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A hyperplane arrangement A is a finite collection of hyperplanes in
a d-dimensional real vector space, which partition the space into
regions.
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Example: Linial arrangement (x1 + x2 + x3 = 0)

x1 − x2 = 1
(2/3,−1/3,−1/3)(1, 0,−1)

(1/3, 1/3,−2/3)

x2 − x3 = 1 x1 − x3 = 1

1 bounded and 6 unbounded regions
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Deformations of the braid arrangement

The braid arrangement (Coxeter arrangement of type An−1) is the
collection of hyperplanes {xi − xj = 0 : 1 ≤ i < j ≤ n} in Vn−1,
the subspace of Rn, given by x1 + x2 + · · ·+ xn = 0. A
deformation of the braid arrangement consists of replacing each
hyperplane xi − xj = 0 with a set of hyperplanes

xi − xj = a
(1)
ij , a

(2)
ij , . . . , a

(nij )
ij .

The truncated affine arrangements Aa,b
n−1 (where a+ b ≥ 2)

contain the hyperplanes are xi − xj = 1− a, 2− a, . . . , b − 1 for

1 ≤ i < j ≤ n. A0,2
n−1 is the Linial arrangement, A1,2

n−1 is the Shi

arrangement Aa,a+1
n−1 with a ≥ 1 is the extended Shi arrangement,

A2,2
n−1 is the Catalan arrangement, and Aa,a

n−1 with a ≥ 2 is the
a-Catalan arrangement.
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The characteristic polynomial [SKIM]

The numbers r(A) and b(A) of all, respectively bounded regions
are given by

r(A) = (−1)dχ(A,−1) and b(A) = (−1)rk(LA)χ(A, 1).

In our example

r(A) = (−1)2(1− 3 · (−1) + 3 · (−1)2) = 7

and
b(A) = (−1)2(1− 3 + 3) = 1.

Related approaches: finite field method (case of integer
coefficients), Whitney’s formula and the gain graph method
(deformations of graphical arrangements).
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Regions defined by sets of inequalities

x1 − x2 < 1

(2/3,−1/3,−1/3)(1, 0,−1)

(1/3, 1/3,−2/3)

x1 − x2 = 1

x2 − x3 = 1 x1 − x3 = 1

x1 − x2 > 1
x2 − x3 > 1
x1 − x3 > 1

x1 − x2 > 1
x2 − x3 < 1
x1 − x3 > 1

x1 − x2 > 1
x2 − x3 < 1
x1 − x3 < 1

x2 − x3 > 1
x1 − x2 < 1

x1 − x3 > 1

x1 − x2 < 1
x2 − x3 < 1
x1 − x3 > 1

x1 − x2 < 1

x2 − x3 < 1

x1 − x3 < 1

x1 − x3 < 1
x2 − x3 > 1

x1 − x2 > 1 and x2 − x3 > 1 imply x1 − x3 > 1.
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Examples of the inequality based approach

The hyperplanes xi − xj = 1− a, 2− a, . . . , a (where 1 ≤ i < j ≤ n)
define the extended Shi arrangement in Vn−1, These have a
Stanley-Pak labeling and an Athanasiadis-Linusson labeling.
For a graph G on {1, 2, . . . , n} and a set of parameters
{ai ,j : {i , j} ∈ E (G )}, the set of hyperplanes
{xi − xj = ai ,j : {i , j} ∈ E (G )} define a bigraphical arrangement.
They have a Hopkins-Perkinson labeling.
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Two key lemmas

The following variant of the Farkas Lemma was also used by
Hopkins and Perkinson:

Lemma (Carver)

The system of inequalities Ax < b has no solution if and only if
there is a nonzero real m× 1 row vector y satisfying y ≥ 0, yA = 0
and yb ≤ 0.

