Using Complex Weighted Centroids to Create Homothetic Polygons

Harold Reiter
Department of Mathematics, University of North Carolina Charlotte, Charlotte, NC 28223, USA
hbreiter@email.uncc.edu
Arthur Holshouser
3600 Bullard St.
Charlotte, NC 28208, USA

1 Abstract

After first defining weighted centroids that use complex arithmetic, we then make a simple observation which proves Theorem 1. We next define complex homothecy.

We then show how to apply this theory to triangles (or polygons) to create endless numbers of homothetic triangles (or polygon).

The first part of the paper is fairly standard. However, in the final part of the paper, we give two examples which illustrate that examples can easily be given in which the simple basic underpinning is so disguised that it is not at all obvious. Also, the entire paper is greatly enhanced by the use of complex arithmetic.

2 Introduction to the Basic Theory

Suppose A, B, C, x, y are complex numbers that satisfy $x A+y B=C, x+y=1$. It easily follows that $A+y(B-A)=C$ and $x(A-B)+B=C$. This simple observation with its geometric interpretation is the basis of this paper.

Definition 1 Suppose $M_{1}, M_{2}, \cdots, M_{m}$ are points in the complex plane and $k_{1}, k_{2}, \cdots, k_{m}$ are complex numbers that satisfy $\sum_{i=1}^{m} k_{i}=1$. Of course, each complex point M_{i} is also a
complex number. The weighted centroid of these complex points $\left\{M_{1}, M_{2}, \cdots, M_{m}\right\}$ with respect to $\left\{k_{1}, k_{2}, \cdots, k_{m}\right\}$ is a complex point G_{M} defined by $G_{M}=\sum_{i=1}^{m} k_{i} M_{i}$.

The complex numbers $k_{1}, k_{2}, \cdots, k_{m}$ are called weights and in the notation G_{M} it is always assumed that the reader knows what these weights are.

If $k_{1}, k_{2}, \cdots, k_{m}, \bar{k}_{1}, \bar{k}_{2}, \cdots, \bar{k}_{n}$ are complex numbers, we denote the sums $S_{k}=\sum_{i=1}^{m} k_{i}, S_{\bar{k}}=$ $\sum_{i=1}^{n} \bar{k}_{i}$.

Suppose $M_{1}, M_{2}, \cdots, M_{m}, \bar{M}_{1}, \bar{M}_{2}, \cdots, \bar{M}_{n}$ are points in the complex plane.
Also, $k_{1}, k_{2}, \cdots, k_{m}, \bar{k}_{1}, \bar{k}_{2}, \cdots, \bar{k}_{n}$ are complex numbers that satisfy $\sum_{i=1}^{m} k_{i}+\sum_{i=1}^{n} \bar{k}_{i}=1$. Thus, $S_{k}+S_{\bar{k}}=1$.

Denote $G_{M \cup \bar{M}}=\sum_{i=1}^{m} k_{i} M_{i}+\sum_{i=1}^{n} \bar{k}_{i} \bar{M}_{i}$.
Thus, $G_{M \cup \bar{M}}$ is the weighted centroid of $\left\{M_{1}, \cdots, M_{m}, \bar{M}_{1}, \cdots, \bar{M}_{n}\right\}$ with respect to the weights $\left\{k_{1}, \cdots, k_{m}, \bar{k}_{1}, \cdots, \bar{k}_{n}\right\}$.

It is obvious that $\sum_{i=1}^{m} \frac{k_{i}}{S_{k}}=1$ and $\sum_{i=1}^{n} \frac{\bar{k}_{i}}{S_{\bar{k}}}=1$.
Denote $G_{M}=\sum_{i=1}^{m} \frac{k_{i}}{S_{k}} M_{i}$ and $G_{\bar{M}}=\sum_{i=1}^{n} \frac{\bar{k}_{i}}{S_{\bar{k}}} \overline{M_{i}}$.
Thus, G_{M} is the weighted centroid of $\left\{M_{1}, M_{2}, \cdots, M_{m}\right\}$ with respect to the weights $\left\{\frac{k_{1}}{S_{k}}, \frac{k_{2}}{S_{k}}, \cdots, \frac{k_{m}}{S_{k}}\right\}$ and $G_{\bar{M}}$ is the weighted centroid of $\left\{\bar{M}_{1}, \bar{M}_{2}, \cdots, \bar{M}_{n}\right\}$ with respect to the weights $\left\{\frac{\bar{k}_{1}}{S_{\bar{k}}}, \frac{\bar{k}_{2}}{S_{\bar{k}}}, \cdots, \frac{\bar{k}_{n}}{S_{\bar{k}}}\right\}$.

