse the two angles θ_{1}, θ_{2}, reverse the two angles ϕ_{1}, ϕ_{2} and reverse the two angles ψ_{1}, ψ_{2} to define new points $K^{\prime}, L^{\prime} . M^{\prime}$ on sides $B C, C A, A B$ respectively. In other words we find points K^{\prime} on $B C, L^{\prime}$ on $C A$ and M^{\prime} on $A B$ such that $\angle B A K^{\prime}=\theta_{1}, \angle K^{\prime} A C=\theta_{2}, \angle C B L^{\prime}=\phi_{1}, \angle L^{\prime} B A=\phi_{2}, \angle A C M^{\prime}=\psi_{1}, \angle M^{\prime} C B=\psi_{2}$.

From Fig. 1, (a) and Lemma 1 we know that $r=\frac{B K}{K C}=\frac{\sin \theta_{2}}{\sin \theta_{1}} \cdot \frac{c}{b}$.
If $K^{\prime}\left(r^{\prime}\right), L^{\prime}\left(s^{\prime}\right), M^{\prime}\left(t^{\prime}\right)$ are the Cevian coordinates of $\left(K^{\prime}, L^{\prime}, M^{\prime}\right)$, then $r^{\prime}=\frac{B K^{\prime}}{K^{\prime} C}=\frac{\sin \theta_{1}}{\sin \theta_{2}} \cdot \frac{c}{b}$. Therefore, $r^{\prime}=\left(\frac{c}{b}\right)^{2} \cdot \frac{1}{r}$. Likewise, $s^{\prime}=\left(\frac{a}{c}\right)^{2} \cdot \frac{1}{s}$ and $t^{\prime}=\left(\frac{b}{a}\right)^{2} \cdot \frac{1}{t}$. Therefore, $A K^{\prime}, B L^{\prime}, C M^{\prime}$ are concurrent since $r^{\prime} s^{\prime} t^{\prime}=1$. If we call $\theta(P)$ the point of concurrent of $A K^{\prime}, B L^{\prime}, C M^{\prime}$, we define $\theta(P)$ to be the isogonal conjugate of the point $P(r, s, t)$ and it is obvious that $\theta(P)=$ $\left(\left(\frac{c}{b}\right)^{2} \frac{1}{r},\left(\frac{b}{c}\right)^{2} \frac{1}{s},\left(\frac{b}{a}\right)^{2} \frac{1}{t}\right)=I \cdot I \cdot \bar{P}=I^{2} \cdot \bar{P}=I^{2} \cdot P^{-1}$ where I is the incenter of $\triangle A B C, \bar{P}=P^{-1}$ is isotomic conjugate of P and multiplication is in the Cevian group. We also mention that
$I^{2}=\theta(G)=K$ is called the Lemoine point of $\triangle A B C$ and it is usually denoted by K.
For completeness, we define $\phi(P)=I \cdot \bar{P}$ to be the basic conjugate of the point P. We do not know of a geometric meaning of $\phi(P)$. If $l(l, m, n), l m n=-1$ is a line, we can also define $\bar{l}(l, m, n)=\left(\frac{1}{l}, \frac{1}{m}, \frac{1}{n}\right), \phi(l)=I \cdot \bar{l}$ and $\theta(l)=I^{2} \cdot \bar{l}$ to be the isotomic, basic and isogonal conjugates of the line l. Even though we do not know the geometric meaning of ϕ, it is used endlessly in developing the deeper properties of the triangle. As an example, if I_{a}, I_{b}, I_{c} are the three excenters of $\triangle A B C$ and X, Y, Z are the three points of contact of the incircle with the sides of $\triangle A B C$, then the two triangles $\triangle I_{a} I_{b} I_{c}$ and $\triangle X Y Z$ are homothetic and the homothetic center of these two triangles is $\phi(\bar{M})=\phi(N)$, where N is the Nagel point and M is the Gergonne point, two terms defined in Section 7.

If P is a point, it is easy to prove by induction that we can construct $I^{2 n} \cdot P$ and $I^{2 n} \cdot \bar{P}$ when $n \in Z$ by using only the isotomic conjugate \bar{P} and the isogonal conjugate $\theta(P)$.
(a) Note that for $n \in N, \overline{I^{2 n} \cdot P}=\bar{I}^{2 n} \cdot \bar{P}$ and $\overline{I^{2 n} \cdot \bar{P}}=\bar{I}^{2 n} \cdot P$.
(b) If by induction we can construct $I^{2 n} \cdot P$ and $I^{2 n} \cdot \bar{P}$ for some $n \in N$, then $\theta\left(\overline{I^{2 n} \cdot P}\right)=$ $\theta\left(\bar{I}^{2 n} \cdot \bar{P}\right)=I^{2 n+2} \cdot P$ and $\theta\left(\overline{I^{2 n} \cdot \bar{P}}\right)=\theta\left(\bar{I}^{2 n} \cdot P\right)=I^{2 n+2} \cdot \bar{P}$. By combining (a) and (b), we can construct $I^{2 n} \cdot P$ and $I^{2 n} \cdot \bar{P}$ for any $n \in Z$.

As examples $I^{4} \cdot \bar{P}=\theta(\overline{\theta(P)})$ and $I^{4} \cdot P=\theta(\overline{\theta(\bar{P})})$.
From this we see that by starting with the centroid $G(1,1,1)$ and the incenter $I\left(\frac{c}{b}, \frac{a}{c}, \frac{b}{a}\right)$ we can construct any point $I^{n}, n \in Z$, by using only $G, I, \theta(P), \bar{P}$. We will call $I^{n}, n \in Z$, the generalized incenter.

Also, by induction we can construct $I^{n} \cdot P, I^{n} \cdot \bar{P}$ for any $n \in Z$ by using only the isotomic conjugate \bar{P} and the basic conjugate $\phi(P)$.

If we use all three conjugate $\bar{P}, \theta(P), \phi(P)$, then we can construct the points $I^{n} \cdot P, I^{n} \cdot \bar{P}, n \in Z$, in different ways. Indeed, $\theta(P)=\phi(\overline{\phi(P)})=I^{2} \cdot \bar{P}$. Also, $\overline{(\bar{P})}=$ $P, \theta(\theta(P))=P$ and $\phi(\phi(P))=P$.

For this reason, we will always leave our points in the form $I^{n} \cdot P$ and $I^{n} \cdot \bar{P}$, and we will not use θ and ϕ at all.

5 Basic Properties of Lines and Points in the Cevian Group

We will make use of the following three theorems.
Theorem 1 Suppose $P(r, s, t), r s t=1$, is a point and $l(l, m, n), l m n=-1$, is a line written with respect to $\triangle A B C$. Then P lies on l (written $P \in l$) if and only if (a) is true or (b) is true or (c) is true where (a),(b),(c) are logically equivalent.
(a) $m t(r-l)=1$,
(b) $n r(s-m)=1$,
(c) $l s(t-n)=1$.

Theorem 2 Suppose $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the medial triangle of $\triangle A B C$. Thus, $A^{\prime}, B^{\prime}, C^{\prime}$ are the midpoints of sides $B C, C A, A B$ respectively. Suppose a point P has Cevian coordinates of $(r, s, t), r s t=1$, with respect to $\triangle A B C$ and P has Cevian coordinates of $\left(r^{\prime}, s^{\prime}, t^{\prime}\right), r^{\prime} s^{\prime} t^{\prime}=1$, with respect to $\triangle A^{\prime} B^{\prime} C^{\prime}$. Then
(a) $(r, s, t)=\left(\frac{t^{\prime}+1}{\frac{1}{s^{\prime}}+1}, \frac{r^{\prime}+1}{\frac{1}{t^{\prime}}+1}, \frac{s^{\prime}+1}{r^{\prime}+1}\right)$ and
(b) $\left(r^{\prime}, s^{\prime}, t^{\prime}\right)=\left(\frac{t-\frac{1}{s}+1}{-t+\frac{1}{s}+1}, \frac{r-\frac{1}{t}+1}{-r+\frac{1}{t}+1}, \frac{s-\frac{1}{r}+1}{-s+\frac{1}{r}+1}\right)$.

Note 1 The anti-complementary $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ of $\triangle A B C$ is the triangle such that $\triangle A B C$ is the medial triangle of $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$. Thus, the formulas (a), (b) of Theorem 2 can also be used when $P=(r, s, t)$ are the Cevian coordinates of a point P with respect to $\triangle A B C$ and $P=\left(r^{\prime \prime}, s^{\prime \prime}, t^{\prime \prime}\right)$ are the Cevian coordinates of P with respect to $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.