We will apply the flow decomposition theorem to circulations:

Theorem (Gallai)

Every not identically zero circulation f can be written as a positive
linear combination of directed cycles. Moreover, a directed edge e
appears in at least one of these cycles if and only if f (e) > 0.
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Weighted digraphical polytopes

A weighted digraphical polytope is the solution set of a system of
inequalities

mij < xi − xj < Mij , 1 ≤ i < j ≤ n

in Vn−1. (We allow mij = −∞ and Mij =∞.)
We create an associated weighted digraph: For each i < j , if
mij > −∞, we create directed edge i → j with weight mij and if
Mij <∞ we also create a directed edge i ← j with weight −Mij .
An m-ascending cycle in the associated weighted digraph is a
directed cycle, along which the sum of the labels is nonnegative.
We call the associated weighted digraph m-acyclic, if it contains no
m-ascending cycle.
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The key observation

Theorem

A weighted digraphical polytope given by a system of inequalities is
not empty if and only if the associated weighted digraph associated
is m-acyclic.

Corollary

If we think of the weight w(e) as money we gain when we walk
along e then the system of inequalities has a nonempty solution set
if and only if we lose money along any closed walk.
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Semiacyclic tournaments
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Bounded regions

Theorem

A weighted digraphical polytope, is not empty and bounded if and
only if the associated weighted digraph is m-acyclic and it is
strongly connected.

Example

Each region of the Linial arrangement is described by a set of
inequalities {mij < xi − xj < Mij : 1 ≤ i < j ≤ n}, each inequality
is either −∞ < xi − xj < 1 or 1 < xi − xj <∞. The associated
weighted digraph is a tournament, it contains no m-ascending
cycle if and only if it is semiacyclic. Bounded regions correspond to
strongly connected semiacyclic tournaments.
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A weighted digraphical polytope, is not empty and bounded if and
only if the associated weighted digraph is m-acyclic and it is
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If all arrows go from V2 to V1 then (x1, . . . , xn) may be replaced
with (x ′1, . . . , x

′
n) where

x ′v =

{
xv +

t
|V1| if v ∈ V1

xv − t
|V2| if v ∈ V2
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Exponential arrangements [SKIM]

Let A = (A1,A2, . . .) be a sequence of deformations of the braid
arrangement, such that each An is a hyperplane arrangement in
Rn. For each S ⊆ {1, 2, . . .} we define AS

n as the subcollection of
hyperplanes xi − xj = c of An satisfying {i , j} ⊆ S . A is
exponential if r(AS

n ) depends only on k = |S | and it is the number
r(Ak) of regions of Ak . Stanley showed that the exponential
generating functions of all resp. bounded regions are connnected by

BA(t) = 1− 1

RA(t)
.
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Exponential arrangements (cont’d)

Since m-acyclicity can be independently verified on strong
components, we can directly show

r(An) =
n∑

k=1

∑
n1+···+nk=n
n1,...,nk>0

(
n

n1, n2, . . . , nk

) k∏
i=1

b(Ani ) for all n ≥ 1.
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Posets of gains

Definition

Given a valid m-acyclic weighted digraph D on {1, 2, . . . , n}, we
define i <D j if there is a directed path i = i0 → i1 → · · · → ik = j
such that the weight of each directed edge is → is+1 is
nonnegative. We call the set {1, 2, . . . , n}, ordered by <D the
poset of gains induced by D.

The relation i <D j is a partial order because of the m-acyclic
property.

Example

The posets of gains of the Linial arrangement are the sleek posets.
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Sparse deformations

Example

Consider the Linial arrangement and the semiacyclic tournament D
containing a directed edge i ← j of weight −1 for each i < j . This
is a valid m-acyclic weighted digraph, it is in fact acyclic. The
induced poset of gains is an antichain, the incomparability graph is
the complete graph, it is connected. However, D is not strongly
connected.
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Sparse deformations

Definition

a deformation of the braid arrangement, is sparse if 1 ≤ ni ,j ≤ 2

holds for all i < j , and the signs of the numbers a
(k)
i ,j satisfy the

following for all i < j :

1 a
(1)
i ,j > 0 holds, whenever ni ,j = 1,

2 a
(1)
i ,j < 0 < a

(2)
i ,j holds, whenever ni ,j = 2.

We call A an interval order arrangement if ni ,j = 2 holds for all
i < j .

Example

Consider the Linial arrangement and the semiacyclic tournament D
containing a directed edge i ← j of weight −1 for each i < j . This
is a valid m-acyclic weighted digraph, it is in fact acyclic. The
induced poset of gains is an antichain, the incomparability graph is
the complete graph, it is connected. However, D is not strongly
connected.
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Sparse deformations

Proposition

Consider a sparse deformation of the braid arrangement and any
valid m-acyclic weighted digraph D associated to it. In the induced
poset of gains, i <D j holds exactly when there is a single directed
edge i → j of positive weight. For any pair {i , j} of incomparable
vertices satisfying i < j , the edge j → i is always present, and any
edge between i and j has negative weight.