As always, these weights are understood in the notation $G_{M}, G_{\bar{M}}$.
Since $G_{M \cup \bar{M}}=\sum_{i=1}^{m} k_{i} M_{i}+\sum_{i=1}^{n} \bar{k}_{i} \bar{M}_{i}=S_{k} \cdot \sum_{i=1}^{m} \frac{k_{i}}{S_{k}} M_{i}+S_{\bar{k}} \cdot \sum_{i=1}^{n} \frac{\bar{k}_{i}}{S_{\bar{k}}} \bar{M}_{i}$ it is obvious that $(*)$ is true.
$(*) S_{k} \cdot G_{M}+S_{\bar{k}} \cdot G_{\bar{M}}=G_{M \cup \bar{M}}$ where $S_{k}+S_{\bar{k}}=1$.
From equation $(*)$ and $S_{k}+S_{\bar{k}}=1$ it is easy to see that (1) and (2) are true.
(1) $G_{M}+S_{\bar{k}}\left(G_{\bar{M}}-G_{M}\right) \equiv G_{M \cup \bar{M}}$.
(2) $G_{\bar{M}}+S_{k}\left(G_{M}-G_{\bar{M}}\right) \equiv G_{M \cup \bar{M}}$.

3 Basic Theorem

The identity $(*) S_{k} \cdot G_{M}+S_{\bar{k}} \cdot G_{\bar{M}}=G_{M \cup \bar{M}}$, where $S_{k}+S_{\bar{k}}=1$, and the formula (1) $G_{M}+S_{\bar{k}}\left(G_{\bar{M}}-G_{M}\right)=G_{M \cup \bar{M}}$ of Section 2 proves the following Theorem 1.

Theorem 1 Suppose $M_{1}, M_{2}, \cdots, M_{m}, \bar{M}_{1}, \bar{M}_{2}, \cdots, \bar{M}_{n}$ are points in the complex plane.
Also, suppose $P=\sum_{i=1}^{m} k_{i} M_{i}+\sum_{i=1}^{n} \bar{k}_{i} \bar{M}_{i}$ where $k_{1}, \cdots k_{m}, \bar{k}_{1}, \cdots, \bar{k}_{n}$ are complex numbers that satisfy $\sum_{i=1}^{m} k_{i}+\sum_{i=1}^{n} \bar{k}_{i}=1$.

Then there exists complex numbers $x_{1}, x_{2}, \cdots, x_{m}$ where $\sum_{i=1}^{m} x_{i}=1$ and there exists complex numbers $y_{1}, y_{2}, \cdots, y_{n}$ where $\sum_{i=1}^{n} y_{i}=1$ and there exists a complex number z such that the following is true.

1. $x_{1}, \cdots, x_{m}, y_{1}, \cdots, y_{n}, z$ are rational function of $k_{1}, \cdots, k_{m}, \bar{k}_{1}, \cdots, \bar{k}_{n}$.
2. $P=Q+z(R-Q)$ where Q, R are defined by $Q=\sum_{i=1}^{m} x_{i} M_{i}, R=\sum_{i=1}^{n} y_{i} \bar{M}_{i}$.

As we illustrate in Section 6, the values of $x_{1}, \cdots x_{m}, y_{1}, \cdots, y_{n}, z$ as rational functions of $k_{1}, k_{2}, \cdots, k_{m}, \bar{k}_{1}, \bar{k}_{2}, \cdots, \bar{k}_{n}$ can be computed adhoc from any specific situation that we face in practice. We observe that Q is the weighted centroid of the complex points $M_{1}, M_{2}, \cdots, M_{m}$ using the weights $x_{1}, x_{2}, \cdots, x_{m}$ and R is the weighted centroid of the complex points $\bar{M}_{1}, \bar{M}_{2}, \cdots, \bar{M}_{n}$ using the weights $y_{1}, y_{2}, \cdots, y_{n}$. Of course, Theorem 1 is completely standard.