Theorem $3 P(r, s, t), r s t=1$, are the Cevian coordinates of a point P in $\triangle A B C$. Also, in vector form $P=x A+y B+z C, x+y+z=1$. Then (a), (b) are true.
(a). $(r, s, t)=\left(\frac{z}{y}, \frac{x}{z}, \frac{y}{x}\right)$.
(b) $(x, y, z)=\left(\frac{1}{1+t+r t} \frac{t}{1+t+r t} \frac{r t}{1+t+r t}\right)=\left(\frac{s}{1+s+s t}, \frac{s t}{1+s+s t}, \frac{1}{1+s+s t}\right)=\left(\frac{r s}{1+r+r s}, \frac{1}{1+r+r s} \frac{r}{1+r+r s}\right)$.

Proof of Theorem 3 Formula (a) is almost obvious from the definition of Cevian coordinates if we write $P=x A+(y+z)\left[\frac{y B}{y+z}+\frac{z C}{y+z}\right]=y B+(x+z)\left[\frac{x A}{x+z}+\frac{z C}{x+z}\right]=z C+(x+y)\left[\frac{x A}{x+y}+\frac{y B}{x+y}\right]$.

Also, the three formulas in (b) are obviously equivalent, and they are easy to derive from (a). The proofs of (b) are also self evident since from the first formula in (b) we easily see that $x+y+z=\frac{1+t+r t}{1+t+r t}=1$ and $\left(\frac{z}{y}, \frac{x}{z}, \frac{y}{x}\right)=\left(\frac{r t}{t}, \frac{1}{r t}, \frac{t}{1}\right)=(r, s, t)$.

The proofs of Theorems 1, 2 are now easy applications of Theorem 3 and the details are left to
the reader. To prove Theorem 1, we write $P=x A+y B+z C=B+x(A-B)+z(C-B), x+$ $y+z=1$. We then set up an oblique co-ordinate system with $B=(0,0)$ as the origin, $B C$ as the x-axis with $C=(1,0)$ and $B A$ as the y-axis with $A=(0,1)$. Therefore, $P=(z, x)$ are the coordinates of P in this co-ordinate system. From line $l(l, m, n), l m n=-1$, we can find real numbers x^{*}, y^{*} such that $l=\left\{\frac{x}{x^{*}}+\frac{y}{y^{*}}=1: x, y \in R\right\}$ in this oblique co-ordinate system. The condition $P \in l$ is now a simple problem in analytic geometry and the proof is exactly the same as in rectangular co-ordinate analytic geometry.

The proof of Theorem 2 uses Theorem 3 and the obvious facts that $A^{\prime}=\frac{1}{2}(B+C), B^{\prime}=$ $\frac{1}{2}(A+C), C^{\prime}=\frac{1}{2}(A+B), A=-A^{\prime}+B^{\prime}+C^{\prime}, B=A^{\prime}-B^{\prime}+C^{\prime}, C=A^{\prime}+B^{\prime}-C^{\prime}$.

Lemma 2 Suppose distinct points $P(r, s, t), r s t=1, Q(\bar{r}, \bar{s}, \bar{t}), \overline{r s t}=1$, lie on line $l(l, m, n), l m n=$ -1. Then $l=\frac{\frac{1}{\bar{s}}-\frac{1}{\overline{\bar{s}}}}{t-\bar{t}}, m=\frac{\frac{1}{t}-\frac{1}{t}}{r-\overline{\bar{t}}}, n=\frac{\frac{1}{\bar{r}}-\frac{1}{\bar{\tau}}}{s-\overline{\bar{s}}}$.

Proof. Since $(r, s, t) \in l$ and $(\bar{r}, \bar{s}, \bar{t}) \in l$, from Theorem 1 we know that $m t(r-l)=1$ and $m \bar{t}(\bar{r}-l)=1$. Therefore, $r-l=\frac{1}{m t}$ and $\bar{r}-l=\frac{1}{m \bar{t}}$. Therefore, $r-\bar{r}=\frac{1}{m}\left(\frac{1}{t}-\frac{1}{\bar{t}}\right)$ and $m=\frac{\frac{1}{t}-\frac{1}{t}}{r-\bar{r}}$. Likewise, we have the formulas for l and n.

Lemma 2^{\prime} (optional) The lines $l(l, m, n), l m n=-1$, and $\bar{l}(\bar{l}, \bar{m}, \bar{n}), \bar{l} \overline{m n}=-1$, intersect at the point $P(r, s, t), r s t=1$. Then $r=-\frac{\left(\frac{1}{n}-\frac{1}{n}\right)}{m-\bar{m}}, s=-\frac{\left(\frac{1}{l}-\frac{1}{\bar{l}}\right)}{n-\bar{n}}, t=-\frac{\left(\frac{1}{m}-\frac{1}{m}\right)}{l-\bar{l}}$.

Proof. From Theorem 1, since $P \in l$ and $P \in \bar{l}$ we have $m t(r-l)=1$ and $\bar{m} t(r-\bar{l})=1$. Therefore, $r-l=\frac{1}{m t}$ and $r-\bar{l}=\frac{1}{m t}$. Therefore, $l-\bar{l}=\frac{1}{t}\left(\frac{1}{m}-\frac{1}{m}\right)$.

Therefore, $t=-\frac{\left(\frac{1}{m}-\frac{1}{\bar{m}}\right)}{l-\bar{l}}$.
The formulas for r, s are proved the same way.
Corollary 2 In $\triangle A B C$ the three distinct points $P(r, s, t), r s t=1, Q(\bar{r}, \bar{s}, \bar{t})$, $\overline{r s} \bar{t}=1, R\left(r^{*}, s^{*}, t^{*}\right), r^{*} s^{*} t^{*}=1$, are colinear if and only if any one of the following logically equivalent conditions (a), (b), (c) is satisfied. We use $Q(\bar{r}, \bar{s}, \bar{t})$ as the anchor point in (a), (b), (c). By symmetry we could also use $P(r, s, t)$ or $R\left(r^{*}, s^{*}, t^{*}\right)$ as the anchor point.
(a) $\frac{\frac{1}{r}-\frac{1}{\bar{r}}}{s-\bar{s}}=\frac{\frac{1}{r^{*}-}-\frac{1}{\bar{r}}}{s^{*}-\overline{\bar{s}}}$,
(b) $\frac{\frac{1}{s}-\frac{1}{\frac{s}{e}}}{t-\bar{t}}=\frac{\frac{1}{s^{*}}-\frac{1}{\frac{s}{s}}}{t^{*}-\bar{t}}$,
(c) $\frac{\frac{1}{t}-\frac{1}{t}}{r-\bar{r}}=\frac{\frac{1}{t^{*}}-\frac{1}{t}}{r^{*}-\bar{r}}$.

Proof. Let line $Q P$ intersect side $B C$ in the point x and let line $Q R$ intersect the side $B C$ in the point y. Then the three points Q, P, R are colinear if and only if $x=y$. Thus, from

Lemma 2, we see that formula (b) gives a necessary and sufficient condition such that Q, P, R are colinear. Likewise, formulas (a) and (c) give necessary and sufficient conditions such that Q, P, R are colinear.

Lemma 3 Suppose $P(r, s, t), r s t=1$, is a point and $l(l, m, n), l m n=-1$, is a line. Also, suppose $C(x, y, z), x y z=1$, is a point. Then $P \in l$ if and only if $C \cdot P \in C \cdot l$.

Proof. We prove $P \in l$ implies $C \cdot P \in C \cdot l$. The proof that $C \cdot P \in C \cdot l$ implies $P \in l$ is similar. From Theorem $1, P \in l$ if and only if $m t(r-l)=1$. Also, $C \cdot P=(x r, y s, z t) \in$ $C \cdot l=(x \cdot l, y \cdot m, z \cdot n)$ if and only if $(y m)(z t)(x r-x l)=1 . \quad$ Now $(y m)(z t)(x r-x l)=$ $(x y z)(m t)(r-l)=(m t)(r-l)=1$. Therefore, $C \cdot P \in C \cdot l$.

Corollary 3 Suppose line $l=\left\{P_{i}=\left(r_{i}, s_{i}, t_{i}\right): i \in I\right\}$ where $l(l, m, n), l m n=-1$, are the Menelaus coordinates of l and $\left\{P_{i}=\left(r_{i}, s_{i}, t_{i}\right): i \in I\right\}$, each $r_{i} s_{i} t_{i}=1$, are the Cevian coordinates of the points on line l. If $C(x, y, z), x y z=1$, is a point then $C \cdot l=\left\{C \cdot P_{i}: i \in I\right\}$. That is, $\left\{C \cdot P_{i}: i \in I\right\}$ where $C \cdot P_{i}=(x, y, z) \cdot\left(r_{i}, s_{i}, t_{i}\right)=\left(x r_{i}, y s_{i}, z t_{i}\right)$ are the points on line $C \cdot l=(x, y, z) \cdot(l, m, n)=(x l, y m, z n)$.