Example

Consider the Linial arrangement and the semiacyclic tournament D
containing a directed edge i ← j of weight −1 for each i < j . This
is a valid m-acyclic weighted digraph, it is in fact acyclic. The
induced poset of gains is an antichain, the incomparability graph is
the complete graph, it is connected. However, D is not strongly
connected.
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Sparse deformations

Theorem

Let D be a valid m-acyclic weighted digraph associated to a sparse
deformation of the braid arrangement in Vn−1. If D is strongly
connected then the incomparability graph of the induced poset of
gains is connected. The converse is also true when ni ,j = 2 holds
for all 1 ≤ i < j ≤ n.

Example

Consider the Linial arrangement and the semiacyclic tournament D
containing a directed edge i ← j of weight −1 for each i < j . This
is a valid m-acyclic weighted digraph, it is in fact acyclic. The
induced poset of gains is an antichain, the incomparability graph is
the complete graph, it is connected. However, D is not strongly
connected.
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Separated deformations

Definition

We call a deformation of the braid arrangement A separated if 0

belongs to the set {a(1)ij , a
(2)
ij , . . . , a

(nij )
ij } for each 1 ≤ i < j ≤ n.

Corollary

For a separated deformation of the braid arrangement, the induced
poset of gains associated to any valid m-acyclic weighted digraph
is a totally ordered set.

Equivalently, each region is included in a region
xσ(1) > xσ(2) > · · · > xσ(n) of the braid arrangement.
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A structure theorem [SKIP]

Theorem

Let R be a region of a separated deformation of the braid
arrangement and let σ(1)σ(2) · · ·σ(n) be its total order of gains.
Then there is a unique decomposition
σ = (σ(i0) · · ·σ(i1)) · (σ(i1 + 1) · · ·σ(i2)) · · · (σ(ik−1 + 1) · · ·σ(ik))
satisfying

1 For each j = −1, 0, . . . , k − 1,
R∩ span(eσ(ij+1), eσ(ij+2), . . . , eσ(ij+1)) is bounded.

2 If S ⊆ {1, 2, . . . , n} contains indices j1 and j2 such that σ(j1)
and σ(j2) belong to different subwords in the above
decomposition then R∩ span((eσ(j) : j ∈ S) is unbounded.
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Gain functions

Theorem

Let A be a separated integral deformation of the braid
arrangement satisfying the weak triangle inequality, and let D be
an associated m-acyclic weighted digraph. Let σ be the total order
of gains associated to D and let g be the gain function. Then, for
each i > 1 there is a directed path from σ(1) to σ(i) such that all
weights in the path are nonnegative and the total weight of the
edges in the path is g(σ(i))− g(σ(1)).
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Gain functions

Definition

For each i ∈ {1, 2, . . . , n} we define the gain function g(σ(i)) as
the maximum weight of a directed path beginning at σ(1) and
ending at σ(i). In particular, we set g(σ(1)) = 0. Here σ is the
total order of gains.
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Gain functions

Definition

We call a deformation A of the braid arrangement integral if all
the numbers aki ,j appearing in in its definition are integers. We say
that A satisfies the weak triangle inequality if for all triplets
(i , j , k), the inequalities w(i , j) ≥ 0 and w(j , k) ≥ 0 imply

w(i , k) ≤ w(i , j) + w(j , k) + 1

in any valid m-acyclic associated weighted digraph.
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Contiguous integral deformations

Definition

An integral deformation of the braid arrangement in Vn−1

contiguous if, for every i < j , the set {a(1)i ,j , a
(2)
i ,j , . . . , a

(ni,j )
i ,j } is a

contiguous set [α(i , j), β(i , j)] = {α(i , j), α(i , j) + 1, . . . , β(i , j)} of
integers.