4 Complex Homothecy

If A, B are points in the complex plane, we denote $A B=B-A$. This also means that $A B$ is the complex vector from A to B. Also, we define $|A B|$ to be the length of this vector $A B$. If k is any complex number, then $k=r(\cos \theta+i \sin \theta), r \geq 0$, is the polar form of k. It is assumed that the reader knows that $[r(\cos \theta+i \sin \theta)] \cdot[\bar{r}(\cos \phi+i \sin \phi)]=$ $r \cdot \bar{r}(\cos (\theta+\phi)+i \sin (\theta+\phi))$.

Suppose S, P, \bar{P} where $S \neq P, S \neq \bar{P}$ are points in the complex plane and $k=r(\cos \theta+i \sin \theta)$, $r>0$, is a non-zero complex number. Also, suppose $S \bar{P}=k(S P)$ whereas always $S \bar{P}=$ $\bar{P}-S$ and $S P=P-S$. Since $S \bar{P}=k(S P)=[r(\cos \theta+i \sin \theta)] \cdot(S P)=(\cos \theta+i \sin \theta)$. $[r \cdot(S P)]$, we see that the complex vector $S \bar{P}$ can be constructed from the complex vector $S P$ in the following two steps.

First, we multiply the vector $S P$ by the positive real number (or scale factor) r to define a new vector, $S P^{\prime}=r \cdot(S P)$. Since $S P^{\prime}=P^{\prime}-S$, the new point P^{\prime} is colinear with S and
P with P, P^{\prime} lying on the same side of S and $\left|S P^{\prime}\right|=r \cdot|S P|$.
Next, we rotate the vector $S P^{\prime}$ by θ radians counterclockwise about the origin O as the axis to define the final vector $S \bar{P}$. Of course, the final point \bar{P} itself is computed by rotating the point P^{\prime} by θ radians counterclockwise about the axis S. If A, B, C, x, y are complex and $x A+y B=C, x+y=1$, then $A+y(B-A)=C$. Therefore, $A C=y \cdot A B$ and if $y=r(\cos \theta+i \sin \theta), r \geq 0$, we see how to construct the point C.

From this construction, the following is obvious. Suppose $S \neq P$ are arbitrary variable points in the complex plane and $S \bar{P}=k \cdot(S P)$ where $k \neq 0$ is a fixed complex number.

Then the triangles $\triangle S P \bar{P}$ will always have the same geometric shape (up to similarity) since $\angle P S \bar{P}=\theta$ and $|S \bar{P}|:|S P|=r: 1$ when $k=r(\cos \theta+i \sin \theta), r>0$. Next, let us suppose that the complex triangles $\triangle A B C$ and $\triangle \overline{A B C}$ and the complex point S are related as follows. $S \bar{A}=k \cdot(S A), S \bar{B}=k \cdot(S B), S \bar{C}=k \cdot(S C)$ where $k \neq 0$ is some fixed complex number.

We call this relation complex homothecy (or complex similitude). Also, S is the center of homothecy (or similitude) and k is the homothetic ratio (or ratio of similitude). When k is real we have the usual homothecy of two triangle. Of course, for both real or complex k, it is fairly obvious that $\triangle A B C$, and $\triangle \overline{A B C}$ are always geometrically similar and $\frac{|\overline{A B}|}{|A B|}=$ $\frac{|\overline{A C}|}{|A C|}=\frac{|\overline{B C}|}{|B C|}=|k|$.

Of course, this same definition of complex homothecy also holds for two polygons $A B C D E, \cdots$ and $\bar{A} \bar{B} \bar{C} \bar{D} \bar{E}, \ldots$

5 Using Theorem 1 to Create Endless Homothetic Triangles

Let $M_{1}, M_{2}, \cdots, M_{m}, \bar{M}_{a 1}, \bar{M}_{a 2}, \cdots, \bar{M}_{a n}, \bar{M}_{b 1}, \bar{M}_{b 2}, \cdots, \bar{M}_{b n}, \bar{M}_{c 1}, \bar{M}_{c 2}, \cdots, \bar{M}_{c n}$ be any points in the plane.

As a specific example of this, we could start with a triangle $\triangle A B C$ and let $M_{1}, M_{2}, \cdots, M_{m}$ be any fixed points in the plane of $\triangle A B C$ such as the centroid, orthocenter, Lemoine point, incenter, Nagel point, etc.