Proof. Obvious from Lemma 3 and the proof of Lemma 3.
Corollary 4 Suppose P, Q, R, C are points. Then P, Q, R are colinear if and only if $C \cdot P, C$. $Q, C \cdot R$ are colinear.

Proof. Obvious from Lemma 3.

Note 2 If a is a fixed point, then the mapping $f(x)=a \cdot x, x$ is a point, maps lines into lines and preserves cross-ratios. Thus, the Cevian group distributes over the Euclidean projective space.

Lemma 4 (optional) Point $P(r, s, t), r s t=1$, lies on line $l(l, m, n), l m n=-1$. Let $Q(-l,-m,-n),(-l)(-m)(-n)=1$, be the harmonic pole of $l(l, m, n)$. Now $\bar{P}(r, s, t)=$ $\left(\frac{1}{r}, \frac{1}{s}, \frac{1}{t}\right)$ and $\bar{Q}(-l,-m,-n)=\left(-\frac{1}{l} .-\frac{1}{m},-\frac{1}{n}\right)$ are the isotomic conjugates of P, Q. Then \bar{Q} lies on the harmonic axis of \bar{P}.

Proof. The easy proof uses Theorem 1.
Lemma 5 Let $G(1,1,1)$ be the centroid of $\triangle A B C$ and let $l(-1,-1,-1)$ be the harmonic axis of G.

Let $(r, s, t)=\left(\frac{z}{y}, \frac{x}{z}, \frac{y}{x}\right)$ be a point. Then (r, s, t) lies on $(-1,-1,-1)$ if and only if any one of the logically equivalent conditions (a), (b), (c), (d) is true.
(a) $1+r+r s=0$.
(b) $1+t+t r=0$.
(c) $1+s+s t=0$.
(d) $x+y+z=0$.

Proof. We show that $\left(\frac{z}{y}, \frac{x}{z}, \frac{y}{x}\right) \in(-1,-1,-1)$ if and only if $x+y+z=0$. The logically equivalent conditions (a), (b), (c) easily follow from this.

From Theorem 1, we know that $\left(\frac{z}{y}, \frac{x}{z}, \frac{y}{x}\right) \in(-1,-1,-1)$ if and only if $(-1)\left(\frac{y}{x}\right)\left(\frac{z}{y}+1\right)=1$. This is equivalent to $-\frac{z}{x}-\frac{y}{x}=1$ which is equivalent to $x+y+z=0$.

Problem 1 Suppose $P(r, s, t)$, $r s t=1$, is a point in $\triangle A B C$. Find necessary and sufficient conditions on $(r, s, t), r s t=1$, so that (r, s, t) lies at infinity.

Solution In Fig.1(a), let $|B C|=a,|C A|=b,|A B|=c$ be the lengths of sides $B C, C A, A B$. Also, in order for Fig.1(a) to be realistic, we place K to the left of B and C so that B now lies between K and C. Now since $\frac{B K}{K C}=r, \frac{C L}{L A}=s$, we see that $K C=\frac{a}{1+r}$ and $C L=\frac{s b}{1+s}$. Now $P(r, s, t)$ lies at infinity, if and only if $A K \| B L$ which is equivalent to $\frac{B C}{C L}=\frac{K C}{C A}$. This is equivalent to $\frac{a b}{\left(\frac{s b}{1+s}\right)}=\frac{\left(\frac{a}{1+r}\right)}{b}$. This is equivalent to $(1+r)(1+s)=s$ which is equivalent to $1+r+r s=0$. Using this with Lemma 5 , we now see that $P(r, s, t)$, $r s t=1$, lies at infinity if and only if $P(r, s, t) \in(-1,-1,-1)$.

6 Properties of the Medial and Anti-complementary Triangles

Problem 2 In Problems 2, 3, we let $|B C|=a,|C A|=b,|A B|=c$. Suppose I^{\prime} is the incenter of the medial triangle $\triangle A^{\prime} B^{\prime} C^{\prime}$ of $\triangle A B C$. Since $\triangle A B C \sim \triangle A^{\prime} B^{\prime} C^{\prime}$ and $I=\left(\frac{c}{b}, \frac{a}{c}, \frac{b}{a}\right)$ we see that the Cevian coordinates $\left(r^{\prime}, s^{\prime}, t^{\prime}\right)$ of I^{\prime} with respect to $\triangle A^{\prime} B^{\prime} C^{\prime}$ are also $I^{\prime}\left(r^{\prime}, s^{\prime}, t^{\prime}\right)=\left(\frac{c}{b}, \frac{a}{c}, \frac{b}{a}\right)$. Let $\left(I^{\prime}\right)^{n}=\left(r_{n}^{\prime}, s_{n}^{\prime}, t_{n}^{\prime}\right)=\left(\left(\frac{c}{b}\right)^{n},\left(\frac{a}{c}\right)^{n},\left(\frac{b}{a}\right)^{n}\right)$, be the $n^{t h}$ power of I^{\prime} with respect to the Cevian group of $\triangle A^{\prime} B^{\prime} C^{\prime}$ where $n \in Z$. We wish to compute the Cevian coordinates $\left(r_{n}, s_{n}, t_{n}\right)$ of $\left(I^{\prime}\right)^{n}$ with respect to $\triangle A B C$.

Solution Using formula (a) of Theorem 2. We see that $\left(r_{n}, s_{n}, t_{n}\right)=\left(\frac{a^{n}+b^{n}}{a^{n}+c^{n}}, \frac{b^{n}+c^{n}}{b^{n}+a^{n}}, \frac{c^{n}+a^{n}}{c^{n}+b^{n}}\right)$.

Problem 3 Let $I^{\prime \prime}$ be the incenter of the anti-complementary $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ of $\triangle A B C$. Since $\triangle A B C \sim \triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, the Cevian coordinates $\left(r^{\prime \prime}, s^{\prime \prime}, t^{\prime \prime}\right)$ of $I^{\prime \prime}$ with respect to $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ are $I^{\prime \prime}\left(r^{\prime \prime}, s^{\prime \prime}, t^{\prime \prime}\right)=\left(\frac{c}{b}, \frac{a}{c}, \frac{b}{a}\right)$.

Let $\left(I^{\prime \prime}\right)^{n}=\left(\left(\frac{c}{b}\right)^{n},\left(\frac{a}{c}\right)^{n},\left(\frac{b}{a}\right)^{n}\right)$, be the $n^{t h}$ power of $I^{\prime \prime}$ with respect to the Cevian group of $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ where $n \in Z$. We wish to compute the Cevian coordinates $\left(r_{n}, s_{n}, t_{n}\right)$ of $\left(I^{\prime \prime}\right)^{n}$ with respect to $\triangle A B C$.

Solution Since $\triangle A B C$ is the medial triangle of $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ using formula (b) of Theorem 2 we see that $\left(r_{n}, s_{n}, t_{n}\right)=\left(\frac{a^{n}+b^{n}-c^{n}}{a^{n}-b^{n}+c^{n}}, \frac{-a^{n}+b^{n}+c^{n}}{a^{n}+b^{n}-c^{n}}, \frac{a^{n}-b^{n}+c^{n}}{-a^{n}+b^{n}+c^{n}}\right)$.

7 Generalized Points in a Triangle

$\triangle A B C$ is a triangle with $|B C|=a,|C A|=b,|A B|=c$. Using Problems 2, 3 we define for all $n \in Z,\left(I^{\prime \prime}\right)^{n}=\overline{H_{n}}=\left(\frac{a^{n}+b^{n}-c^{n}}{a^{n}-b^{n}+c^{n}}, \frac{-a^{n}+b^{n}+c^{n}}{a^{n}+b^{n}-c^{n}}, \frac{a^{n}-b^{n}+c^{n}}{-a^{n}+b^{n}+c^{n}}\right),\left(I^{\prime}\right)^{n}=\bar{h}_{n}=\left(\frac{a^{n}+b^{n}}{a^{n}+c^{n}}, \frac{b^{n}+c^{n}}{a^{n}+b^{n}}, \frac{a^{n}+c^{n}}{b^{n}+c^{n}}\right)$, where \bar{H}_{n}, \bar{h}_{n} are the isotomic conjugates of H_{n}, h_{n} in $\triangle A B C$.