Since xi − xj = c ⇔ xj − xi = −c , we may set

α(j , i) = −β(i , j) and β(j , i) = −α(i , j) for 1 ≤ i < j ≤ n.
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An integral deformation of the braid arrangement in Vn−1
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Since xi − xj = c ⇔ xj − xi = −c , we may set

α(j , i) = −β(i , j) and β(j , i) = −α(i , j) for 1 ≤ i < j ≤ n.
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contiguous if, for every i < j , the set {a(1)i ,j , a
(2)
i ,j , . . . , a

(ni,j )
i ,j } is a

contiguous set [α(i , j), β(i , j)] = {α(i , j), α(i , j) + 1, . . . , β(i , j)} of
integers.

Since xi − xj = c ⇔ xj − xi = −c , we may set

α(j , i) = −β(i , j) and β(j , i) = −α(i , j) for 1 ≤ i < j ≤ n.
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Minimal obstructions

There is a minimal m-ascending cycle of length 5 in A−1,3
n−1 for

n ≥ 5.
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5

4

21
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−2
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Theorem

If β(i , k) ≤ β(i , j) + β(j , k) + 1 holds for all {i , j , k}. then any
valid associated weighted digraph is m-acyclic if and only if it
contains no m-ascending cycle of length at most four.
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If β(i , k) ≤ β(i , j) + β(j , k) + 1 holds for all {i , j , k}. then any
valid associated weighted digraph is m-acyclic if and only if it
contains no m-ascending cycle of length at most four.

Theorem

If the truncated affine arrangement Aa,b
n−1 satisfies a, b ≥ 0, then a

valid associated weighted digraph is m-acyclic if and only if it
contains no m-ascending cycle of length at most four.
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The Pak-Stanley labeling

Remark

Mazin has shown that the Pak-Stanley labeling of the regions of
the extended Shi arrangement is surjective. Together with
Stanley’s above result we have a self-contained proof of the fact
that the Pak-Stanley labeling is a bijection between the regions of
the regions of the extended Shi arrangement and the a-parking
functions.
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The Pak-Stanley labeling

The extended Shi-arrangement is contiguous, integral, separated,
and it satisfies the weak triangle inequality.

Remark

Mazin has shown that the Pak-Stanley labeling of the regions of
the extended Shi arrangement is surjective. Together with
Stanley’s above result we have a self-contained proof of the fact
that the Pak-Stanley labeling is a bijection between the regions of
the regions of the extended Shi arrangement and the a-parking
functions.
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The extended Shi-arrangement is contiguous, integral, separated,
and it satisfies the weak triangle inequality. For a weight function
we only need to verify

Remark

Mazin has shown that the Pak-Stanley labeling of the regions of
the extended Shi arrangement is surjective. Together with
Stanley’s above result we have a self-contained proof of the fact
that the Pak-Stanley labeling is a bijection between the regions of
the regions of the extended Shi arrangement and the a-parking
functions.
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The Pak-Stanley labeling

The extended Shi-arrangement is contiguous, integral, separated,
and it satisfies the weak triangle inequality. For a weight function
we only need to verify

w(i , k) ≥ min(β(i , j),w(i , j) + w(j , k)) for i <σ−1 j <σ−1 k , and

Remark

Mazin has shown that the Pak-Stanley labeling of the regions of
the extended Shi arrangement is surjective. Together with
Stanley’s above result we have a self-contained proof of the fact
that the Pak-Stanley labeling is a bijection between the regions of
the regions of the extended Shi arrangement and the a-parking
functions.

G. Hetyei Graphical arrangements



Outline
Preliminaries

Inequalities for deformed graphical arrangements

The general setup
Sparse deformations
Separated deformations

The Pak-Stanley labeling

The extended Shi-arrangement is contiguous, integral, separated,
and it satisfies the weak triangle inequality. For a weight function
we only need to verify

w(i , k) ≥ min(β(i , j),w(i , j) + w(j , k)) for i <σ−1 j <σ−1 k , and

w(i , k) ≤ w(i , j) + w(j , k) + 1 for i <σ−1 j <σ−1 k.

Remark

Mazin has shown that the Pak-Stanley labeling of the regions of
the extended Shi arrangement is surjective. Together with
Stanley’s above result we have a self-contained proof of the fact
that the Pak-Stanley labeling is a bijection between the regions of
the regions of the extended Shi arrangement and the a-parking
functions.
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The Pak-Stanley labeling

Definition

We define the Pak-Stanley label (f (1), . . . , f (n)) of a region as

f (i) =
∑

i<σ−1 j

w(i , j) + |{(i , j) : i <σ−1 j and i > j}|.