Also, $\bar{M}_{a 1}, \cdots, \bar{M}_{a n}$ are fixed points that have some relation to side $B C . \bar{M}_{b 1}, \cdots, \bar{M}_{b n}$ are fixed points that have some relation to side $A C$ and $\bar{M}_{c 1}, \cdots, \bar{M}_{c n}$ are fixed points that have some relation to side $A B$.

Let $k_{1}, k_{2}, \cdots, k_{m}, \bar{k}_{1}, \bar{k}_{2}, \cdots, \bar{k}_{n}$ be arbitrary but fixed complex numbers that satisfy $\sum_{i=1}^{m} k_{i}+\sum_{i=1}^{n} \bar{k}_{i}=1$.

Define points P_{a}, P_{b}, P_{c} as follows.

1. $P_{a}=\sum_{i=1}^{m} k_{i} M_{i}+\sum_{i=1}^{n} \bar{k}_{i} \bar{M}_{a i}$.
2. $P_{b}=\sum_{i=1}^{m} k_{i} M_{i}+\sum_{i=1}^{n} \bar{k}_{i} \bar{M}_{b i}$.
3. $P_{c}=\sum_{i=1}^{m} k_{i} M_{i}+\sum_{i=1}^{n} \bar{k}_{i} \bar{M}_{c i}$.

Note that these points P_{a}, P_{b}, P_{c} are being defined in an analogous way. From Theorem 1, there exists complex numbers $x_{1}, x_{2}, \cdots, x_{m}$ where $\sum_{i=1}^{m} x_{i}=1$ and there exists complex numbers $y_{1}, y_{2}, \cdots, y_{n}$ where $\sum_{i=1}^{n} y_{i}=1$ and there exists a complex number z such that the following is true.

1. $x_{1}, \cdots, x_{m}, y_{1}, y_{2}, \cdots, y_{n}, z$ are rational functions of $k_{1}, \cdots, k_{m} \bar{k}_{1}, \cdots, \bar{k}_{n}$.
2. $P_{a}=Q+z\left(R_{a}-Q\right)$,

$$
\begin{aligned}
P_{b} & =Q+z\left(R_{b}-Q\right), \\
R_{c} & =P+z\left(R_{c}-Q\right) \text { where } \\
Q & =\sum_{i=1}^{m} x_{i} M_{i}, \\
R_{a} & =\sum_{i=1}^{n} y_{i} \bar{M}_{a i}, \\
R_{b} & =\sum_{i=1}^{n} y_{i} \bar{M}_{b i}, \\
R_{c} & =\sum_{i=1}^{n} y_{i} \bar{M}_{c i},
\end{aligned}
$$

Equation 2 implies that Equation 3 is true since for example $P_{a}-Q=Q P_{a}$.
3. $Q P_{a}=z \cdot\left(Q R_{a}\right)$,
$Q P_{b}=z \cdot\left(Q R_{b}\right)$,
$Q P_{c}=z \cdot\left(Q R_{c}\right)$.
From Section 4, Equation 3 implies that $\triangle P_{a} P_{b} P_{c}$ is homothetic to $\triangle R_{a} R_{b} R_{c}$ with a center of homothecy Q and a ratio of homothecy $\frac{Q P_{a}}{Q R_{a}}=\frac{Q P_{b}}{Q R_{b}}=\frac{Q P_{c}}{Q R_{c}}=z$. Also, of course, $\triangle P_{a} P_{b} P_{c} \sim \triangle R_{a} R_{b} R_{c}$ with a ratio of similarity $\frac{\left|P_{a} P_{b}\right|}{\left|R_{a} R_{b}\right|}=\frac{\left|P_{a} P_{c}\right|}{\left|R_{a} R_{c}\right|}=\frac{\left|P_{b} P_{c}\right|}{\left|R_{b} R_{c}\right|}=|z|$.

In the above construction, we could lump some (but not all) of the points $\left\{M_{1}, M_{2}, \cdots, M_{m}\right\}$ with each of the three sets of points $\left\{\bar{M}_{a 1}, \cdots, \bar{M}_{a n}\right\},\left\{\bar{M}_{b 1}, \cdots, \bar{M}_{b n}\right\},\left\{\bar{M}_{c 1}, \cdots, \bar{M}_{c n}\right\}$.