Of course, $I^{n}=\left(\left(\frac{c}{b}\right)^{n},\left(\frac{a}{c}\right)^{n},\left(\frac{b}{a}\right)^{n}\right)$.
Also, $I^{0}=G(1,1,1)$ is the centroid and $I^{1}=I\left(\frac{c}{b}, \frac{a}{c}, \frac{b}{a}\right)$ is the incenter of $\triangle A B C$.
Also, $I^{2}=\theta(G)=K$ is the Lemoine point. Also, $H_{2}=H$ is the orthocenter and $\theta\left(H_{2}\right)=$ $\theta(H)=I^{2} \cdot \bar{H}=O$ is the circumcenter.

Also, $H_{1}=M$ is the Gergonne point and $\bar{M}=\bar{H}_{1}=N$ is the Nagel point. (N usually denotes the 9-point center).

The Gergonne point M is the common point of concurrency of the lines joining the vertices of a triangle with the points of contact of the opposite sides with the inscribed circle, p.160, [1]. The Nagel point N is the common point of concurrency of the lines joining the vertices of a triangle to the points of contact of the opposite sides with the excircles relative to these sides, p. 160-162, [1].

For $n \in Z$, we call I^{n} the generalized incenter. We call H_{n} the generalized orthocenter and h_{n} the generalized little orthocenter. Suppose $l_{n}=\left(G, I^{n}\right), n \in Z$, is the line through the centroid G and the point I^{n}. Then from Lemma 2, we easily see that $l_{n}(l, m, n)=\left(\frac{c^{n}-a^{n}}{b^{n}-a^{n}}, \frac{a^{n}-b^{n}}{c^{n}-b^{n}}, \frac{b^{n}-c^{n}}{a^{n}-c^{n}}\right)$.

If $P_{n}(r, s, t)$ is the harmonic pole of line $\left(G, I^{n}\right)$, then $P_{n}=\left(\frac{a^{n}-c^{n}}{b^{n}-a^{n}}, \frac{b^{n}-a^{n}}{c^{n}-b^{n}}, \frac{c^{n}-b^{n}}{a^{n}-c^{n}}\right)$.
From Lemma 5, it is obvious that for all $n \in Z, \overline{P_{n}} \in(-1,-1,-1)$ where \bar{P}_{n} is the isotomic
conjugate of P_{n}.
The following identities are used in Section 9 and they are easily proved by simple algebra.
(a) $I^{n} \cdot \bar{h}_{n}=\bar{h}_{-n}$, for all $n \in Z$.
($\left.\mathrm{a}^{\prime}\right) \bar{I}^{n} \cdot h_{n}=h_{-n}$, for all $n \in Z$.
(b) $P_{-n}=\bar{I}^{n} \cdot P_{n}$, for all $n \in Z$.
(b') $\bar{P}_{-n}=I^{n} \cdot \bar{P}_{n}$, for all $n \in Z$.
$\left(\mathrm{b}^{\prime \prime}\right) P_{-1} \cdot \bar{P}_{-n}=I^{n-1} \cdot P_{1} \cdot \overline{P_{n}}$, for all $n \in Z$.
(c) $P_{2 n} \cdot \bar{P}_{n}=h_{n}$, for all $n \in N$.
(c') $P_{2^{n}} \cdot \bar{P}_{1}=h_{1} \cdot h_{2} \cdot h_{4} \cdots h_{2^{n-1}}$, for all $n \in N$.

For example, (a) is equivalent to $\left(\left(\frac{c}{b}\right)^{n},\left(\frac{a}{c}\right)^{n},\left(\frac{b}{a}\right)^{n}\right) \cdot\left(\frac{a^{n}+b^{n}}{a^{n}+c^{n}}, \frac{b^{n}+c^{n}}{a^{n}+b^{n}}, \frac{a^{n}+c^{n}}{b^{n}+c^{n}}\right)=$

$$
\left(\frac{\left(\frac{1}{a}\right)^{n}+\left(\frac{1}{b}\right)^{n}}{\left(\frac{1}{a}\right)^{n}+\left(\frac{1}{c}\right)^{n}}, \frac{\left(\frac{1}{b}\right)^{n}+\left(\frac{1}{c}\right)^{n}}{\left(\frac{1}{a}\right)^{n}+\left(\frac{1}{b}\right)^{n}}, \frac{\left(\frac{1}{a}\right)^{n}+\left(\frac{1}{c}\right)^{n}}{\left(\frac{1}{b}\right)^{n}+\left(\frac{1}{c}\right)^{n}}\right)
$$

which is obviously true.

8 Four Points on the Euler Line

The three points $G, H_{2}=H, O=\theta\left(H_{2}\right)=I^{2} \cdot \bar{H}_{2}$ are standard points on the Euler line.
From Corollary 2, if we use $G(1,1,1)$ as the anchor point, it is very easy and also fairly short to show that $G, H_{2}=H$ and $I^{2} \cdot \bar{H}_{4}=\theta\left(H_{4}\right)$ are colinear. Thus, we now have the four points $G, H_{2}=H, O=I^{2} \cdot \bar{H}_{2}$ and $I^{2} \cdot \bar{H}_{4}$ on the Euler line. The point $I^{2} \cdot H_{2}=\theta(\bar{H})$ also lies on the Euler line, but this is derived in Section 10 along with endless other colinear points. (This point, by the way, is the homothetic center of the tangential triangle and the orthic triangle of a $\triangle A B C$.) Also, the harmonic pole of the Euler line is easily computed to be $P_{2} \cdot H_{2}$ where (\cdot) is multiplication in the Cevian group. To see this, define $x=-a^{2}+b^{2}+c^{2}, y=a^{2}-b^{2}+c^{2}, z=a^{2}+b^{2}-c^{2}$. Then the Euler line is $(G, H)=$ $\left(G, H_{2}\right)=\left((1,1,1),\left(\frac{y}{z}, \frac{z}{x}, \frac{x}{y}\right)\right)$, and from Lemma 2 the Menelaus coordinates (l, m, n) of the

Euler line (G, H) are $(l, m, n)=\left(\frac{\frac{x}{x}-1}{\frac{x}{y}-1}, \frac{\frac{y}{x}-1}{\frac{y}{z}-1}, \frac{\frac{z}{y}-1}{\frac{z}{x}-1}\right)=\left(\left(\frac{y}{z}\right)\left(\frac{x-z}{x-y}\right),\left(\frac{z}{x}\right)\left(\frac{y-x}{y-z}\right),\left(\frac{x}{y}\right)\left(\frac{z-y}{z-x}\right)\right)=$ $\left(\left(\frac{y}{z}\right)\left(\frac{c^{2}-a^{2}}{b^{2}-a^{2}}\right),\left(\frac{z}{x}\right)\left(\frac{a^{2}-b^{2}}{c^{2}-b^{2}}\right),\left(\frac{x}{y}\right)\left(\frac{b^{2}-c^{2}}{a^{2}-c^{2}}\right)\right)=H_{2} \cdot P_{2} \cdot(-1,-1,-1)$ where P_{2} was computed in Section 7. Therefore, $H_{2} \cdot P_{2}$. is the harmonic pole of the Euler line (G, H). Before we go into the last four sections, we summarize the following easy facts.

If P, Q are two points, there is a unique points x such that $P \cdot x=Q$ namely $x=\bar{P} \cdot Q$ since $\bar{P}=P^{-1}$. If l, l^{*} are lines, there is a unique point x such that $l \cdot x=l^{*}$ namely $x=\bar{l} \cdot l^{*}$ since $\bar{l}=l^{-1}$.

If P is the harmonic pole of line l, then $l=P \cdot(-1,-1,-1)$ where $(-1,-1,-1)$ is the harmonic axis of $G(1,1,1)$. Thus, if P is the harmonic pole of line l and P^{*} is the harmonic pole of line l^{*}, then the unique point x such that $l \cdot x=l^{*}$ can also be written $x=\bar{l} \cdot l^{*}=\bar{P} \cdot P^{*}$ since $\bar{l}=\bar{P} \cdot(-1,-1,-1), l^{*}=P^{*} \cdot(-1,-1,-1)$ and $(-1,-1,-1) \cdot(-1,-1,-1)=(1,1,1)$.

9 Transferring the Four Points on the Euler Line to Line $(-1,-1,-1)$

Since the Euler line $\left(G, H_{2}, I^{2} \cdot \bar{H}_{2}, I^{2} \cdot \bar{H}_{4}\right)=P_{2} \cdot H_{2} \cdot(-1,-1,-1)$, we know that $(-1,-1,-1)=$ $\bar{P}_{2} \cdot \bar{H}_{2}$. Euler line.