For example, we could deal with the four sets $\left\{M_{2}, \cdots, M_{m}\right\},\left\{M_{1}, \bar{M}_{a 1}, \cdots, \bar{M}_{a n}\right\}$, $\left\{M_{1}, \bar{M}_{b 1}, \cdots, \bar{M}_{b n}\right\},\left\{M_{1}, \bar{M}_{c 1}, \cdots, \bar{M}_{c n}\right\}$. We then use the same formulas as above and we have $Q P_{a}=z \cdot\left(Q R_{a}\right), Q P_{b}=z \cdot\left(Q R_{b}\right), Q P_{c}=z \cdot\left(Q R_{c}\right)$ where now $Q=\sum_{i=2}^{m} x_{i} M_{i}, R_{a}=$ $\left(\sum_{i=1}^{n} y_{i} \bar{M}_{a i}\right)+y_{n+1} M_{1}, R_{b}=\left(\sum_{i=1}^{n} y_{i} \bar{M}_{b i}\right)+y_{n+1} M_{1}, R_{c}=\left(\sum_{i=1}^{n} y_{i} \bar{M}_{c i}\right)+y_{n+1} M_{1}$ where $\sum_{i=2}^{m} x_{i}=1, \sum_{i=1}^{n+1} y_{i}=1$.

As we illustrate in Section 7, by redefining our four sets $\left\{M_{i}\right\},\left\{\bar{M}_{a i}\right\},\left\{\bar{M}_{b i}\right\},\left\{\bar{M}_{c i}\right\}$ in different ways, we can vastly expand our collections of homothetic triangles.

6 Two Specific Examples

Problem 1

Suppose $\triangle A B C$ lies in the complex plane. In $\triangle A B C$ let $A D, B E, C F$ be the altitudes to sides $B C, A C, A B$ respectively, where the points D, E, F lie on sides $B C, A C, A B$. The $\triangle D E F$ is called the orthic triangle of $\triangle A B C$. The three altitudes $A D, B E, C F$ always intersect at a common point H which is called the orthocenter of $\triangle A B C$. Also, let O be the circumcenter of $\triangle A B C$ and let $A^{\prime}, B^{\prime}, C^{\prime}$ denote the midpoints of sides $B C, A C, A B$ respectively. The line $H O$ is called the Euler line of $\triangle A B C$. Define the points P_{a}, P_{b}, P_{c} as follows where k, e, m, n, r are fixed real numbers.

1. $A P_{a}=k \cdot A H+e \cdot H D+m \cdot A O+n \cdot A A^{\prime}+r \cdot O A^{\prime}$.
2. $B P_{b}=k \cdot B H+e \cdot H E+m \cdot B O+n \cdot B B^{\prime}+r \cdot O B^{\prime}$.
3. $C P_{c}=k \cdot C H+e \cdot H F+m \cdot C O+n \cdot C C^{\prime}+r \cdot O C^{\prime}$.

Show that there exists a point Q on the Euler line $H O$ of $\triangle A B C$ and there exists a point R_{a} on side $B C$, a point R_{b} on side $A C$, a point R_{c} on side $A B$ and there exists a real number z such that $\triangle P_{a} P_{b} P_{c}$ and $\triangle R_{a} R_{b} R_{c}$ are homothetic with center of homothecy Q and real ratio of homothecy $\frac{Q P_{a}}{Q R_{a}}=\frac{Q P_{b}}{Q R_{b}}=\frac{Q P_{c}}{Q R_{c}}=z$.

We can also show that there exists a point S on the Euler line $O H$ such that this $\triangle R_{a} R_{b} R_{c}$ is the pedal triangle of S for $\triangle A B C$ where the pedal triangle is formed by the feet of the three perpendiculars from S to sides $B C, A C, B C$.

Solution We first deal with equation (1) given in Problem 1. Equations (2), (3) give analogous results.