Therefore, from Corollary 3, $\bar{P}_{2} \cdot \bar{H}_{2} \cdot G=\bar{P}_{2} \cdot \bar{H}_{2} \in(-1,-1,-1), \bar{P}_{2} \cdot \bar{H}_{2} \cdot H_{2}=\bar{P}_{2} \in$ $(-1,-1,-1), \bar{P}_{2} \cdot \bar{H}_{2} \cdot I^{2} \cdot \bar{H}_{2}=I^{2} \cdot \bar{P}_{2} \cdot \bar{H}_{2} \cdot \bar{H}_{2} \in(-1,-1,-1)$ and $\bar{P}_{2} \cdot \bar{H}_{2} \cdot I^{2} \cdot \bar{H}_{4}=I^{2}$. $\bar{P}_{2} \cdot \bar{H}_{2} \cdot \bar{H}_{4} \in(-1,-1,-1)$.

In $\triangle A B C$ with $|B C|=a,|C A|=b,|A B|=c$, suppose $P(r(a, b, c), s(a, b, c), t(a, b, c)) \in$ $(-1,-1,-1)$ where the Cevian coordinates $r(a, b, c), s(a, b, c), t(a, b, c), r(a, b, c) \cdot s(a, b, c)$. $t(a, b, c)=1$, and functions of a, b, c. From Lemma 5, it is fairly obvious that if we substitute any function $f(a, b, c)$ for a, substitute any function $g(a, b, c)$ for b, and substitute any function $h(a, b, c)$ for c in $r(a, b, c), s(a, b, c), t(a, b, c)$, then the new point will still lie on $(-1,-1,-1)$. (This simple fact is the reason for dealing with the line $(-1,-1,-1)$.)

Therefore, in particular, if $P(r(a, b, c), s(a, b, c), t(a, b, c)) \in(-1,-1,-1)$ then $P\left(r\left(a^{n}, b^{n}, c^{n}\right), s\left(a^{n}, b^{n}, c^{n}\right), t\left(a^{n}, b^{n}, c^{n}\right)\right) \in(-1,-1,-1)$ for all $n \in R$. Therefore, we now know that the following 32 points lie on $(-1,-1,-1)$ where the $f(n), f(-n)$ columns are duals.

We note that $(a),(b),(c),(d),\left(a^{\prime}\right),\left(b^{\prime}\right),\left(c^{\prime}\right),\left(d^{\prime}\right)$ are generated from $\bar{P}_{2} \cdot \bar{H}_{2}$.
Also, $(e),(f),(g),(h),(i),(j),\left(e^{\prime}\right),\left(f^{\prime}\right),\left(g^{\prime}\right),\left(h^{\prime}\right),\left(i^{\prime}\right),\left(j^{\prime}\right)$ are generated from \bar{P}_{2}.
Also, $(k),(l),(m),(n),\left(k^{\prime}\right),\left(l^{\prime}\right),\left(m^{\prime}\right),\left(n^{\prime}\right)$ are generated from $I^{2} \cdot \bar{P}_{2} \cdot \bar{H}_{2} \cdot \bar{H}_{2}$.
Also, $(o),(p),\left(o^{\prime}\right),\left(p^{\prime}\right)$ are generated from $I^{2} \cdot \bar{P}_{2} \cdot \bar{H}_{2} \cdot \bar{H}_{4}$.
Note that we are restricting P_{i}, h_{i}, H_{i} so that $-4 \leq i \leq 4$. We also use the identities $a, a^{\prime}, b, b^{\prime}, b^{\prime \prime}, c, c^{\prime}$ of Section 7.

$f(n)$	$f(-n)$
$(a) \bar{P}_{1} \cdot \bar{H}_{1}$	$\left(a^{\prime}\right) \bar{P}_{-1} \cdot \bar{H}_{-1}=I \cdot \bar{P}_{1} \cdot \bar{H}_{-1}$
$(b) \bar{P}_{2} \cdot \bar{H}_{2}=\bar{P}_{1} \cdot \bar{h}_{1} \cdot \bar{H}_{2}$	$\left(b^{\prime}\right) \bar{P}_{-2} \cdot \bar{H}_{-2}=I^{2} \cdot \bar{P}_{2} \cdot \bar{H}_{-2}=I^{2} \cdot \bar{P}_{1} \cdot \bar{h}_{1} \cdot \bar{H}_{-2}$
$(c) \bar{P}_{3} \cdot \bar{H}_{3}$	$\left(c^{\prime}\right) \bar{P}_{-3} \cdot \bar{H}_{-3}=I^{3} \cdot \bar{P}_{3} \cdot \bar{H}_{-3}$
$(d) \bar{P}_{4} \cdot \bar{H}_{4}=\bar{P}_{1} \cdot \bar{h}_{1} \cdot \bar{h}_{2} \cdot \bar{H}_{4}$	$\left(d^{\prime}\right) \bar{P}_{-4} \cdot \bar{H}_{-4}=I^{4} \cdot \bar{P}_{4} \cdot \bar{H}_{-4}=I^{4} \cdot \bar{P}_{1} \cdot \bar{h}_{1} \cdot \bar{h}_{2} \cdot \bar{H}_{-1}$
$(e) \bar{P}_{1}$	$\left(e^{\prime}\right) \bar{P}_{-1}=I \cdot \bar{P}_{1}$
$(f) \bar{P}_{2}=\bar{P}_{1} \cdot \bar{h}_{1}$	$\left(f^{\prime}\right) \bar{P}_{-2}=I^{2} \cdot \bar{P}_{2}=I^{2} \cdot \bar{P}_{1} \cdot \bar{h}_{1}$
$(g) \bar{P}_{3}$	$\left(g^{\prime}\right) \bar{P}_{-3}=I^{3} \cdot \bar{P}_{3}$
$(h) \bar{P}_{4}=\bar{P}_{1} \cdot \bar{h}_{1} \cdot \bar{h}_{2}$	$\left(h^{\prime}\right) \bar{P}_{-4}=I^{4} \cdot \bar{P}_{4}=I^{4} \cdot \bar{P}_{1} \cdot \bar{h}_{1} \cdot \bar{h}_{2}$
$(i) \bar{P}_{6}=\bar{P}_{3} \cdot \bar{h}_{3}$	$\left(i^{\prime}\right) \bar{P}_{-6}=I^{6} \cdot \bar{P}_{6}=I^{6} \cdot \bar{P}_{3} \cdot \bar{h}_{3}$
$(j) \bar{P}_{8}=\bar{P}_{1} \cdot \bar{h}_{1} \cdot \bar{h}_{2} \cdot \bar{h}_{4}$	$\left(j^{\prime}\right) \bar{P}_{-8}=I^{8} \cdot \bar{P}_{8}=I^{8} \cdot \bar{P}_{1} \cdot \bar{h}_{1} \cdot \bar{h}_{2} \cdot \bar{h}_{4}$
$(k) I \cdot \bar{P}_{1} \cdot \bar{H}_{1} \cdot \bar{H}_{1}$	$\left(k^{\prime}\right) \bar{I}^{\prime} \cdot \bar{P}_{-1} \cdot \bar{H}_{-1} \cdot \bar{H}_{-1}=\bar{P}_{1} \cdot \bar{H}_{-1} \cdot \bar{H}_{-1}$
$(l) I^{2} \cdot \bar{P}_{2} \cdot \bar{H}_{2} \cdot \bar{H}_{2}=I^{2} \cdot \bar{P}_{1} \cdot \bar{h}_{1} \cdot \bar{H}_{2} \cdot \bar{H}_{2}$	$\left(l^{\prime}\right) \bar{I}^{2} \cdot \bar{P}_{-2} \cdot \bar{H}_{-2} \cdot \bar{H}_{-2}=\bar{P}_{1} \cdot \bar{h}_{1} \cdot \bar{H}_{-2} \cdot \bar{H}_{-2}$
$(m) I^{3} \cdot \bar{P}_{3} \cdot \bar{H}_{3} \cdot \bar{H}_{3}$	$\left(m^{\prime}\right) \bar{I}^{3} \cdot \bar{P}_{-3} \cdot \bar{H}_{-3} \cdot \bar{H}_{-3}=\bar{P}_{3} \cdot \bar{H}_{-3} \cdot \bar{H}_{-3}$
$(n) I^{4} \cdot \bar{P}_{4} \cdot \bar{H}_{4} \cdot \bar{H}_{4}=I^{4} \cdot \bar{P}_{1} \cdot \bar{h}_{1} \cdot \bar{h}_{2} \cdot \bar{H}_{4} \cdot \bar{H}_{4}$	$\left(n^{\prime}\right) \bar{I}^{4} \cdot \bar{P}_{-4} \cdot \bar{H}_{-4} \cdot \bar{H}_{-4}=\bar{P}_{1} \cdot \bar{h}_{1} \cdot \bar{h}_{2} \cdot \bar{H}_{-4} \cdot \bar{H}_{-4}$
$(o) I \cdot \bar{P}_{1} \cdot \bar{H}_{1} \cdot \bar{H}_{2}$	$\left(o^{\prime}\right) \bar{I}^{\prime} \cdot \bar{P}_{-1} \cdot \bar{H}_{-1} \cdot \bar{H}_{-2}=\bar{P}_{1} \cdot \bar{H}_{-1} \cdot \bar{H}_{-2}$
$(p) I^{2} \cdot \bar{P}_{2} \cdot \bar{H}_{2} \cdot \bar{H}_{4}=I^{2} \cdot \bar{P}_{1} \cdot \bar{h}_{1} \cdot \bar{H}_{2} \cdot \bar{H}_{4}$	$\left(p^{\prime}\right) \bar{I}^{2} \cdot \bar{P}_{-2} \cdot \bar{H}_{-2} \cdot \bar{H}_{-4}=\bar{P}_{1} \cdot \bar{h}_{1} \cdot \bar{H}_{-2} \cdot \bar{H}_{-4}$

10 Using the 32 Points on $(-1,-1,-1)$ to Generate Colinear Points

If P is any point, then from Corollary $3,\left\{P \cdot P_{i}: P_{i} \in(-1,-1,-1)\right\}=P \cdot(-1,-1,-1)$ which implies $\left\{P \cdot P_{i}: P_{i} \in(-1,-1,-1)\right\}$ are colinear points. We now choose the point P and also
choose the points $P_{1}, P_{2}, \cdots, P_{k}$ from the 32 points $\left\{a, a^{\prime}, b, b^{\prime}, \cdots, p, p^{\prime}\right\} \subseteq(-1,-1,-1)$ that are given in Section 9 so that $P \cdot P_{1}, P \cdot P_{2}, \cdots, P \cdot P_{k}$ are points of the form $I^{n}, I^{n} \cdot h_{m}, I^{n}$. $\bar{h}_{m}, I^{n} \cdot H_{m}, I^{n} \cdot \bar{H}_{m}$ where $n \in Z$ and $m \in\{-4,-3,-2,-1,1,2,3,4\}$. Note that we are only allowing $-4 \leq m \leq 4$. Of course, if Q is any point, then the points $I^{n} \cdot Q, I^{n} \cdot \bar{Q}, n \in Z$, can be constructed by using various combinations of the basic conjugate $\phi(P)$, the isogonal conjugate $\theta(P)$ and the isotomic conjugate \bar{P}. Also, $I^{2 n} \cdot Q, I^{2 n} \cdot \bar{Q}, n \in Z$, can be constructed by using only the isogonal conjugate and the isotomic conjugate. In the following list, we mention a few of the inner relations of these lines.

1. Since $(b)=\bar{P}_{1} \cdot \bar{h}_{1} \cdot \bar{H}_{2},\left(b^{\prime}\right)=I^{2} \cdot \bar{P}_{1} \cdot \bar{h}_{1} \cdot \bar{H}_{-2},(e)=\bar{P}_{1},\left(e^{\prime}\right)=I \cdot \bar{P}_{1},(f)=\bar{P}_{1} \cdot \bar{h}_{1},\left(f^{\prime}\right)=$ $I^{2} \cdot \bar{P}_{1} \cdot \bar{h}_{1},(h)=\bar{P}_{1} \cdot \bar{h}_{1} \cdot \bar{h}_{2},\left(h^{\prime}\right)=I^{4} \cdot \bar{P}_{1} \cdot \bar{h}_{1} \cdot h_{2}$ all lie on the line $(-1,-1,-1)$, we see that $P_{1} \cdot h_{1} \cdot\left(b, b^{\prime}, e, e^{\prime}, f, f^{\prime}, h, h^{\prime}\right)=\left(\bar{H}_{2}, I^{2} \cdot \bar{H}_{-2}, h_{1}, I \cdot h_{1}, G, I^{2}, \bar{h}_{2}, I^{4} \cdot \bar{h}_{2}\right)$ are colinear. Note that $\bar{H}_{2}=\bar{H}, I^{2} \cdot \bar{H}_{-2}=\theta\left(H_{-2}\right), I \cdot h_{1}=\phi\left(\bar{h}_{1}\right), I^{2}=K$, the Lemoine point, and $I^{4} \cdot \bar{h}_{2}=\theta\left(\overline{\theta\left(h_{2}\right)}\right)$.
1^{\prime}. Multiplying the points of (1) by $I^{n}, n \in Z$, we see that

$$
\left(I^{n} \cdot \bar{H}_{2}, I^{n+2} \cdot \bar{H}_{-2}, I^{n} \cdot h_{1}, I^{n+1} \cdot h_{1}, I^{n}, I^{n+2}, I^{n} \cdot \bar{h}_{2}, I^{n+4} \cdot \bar{h}_{2}\right)
$$

are colinear. When $n=2$, line 1^{\prime} become $\left(I^{2} \cdot \bar{H}_{2}, I^{4} \cdot \bar{H}_{-2}, I^{2} \cdot h_{1}, I^{3} \cdot h_{1}, I^{2}, I^{4}, I^{2} \cdot \bar{h}_{2}, I^{6} \cdot \bar{h}_{2}\right)$. We note that $I^{2} \cdot \bar{H}_{2}=I^{2} \cdot \bar{H}=\theta(H)=O, I^{2}=K$ and $I^{4}=\theta(\bar{K})$. This line is called the Brogard diameter, and it is perpendicular to the Lemoine axis (which is the harmonic axis of $K)$. The Brogard diameter is also perpendicular to the harmonic axis of $\theta(\bar{H})$.
2. $P_{1} \cdot h_{1} \cdot H_{2} \cdot\left(b, f, f^{\prime}, l, p\right)=\left(G, H_{2}, I^{2} \cdot H_{2}, I^{2} \cdot \bar{H}_{2}, I^{2} \cdot \bar{H}_{4}\right)$ are colinear. This is the Euler line which is the line that we started with. We note that we have also picked up the new point $I \cdot H_{2}=I^{2} \cdot H=\theta(\bar{H})$, which was mentioned in Section 8. The Euler line is perpendicular to the harmonic axis of \bar{K}, and it is perpendicular to the harmonic axis of H.
2^{\prime}. Multiplying the points of (2) by I^{n}, we see that ($\left.I^{n}, I^{n} \cdot H_{2}, I^{n+2} \cdot H_{2}, I^{n+2} \cdot \bar{H}_{2}, I^{n+2} \cdot \bar{H}_{4}\right)$ are colinear. The line $\bar{I}^{2} \cdot(2)=\left(\bar{I}^{2}, \bar{I}^{2} \cdot H_{2}, H_{2}, \bar{H}_{2}, \bar{H}_{4}\right)$ is parallel to the Brogard diameter.
3. $P_{1} \cdot\left(a, a^{\prime}, e, e^{\prime}, f, f^{\prime}\right)=\left(\bar{H}_{1}, I \cdot \bar{H}_{-1}, G, I, \bar{h}_{1}, I^{2} \cdot \bar{h}_{1}\right)$ one colinear. Note that $\bar{H}_{1}=\bar{M}=N$ is the Nagel point of a triangle.
$3^{\prime} . I^{n} \cdot(3) \equiv\left(I^{n} \cdot \bar{H}_{1}, I^{n+1} \cdot \bar{H}_{-1}, I^{n}, I^{n+1}, I^{n} \cdot \bar{h}_{1}, I^{n+2} \cdot \bar{h}_{1}\right)$ are colinear.
4. $P_{1} \cdot H_{1} \cdot\left(a, e, e^{\prime}, k, o\right)=\left(G, H_{1}, I \cdot H_{1}, I \cdot \bar{H}_{1}, I \cdot \bar{H}_{2}\right)$ are colinear. Note that $H_{1}=M$ is the Gergonne point of a triangle.
$4^{\prime} . I^{n} \cdot(4)=\left(I^{n}, I^{n} \cdot H_{1}, I^{n+1} \cdot H_{1}, I^{n+1} \cdot \bar{H}_{1}, I^{n+1} \cdot \bar{H}_{2}\right)$ are colinear. If $n=-1$, we see that $\left(\bar{I}, \bar{I} \cdot H_{1}=\bar{I} \cdot M, H_{1}=M, \bar{H}_{1}=N, \bar{H}_{2}=\bar{H}\right)$ are colinear. This line is parallel to line $I \cdot(3)=\left(I \cdot \bar{H}_{1}, I^{2} \cdot \bar{H}_{-1}, I, I^{2}, I \cdot \bar{h}_{1}, I^{3} \cdot \bar{h}_{1}\right)$.
5. $P_{1} \cdot H_{2} \cdot\left(b, e, e^{\prime}, o\right)=\left(\bar{h}_{1}, H_{2}, I \cdot H_{2}, I \cdot \bar{H}_{1}\right)$ are colinear.
$5^{\prime} . I^{n} \cdot(5)=\left(I^{n} \cdot \bar{h}_{1}, I^{n} \cdot H_{2}, I^{n+1} \cdot H_{2}, I^{n+1} \cdot \bar{H}_{1}\right)$ are colinear. When $n=-1$ we have $\bar{I} \cdot(5)=$ $\left(\bar{I} \cdot \bar{h}_{1}, \bar{I} \cdot H_{2}, H_{2}, \bar{H}_{1}\right)=\left(\bar{I}^{\prime} \cdot \bar{h}_{1}, \bar{I} \cdot H, H, N\right)$.