Since $A P_{a}=P_{a}-A, A H=H-A, H D=D-A$, etc, we see that equation (1) is equivalent to $P_{a}-A=k(H-A)+e(D-H)+m(O-A)+n\left(A^{\prime}-A\right)+r\left(A^{\prime}-O\right)$. This is equivalent to $(* *)$.
$(* *) P_{a}=(1-k-m-n) A+(k-e) H+e D+(m-r) O+(n+r) A^{\prime}$.
From geometry, we know that $A H=2 \cdot O A^{\prime}, B H=2 \cdot O B^{\prime}, C H=2 \cdot O C^{\prime}$. Thus, $H-A=2\left(A^{\prime}-O\right)$ and $A=H+2\left(O-A^{\prime}\right)$.

Substituting this value for A in $n(* *)$ we have $P_{a}=(1-k-m-n)\left(H+2 O-2 A^{\prime}\right)+$ $(k-e) H+e D+(m-r) O+(n+r) A^{\prime}$.

This is equivalent to the following.

$$
P_{a}=(1-m-n-e) H+(2-2 k-m-2 n-r) O+e D+(-2+2 k+2 m+3 n+r) A^{\prime} .
$$

Calling $1-m-n-e=\theta, 2-2 k-m-2 n-r=\phi, e=\lambda,-2+2 k+2 m+3 n+r=\psi$, we have $P_{a}=\theta H+\phi O+\lambda D+\psi A^{\prime}$ where $\theta+\phi+\lambda+\psi=1$.

As in Theorem 1, we now lump H, O together and lump D, A^{\prime} together.
Therefore, $P_{a}=[\theta H+\phi O]+\left[\lambda D+\psi A^{\prime}\right]=(\theta+\phi)\left[\frac{\theta H}{\theta+\phi}+\frac{\phi O}{\theta+\phi}\right]+(\lambda+\psi)\left[\frac{\lambda D}{\lambda+\psi}+\frac{\psi A^{\prime}}{\lambda+\psi}\right]$.
Calling $\frac{\theta H}{\theta+\phi}+\frac{\phi O}{\theta+\phi}=Q, \frac{\lambda D}{\lambda+\psi}+\frac{\psi A^{\prime}}{\lambda+\psi}=R_{a}$, we have $P_{a}=(\theta+\phi) Q+(\lambda+\psi) R_{a}=$ $Q+(\lambda+\psi)\left(R_{a}-Q\right)=Q+z\left(R_{a}-Q\right)$ where $z=\lambda+\psi=-2+2 k+2 m+3 n+r+e$.

Of course, Q lies on the Euler line $H O$ and R_{a} lies on the side $B C$ since $\theta, \phi, \lambda, \psi$ are real.

By symmetry, equations (2), (3) yield the following analogous results.
$P_{b}=Q+z\left(R_{b}-Q\right)$ and $P_{c}=Q+z\left(P_{c}-Q\right)$ where $R_{b}=\frac{\lambda E}{\lambda+\psi}+\frac{\psi B^{\prime}}{\lambda+\psi}, R_{c}=\frac{\lambda F}{\lambda+\psi}+\frac{\psi C^{\prime}}{\lambda+\psi}$.
Of course, Q lies on the Euler line $H O, R_{a}$ lies on side $B C, R_{b}$ lies on side $A C$ and R_{c} lies on side $A B$.

Since $Q P_{a}=(\lambda+\psi)\left(Q R_{a}\right)=z \cdot Q R_{a}$,
$Q P_{b}=(\lambda+\psi)\left(Q R_{b}\right)=z \cdot Q R_{b}$,
$Q P_{c}=(\lambda+\psi)\left(Q R_{c}\right)=z \cdot Q R_{c}$,
we see that $\triangle R_{a} R_{b} R_{c} \sim \triangle P_{a} P_{b} P_{c}$ are homothetic with ratio of homothecy $\frac{Q P_{a}}{Q R_{a}}=\frac{Q P_{b}}{Q R_{b}}=$ $\frac{Q P_{c}}{Q R_{c}}=z$.

Also, $\triangle R_{a} R_{b} R_{c} \sim \triangle P_{a} P_{b} P_{c}$ with ratio of similarity $\frac{\left|P_{a} P_{b}\right|}{\left|R_{a} R_{b}\right|}=\frac{\left|P_{a} P_{c}\right|}{\left|R_{a} R_{c}\right|}=\frac{\left|P_{b} P_{c}\right|}{\left|R_{b} R_{c}\right|}=|z|$.
Since D, E, F lie at the feet of the perpendiculars $H D, H E, H F$ and since $A^{\prime}, B^{\prime}, C^{\prime}$ lie at the feet of the perpendiculars $O A^{\prime}, O B^{\prime}, O C^{\prime}$, it is easy to see that there exists a point S on the Euler line $H O$ such that $\triangle R_{a} R_{b} R_{c}$ is the pedal triangle of S with respect to $\triangle A B C$.

We now deal with a special case of Problem 1. In Problem 1, let $k=e, m=n=r=0$. Then $\theta=1-e=1-k, \phi=2-2 k, \lambda=k, \psi=-2+2 k$. Also, $\theta+\phi=3-3 k, \lambda+\psi=-2+3 k$.

Therefore, $Q=\frac{\theta H}{\theta+\phi}+\frac{\phi O}{\theta+\phi}=\frac{1}{3} H+\frac{2}{3} O$.
From geometry, we see that the center of homothecy is $Q=G$ where G is the centroid of $\triangle A B C$. Also, G is still the center of homothecy of $\triangle P_{a} P_{b} P_{c}$ and $\triangle R_{a} R_{b} R_{c}$ even for the case where k is complex.

Also, we see that $R_{a}=\frac{k D}{-2+3 k}+\frac{(-2+2 k) A^{\prime}}{-2+3 k}$.
Also, the ratio of homothecy is $z=-2+3 k$.
If we let $k=e=2, m=n=r=0$, we see that $R_{a}=\frac{1}{2} D+\frac{1}{2} A^{\prime}, R_{b}=\frac{1}{2} E+\frac{1}{2} B^{\prime}, R_{c}=$ $\frac{1}{2} F+\frac{1}{2} C^{\prime}$.

From geometry we know that the nine point center N of $\triangle A B C$ lies at the mid point of the line segment $H O$.

Therefore, if $k=e=2, m=n=r=0$, we see that $\triangle R_{a} R_{b} R_{c}$ is the pedal triangle of the nine point center N. Also, when $k=e=2, m=n=r=0$, we see that $\triangle P_{a} P_{b} P_{c}$ is geometrically just the (mirror) reflections of vertices A, B, C about the three sides $B C, A C, A B$ respectively. Also, the ratio of homothecy z is $z=-2+3 k=4$. Thus, $\triangle P_{a} P_{b} P_{c}$ is four times bigger than $\triangle R_{a} R_{b} R_{c}$.

Problem 2

Suppose $\triangle A B C$ lies in the complex plane. As in Problem 1, let $A D, B E, C F$ be the altitudes for sides $B C, A C, A B$ respectively where D, E, F lie on sides $A B, A C, B C$. Let I be the incenter of $\triangle A B C$ and let the incircle (I, r) be tangent to the sides $B C, A C, A B$ at the points X, Y, Z respectively.

Define the points P_{a}, P_{b}, P_{c} as follows.

1. $P_{a}=D+i(I X)$,
2. $P_{b}=E+i(I Y)$,
3. $P_{c}=F+i(I Z)$ where i is the unit imaginary.

We wish to find $\triangle R_{a} R_{b} R_{c}$ and a complex number z such that $\triangle P_{a} P_{b} P_{c}$ and $\triangle R_{a} R_{b} R_{c}$ are homothetic with a center of homothecy I and a complex ratio of homothecy $z=\frac{I P_{a}}{I R_{a}}=$ $\frac{I P_{b}}{I R_{b}}=\frac{I P_{b}}{I R_{b}}$.

Solution

We first study what $\triangle P_{a} P_{b} P_{c}$ is geometrically. First, we note that $i \cdot I X, i \cdot I Y, i \cdot I Z$ simply rotates the vectors $I X, I Y, I Z$ by 90° in the counterclockwise direction about the origin O as the axis. Also, we note that $|I X|=|X-I|=|I Y|=|Y-I|=|I Z|=|Z-I|=r$ where r is the radius of the inscribed circle (I, r).

Therefore, the points P_{a}, P_{b}, P_{c} lie on sides $B C, A C, A B$ respectively and the distance from D to P_{a} is r (going in the counterclockwise direction), the distance from E to P_{b} is r (going counterclockwise) and the distance from F to P_{c} is r (going counterclockwise).

We next analyze equation (1) in the problem. The analysis of equations (2), (3) is analogous.