This line is parallel to the line $I \cdot(4)=\left(I, I \cdot H_{1}, I^{2} \cdot H_{1}, I^{2} \cdot \bar{H}_{1}, I^{2} \cdot \bar{H}_{2}\right)$.
6. $P_{1} \cdot h_{1} \cdot H_{1} \cdot\left(a, f, f^{\prime}\right)=\left(h_{1}, H_{1}, I^{2} \cdot H_{1}\right)$ are colinear.
$6^{\prime} . I^{n} \cdot(6)=\left(I^{n} \cdot h_{1}, I^{n} \cdot H_{1}, I^{n+2} \cdot H_{1}\right)$ are colinear.
7. $P_{1} \cdot h_{1} \cdot h_{2} \cdot\left(d, d^{\prime}, f, f^{\prime}, h, h^{\prime}, j, j^{\prime}\right)=\left(\bar{H}_{4}, I^{4} \cdot \bar{H}_{-4}, h_{2}, I^{2} \cdot h_{2}, G, I^{4}, \bar{h}_{4}, I^{8} \cdot \bar{h}_{4}\right)$ are colinear.
$7^{\prime} . I^{n} \cdot(7)=\left(I^{n} \cdot \bar{H}_{4}, I^{n+4} \cdot \bar{H}_{-4}, I^{n} \cdot h_{2}, I^{n+2} \cdot h_{2}, I^{n}, I^{n+4}, I^{n} \cdot \bar{h}_{4}, I^{n+8} \cdot \bar{h}_{4}\right)$ are colinear.
8. $P_{1} \cdot h_{1} \cdot H_{4} \cdot\left(d, f, f^{\prime}, p\right)=\left(\bar{h}_{2}, H_{4}, I^{2} \cdot H_{4}, I^{2} \cdot \bar{H}_{2}\right)$ are colinear.
$8^{\prime} . I^{n} \cdot(8)=\left(I^{n} \cdot \bar{h}_{2}, I^{n} \cdot H_{4}, I^{n+2} \cdot H_{4}, I^{n+2} \cdot \bar{H}_{2}\right)$ are colinear.
9. $P_{3} \cdot\left(c, c^{\prime}, g, g^{\prime}, i, i^{\prime}\right)=\left(\bar{H}_{3}, I^{3} \cdot \bar{H}_{-3}, G, I^{3}, \bar{h}_{3}, I^{6} \cdot \bar{h}_{3}\right)$ are colinear.
$9^{\prime} . I^{n} \cdot(9)=\left(I^{n} \cdot \bar{H}_{3}, I^{n+3} \cdot \bar{H}_{-3}, I^{n}, I^{n+3}, I^{n} \cdot \bar{h}_{3}, I^{n+6} \cdot \bar{h}_{3}\right)$ are colinear.
10. $P_{3} \cdot H_{3} \cdot\left(c, g, g^{\prime}, m\right)=\left(G, H_{3}, I^{3} \cdot H_{3}, I^{3} \cdot \bar{H}_{3}\right)$ are colinear.
$10^{\prime} . I^{n} \cdot(10)=\left(I^{n}, I^{n} \cdot H_{3}, I^{n+3} \cdot H_{3}, I^{n+3} \cdot \bar{H}_{3}\right)$ are colinear.
11. $P_{1} \cdot h_{1} \cdot H_{-1} \cdot\left(a^{\prime}, f, f^{\prime}\right)=\left(I \cdot h_{1}, H_{-1}, I^{2} \cdot H_{-1}\right)$ are colinear.
$11^{\prime} . I^{n} \cdot(11)=\left(I^{n+1} \cdot h_{1}, I^{n} \cdot H_{-1}, I^{n+2} \cdot H_{-1}\right)$ are colinear.
12. $P_{1} \cdot h_{1} \cdot H_{-2} \cdot\left(b^{\prime}, f, f^{\prime}, l^{\prime}, p^{\prime}\right)=\left(I^{2}, H_{-2}, I^{2} \cdot H_{-2}, \bar{H}_{-2}, \bar{H}_{-4}\right)$ are colinear.
$12^{\prime} . I^{n} \cdot(12)=\left(I^{n+2}, I^{n} \cdot H_{-2}, I^{n+2} \cdot H_{-2}, I^{n} \cdot \bar{H}_{-2}, I^{n} \cdot \bar{H}_{-4}\right)$ are colinear.
13. $P_{1} \cdot h_{1} \cdot h_{2} \cdot H_{4} \cdot\left(d, h, h^{\prime}, n\right)=\left(G, H_{4}, I^{4} \cdot H_{4} \cdot I^{4} \cdot \bar{H}_{4}\right)$ are colinear.
$13^{\prime} . I^{n} \cdot(13)=\left(I^{n}, I^{n} \cdot H_{4}, I^{n+4} \cdot H_{4}, I^{n+4} \cdot \bar{H}_{4}\right)$ are colinear.
14. $P_{1} \cdot H_{-2} \cdot\left(b^{\prime}, e, e^{\prime}, o^{\prime}\right)=\left(I^{2} \cdot \bar{h}_{1}, H_{-2}, I \cdot H_{-2}, \bar{H}_{-1}\right)$ are colinear.
$14^{\prime} . I^{n} \cdot(14)=\left(I^{n+2} \cdot \bar{h}_{1}, I^{n} \cdot H_{-2}, I^{n+1} \cdot H_{-2}, I^{n} \cdot \bar{H}_{-1}\right)$ are colinear.
15. $P_{1} \cdot h_{1} \cdot h_{2} \cdot h_{4} \cdot\left(h, h^{\prime}, j, j^{\prime}\right)=\left(h_{4}, I^{4} \cdot h_{4}, G, I^{8}\right)$ are colinear.
$15^{\prime} . I^{n} \cdot(15)=\left(I^{n} \cdot h_{4}, I^{n+4} \cdot h_{4}, I^{n}, I^{n+8}\right)$ are colinear.
16. $P_{3} \cdot h_{3} \cdot\left(g, g^{\prime}, i, i^{\prime}\right)=\left(h_{3}, I^{3} \cdot h_{3}, G, I^{6}\right)$ are colinear.
$16^{\prime} . I^{n} \cdot(16)=\left(I^{n} \cdot h_{3}, I^{n+3} \cdot h_{3}, I^{n}, I^{n+6}\right)$ are colinear.
17. $P_{1} \cdot h_{1} \cdot h_{2} \cdot H_{-4} \cdot\left(d^{\prime}, h, h^{\prime}, n^{\prime}\right)=\left(I^{4}, H_{-4}, I^{4} \cdot H_{-4}, \bar{H}_{-4}\right)$ are colinear.
$17^{\prime} . I^{n} \cdot(17)=\left(I^{n+4}, I^{n} \cdot H_{-4}, I^{n+4} \cdot H_{-4}, I^{n} \cdot \bar{H}_{-4}\right)$ are colinear.
18. $P_{3} \cdot H_{-3} \cdot\left(c^{\prime}, g, g^{\prime}, m^{\prime}\right)=\left(I^{3}, H_{-3}, I^{3} \cdot H_{-3}, \bar{H}_{-3}\right)$ are colinear.