Now equation (1) is equivalent to $P_{a}=D+i(X-I)=-i \cdot I+[i X+D]=-i \cdot I+$ $(1+i)\left[\frac{i X}{1+i}+\frac{D}{1+i}\right]$.

Obverse that $-i+(1+i)=1$ and $\frac{i}{1+i}+\frac{1}{1+i}=1$.
Define $R_{a}=\frac{i X}{1+i}+\frac{D}{1+i}=D+\frac{i}{1+i}(X-D)=D+\frac{i}{1+i}(D X)$ since $X-D=D X$.
Therefore, $D R_{a}=\frac{i}{1+i}(D X)=\left(\frac{1+i}{2}\right)(D X)$ since $R_{a}-D=D R_{a}$.
Also, $P_{a}=-i I+(1+i) R_{a}=I+(1+i)\left(R_{a}-I\right)$. Therefore, $I P_{a}=(1+i)\left(I R_{a}\right)$ since $P_{a}-I=I P_{a}$ and $R_{a}-I=I R_{a}$.

Therefore, by symmetry, we have the following equations.

1. $D R_{a}=\left(\frac{1+i}{2}\right)(D X), E R_{b}=\left(\frac{1+i}{2}\right)(E Y), F R_{c}=\left(\frac{1+i}{2}\right)(F Z)$.
2. $I P_{a}=(1+i)\left(I R_{a}\right), I P_{b}=(1+i)\left(I R_{b}\right), I P_{c}=(1+i)\left(I R_{c}\right)$.

Equation (1) tells us how to construct $\triangle R_{a} R_{b} R_{c}$ from the points $\{D, X\},\{E, Y\},\{F, Z\}$.
Also, $\triangle P_{a} P_{b} P_{c}$ and $\triangle R_{a} R_{b} R_{c}$ are homothetic with center of homothecy I and complex ratio of homothecy $z=1+i=\frac{I P_{a}}{I R_{a}}=\frac{I P_{b}}{I R_{b}}=\frac{I P_{c}}{I R_{c}}$.

Also, $\triangle P_{a} P_{b} P_{c} \sim \triangle R_{a} R_{b} R_{c}$ and $\frac{\left|I P_{a}\right|}{\left|I R_{a}\right|}=\frac{\left|I P_{b}\right|}{\left|I R_{b}\right|}=\frac{\left|I P_{c}\right|}{\left|I R_{c}\right|}=|1+i|=\sqrt{2}$. Also, $\frac{\left|P_{a} P_{b}\right|}{\left|R_{a} R_{b}\right|}=$ $\frac{\left|P_{a} P_{c}\right|}{\left|R_{a} R_{c}\right|}=\frac{\left|P_{b} P_{c}\right|}{\left|R_{b} R_{c}\right|}$.

7 Discussion

For a deeper understanding of the many applications of Theorem 1 , we invite the reader to consider the following alternative form of Problem 1.

Problem 1 (alternate form) The statement of the definitions P_{a}, P_{b}, P_{c} is the same as in Problem 1.

However, we now define $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ to be the (mirror) reflections of O about the sides $B C, A C, A B$ respectively. Therefore, $O A^{\prime \prime}=2 \cdot O A^{\prime}, O B^{\prime \prime}=2 \cdot O B^{\prime}, O C^{\prime \prime}=2 \cdot O C^{\prime}$. We now substitute $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ for $A^{\prime}, B^{\prime} C^{\prime}$ in the problem by using $A^{\prime \prime}-O=2\left(A^{\prime}-O\right)$, etc. and ask the reader to solve the same problem when we deal with $A, B, C, H, D, E, F, O, A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ instead of $A, B, C, H, D, E, F, O, A^{\prime}, B^{\prime}, C^{\prime}$. Also, we show that R_{a}, R_{b}, R_{c} will lie on lines $D A^{\prime \prime}, E B^{\prime \prime}, F C^{\prime \prime}$ instead of lying on sides $B C, A C, B C$. The pedal triangle part of the problem is ignored. The center of homothecy Q will still lie on the Euler line $H O$. This illustrates the endless way that Theorem 1 can be used to create homothetic triangles (and polygons).

References

[1] Court, Nathan A., College Geometry, Barnes and Noble, Inc., New York, 1963.