18'. $I^{n} \cdot(18)=\left(I^{n+3}, I^{n} \cdot H_{-3}, I^{n+3} \cdot H_{-3} \cdot I^{n} \cdot \bar{H}_{-3}\right)$ are colinear.
19. $P_{1} \cdot H_{-1} \cdot\left(a^{\prime}, e, e^{\prime}, k^{\prime}, o^{\prime}\right)=\left(I, H_{-1}, I \cdot H_{-1}, \bar{H}_{-1}, \bar{H}_{-2}\right)$ are colinear.
$19^{\prime} . I^{n} \cdot(19)=\left(I^{n+1}, I^{n} \cdot H_{-1}, I^{n+1} \cdot H_{-1}, I^{n} \cdot \bar{H}_{-1}, I^{n} \cdot \bar{H}_{-2}\right)$ are colinear.
20. $P_{1} \cdot h_{1} \cdot H_{-4} \cdot\left(d^{\prime}, f, f^{\prime}, p^{\prime}\right)=\left(I^{4} \cdot \bar{h}_{2}, H_{-4}, I^{2} \cdot H_{-4}, \bar{H}_{-2}\right)$ are colinear.
$20^{\prime} . I^{n} \cdot(20)=\left(I^{n+4} \cdot \bar{h}_{2}, I^{n} \cdot H_{-4}, I^{n+2} \cdot H_{-4}, I^{n} \cdot \bar{H}_{-2}\right)$ are colinear.
21. $P_{1} \cdot h_{1} \cdot h_{2} \cdot H_{-2} \cdot\left(b^{\prime}, h, h^{\prime}\right)=\left(I^{2} \cdot h_{2}, H_{-2}, I^{4} \cdot H_{-2}\right)$ are colinear.
$21^{\prime} . I^{n} \cdot(21)=\left(I^{n+2} \cdot h_{2}, I^{n} \cdot H_{-2}, I^{n+4} \cdot H_{-2}\right)$ are colinear.
22. $P_{1} \cdot h_{1} \cdot h_{2} \cdot h_{4} \cdot H_{-4} \cdot\left(d^{\prime}, j, j^{\prime}\right)=\left(I^{4} \cdot h_{4}, H_{-4}, I^{8} \cdot H_{-4}\right)$ are colinear.
$22^{\prime} . I^{n} \cdot(22)=\left(I^{n+4} \cdot h_{4}, I^{n} \cdot H_{-4}, I^{n+8} \cdot H_{-4}\right)$ are colinear.
23. $P_{3} \cdot h_{3} \cdot H_{-3} \cdot\left(c^{\prime}, i, i^{\prime}\right)=\left(I^{3} \cdot h_{3}, H_{-3}, I^{6} \cdot H_{-3}\right)$ are colinear.
$23^{\prime} . I^{n} \cdot(23)=\left(I^{n+3} \cdot h_{3}, I^{n} \cdot H_{-3}, I^{n+6} \cdot H_{-3}\right)$ are colinear.
24. $P_{1} \cdot h_{1} \cdot h_{2} \cdot H_{2} \cdot\left(b, h, h^{\prime}\right)=\left(h_{2}, H_{2}, I^{4} \cdot H_{2}\right)$ are colinear.
$24^{\prime} . I^{n} \cdot(24)=\left(I^{n} \cdot h_{2}, I^{n} \cdot H_{2}, I^{n+4} \cdot H_{2}\right)$ are colinear.
25. $P_{3} \cdot h_{3} \cdot H_{3} \cdot\left(c, i, i^{\prime}\right)=\left(h_{3}, H_{3}, I^{6} \cdot H_{3}\right)$ are colinear.
$25^{\prime} . I^{n} \cdot(25)=\left(I^{n} \cdot h_{3}, I^{n} \cdot H_{3}, I^{n+6} \cdot H_{3}\right)$ are colinear.
26. $P_{1} \cdot h_{1} \cdot h_{2} \cdot h_{4} \cdot H_{4} \cdot\left(d, j, j^{\prime}\right)=\left(h_{4}, H_{4}, I^{8} \cdot H_{4}\right)$ are colinear.
$26^{\prime} . I^{n} \cdot(26)=\left(I^{n} \cdot h_{4}, I^{n} \cdot H_{4}, I^{n+8} \cdot H_{4}\right)$ are colinear.
27. $P_{1} \cdot h_{2} \cdot\left(e, e^{\prime}, h, h^{\prime}\right)=\left(h_{2}, I \cdot h_{2}, \bar{h}_{1}, I^{4} \cdot \bar{h}_{1}\right)$ are colinear.
$27^{\prime} . I^{n} \cdot(27)=\left(I^{n} \cdot h_{2}, I^{n+1} \cdot h_{2}, I^{n} \cdot \bar{h}_{1}, I^{n+4} \cdot \bar{h}_{1}\right)$ are colinear.
28. $P_{1} \cdot h_{1} \cdot h_{4} \cdot\left(f, f^{\prime}, j, j^{\prime}\right)=\left(h_{4}, I^{2} \cdot h_{4}, \bar{h}_{2}, I^{8} \cdot \bar{h}_{2}\right)$ are colinear.
$28^{\prime} . I^{n} \cdot(28)=\left(I^{n} \cdot h_{4}, I^{n+2} \cdot h_{4}, I^{n} \cdot \bar{h}_{2}, I^{n+8} \cdot \bar{h}_{2}\right)$ are colinear.

11 Using the 32 Points on $(-1,-1,-1)$ in Unusual Ways

As we learn more about the triangle, we will discover unusual ways to use the 32 points on the line $(-1,-1,-1)$. We now give an example. Suppose $\triangle D E F$ is the orthic triangle of $\triangle A B C$ and let $M_{D E F}$ be the Gergonne point of $\triangle D E F$. Using techniques similar to this paper, we can show $M_{D E F}=I^{2} \cdot \overline{h_{2}} \cdot H_{2}=\theta\left(h_{2} \cdot \overline{H_{2}}\right)$ where H_{2}, h_{2} are the orthocenter and little orthocenter of triangle $A B C$. Using the 32 points $a, a^{\prime}, b, b^{\prime}, \ldots, p, p^{\prime}$ on $(-1,-1,-1)$, we can now compute points on the Euler line of section 10 by $P_{1} \cdot h_{1} \cdot H_{2} \cdot\left(b, f, f^{\prime}, l, p, h=\overline{P_{1}} \cdot \overline{h_{1}} \cdot \overline{h_{2}}\right)=$ $\left(G, H_{2}, I^{2} \cdot H_{2}, I^{2} \cdot \overline{H_{2}}, I^{2} \cdot \overline{H_{4}}, \overline{h_{2}} \cdot H_{2}=\bar{I}^{2} \cdot M_{D E F}\right)$. Now, $\bar{I}^{2} \cdot M_{D E F}=\overline{\theta\left(M_{D E F}\right)}$ where $\overline{\theta\left(M_{D E F}\right)}$ is the isotomic conjugate of the isogonal conjugate of $M_{D E F}$. Thus $\overline{\theta\left(M_{D E F}\right)}$ lies on the Euler line of $\triangle A B C$.

12 Concluding Remarks

By considering other triangles in addition to the medial and anti- complementary triangles and also by allowing both $n, m \in Z$ in $I^{n}, I^{n} \cdot h_{m}, I^{n} \cdot \bar{h}_{m}, I^{n} \cdot H_{m}, I^{n} \cdot \bar{H}_{m}$ of Section 10 it is simple and straightforward to vastly expand the collection of colinear points given in Section 10. This means that the material in Section 10 is not even remotely close to being exhaustive. Another problem is to find more points on the Euler line. We are also researching the infinite number of perpendicular and parallel lines that exist in the triangle as well as other types of points. As one example, if $P(r, s, t), r s t=1$, is a point, then the harmonic associates of $P(r, s, t)$ are the points $P_{a}(r,-s,-t), P_{b}(-r, s,-t), P_{c}(-r,-s, t)$. We are also researching the different substitution $(f(a, b, c), g(a, b, c), h(a, b, c))$ that we can use for (a, b, c). We conclude with the following example. We can show that line $I H$ is parallel to line $N, \phi(H)$. Also, these two parallel lines are perpendicular to the harmonic axis of each of $N, \overline{\phi(M)}, \overline{\phi(N)}, \phi(O)$. This example also illustrates how the basic conjugate ϕ keep appearing in the triangle.

References

[1] Court, Nathan A. College Geometry, Barnes and Noble, Inc., New York, 1963.