Remark

Mazin has shown that the Pak-Stanley labeling of the regions of
the extended Shi arrangement is surjective. Together with
Stanley’s above result we have a self-contained proof of the fact
that the Pak-Stanley labeling is a bijection between the regions of
the regions of the extended Shi arrangement and the a-parking
functions.
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The Pak-Stanley labeling

Definition

We define the Pak-Stanley label (f (1), . . . , f (n)) of a region as

f (i) =
∑

i<σ−1 j

w(i , j) + |{(i , j) : i <σ−1 j and i > j}|.

The sum
∑

i<σ−1 j
w(i , j) is the number of separations, and

|{(i , j) : i <σ−1 j and i > j}| is the number of inversions.

Remark

Mazin has shown that the Pak-Stanley labeling of the regions of
the extended Shi arrangement is surjective. Together with
Stanley’s above result we have a self-contained proof of the fact
that the Pak-Stanley labeling is a bijection between the regions of
the regions of the extended Shi arrangement and the a-parking
functions.

G. Hetyei Graphical arrangements



Outline
Preliminaries

Inequalities for deformed graphical arrangements

The general setup
Sparse deformations
Separated deformations

The Pak-Stanley labeling

Lemma (Stanley)

Given i <σ−1 j , if i > j or w(i , j) > 0 holds then we have
f (i) > f (j).

Remark

Mazin has shown that the Pak-Stanley labeling of the regions of
the extended Shi arrangement is surjective. Together with
Stanley’s above result we have a self-contained proof of the fact
that the Pak-Stanley labeling is a bijection between the regions of
the regions of the extended Shi arrangement and the a-parking
functions.
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The Pak-Stanley labeling

Lemma (Stanley)

Given i <σ−1 j , if i > j or w(i , j) > 0 holds then we have
f (i) > f (j).

Theorem (Stanley)

The labels of the regions of the extended Shi arrangement are the
a-parking functions of length n, each occurring exactly once.

Remark

Mazin has shown that the Pak-Stanley labeling of the regions of
the extended Shi arrangement is surjective. Together with
Stanley’s above result we have a self-contained proof of the fact
that the Pak-Stanley labeling is a bijection between the regions of
the regions of the extended Shi arrangement and the a-parking
functions.
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The Pak-Stanley labeling

Lemma (Stanley)

Given i <σ−1 j , if i > j or w(i , j) > 0 holds then we have
f (i) > f (j).

Theorem (Stanley)

The labels of the regions of the extended Shi arrangement are the
a-parking functions of length n, each occurring exactly once.

Given an a-parking function (f (1), . . . , f (n)), we insert the labels i
into σ one by one and show the uniqueness of the place and of the
function values w(i , j) one step at a time. (Still “tedious”, but fits
on a single page.)

Remark

Mazin has shown that the Pak-Stanley labeling of the regions of
the extended Shi arrangement is surjective. Together with
Stanley’s above result we have a self-contained proof of the fact
that the Pak-Stanley labeling is a bijection between the regions of
the regions of the extended Shi arrangement and the a-parking
functions.
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The Pak-Stanley labeling

Remark

Mazin has shown that the Pak-Stanley labeling of the regions of
the extended Shi arrangement is surjective. Together with
Stanley’s above result we have a self-contained proof of the fact
that the Pak-Stanley labeling is a bijection between the regions of
the regions of the extended Shi arrangement and the a-parking
functions.
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Athanasiadis-Linusson diagrams [SKIM]

The process to build an Athanasiadis-Linusson diagram is the
following:

1 Fix a representative x of the region. This satisfies
xσ(1) > xσ(2) > · · · > xσ(n).

2 For each j satisfying β(j) > 0 we also mark
xj + β(j), xj + β(j)− 1, . . . , xj +1 on the reversed number line
and we draw an arc connecting xj + k + 1 with xj + k for
k = 0, 1, . . . , β(j)− 1. We label all of these points with j .

3 For each {i , j} ⊆ {1, 2, . . . , n} we also draw an arc between xi
and xj + β(j) if β(i , j) = β(j) + 1 xi − xj > β(i , j) holds.

4 We remove all nested arcs, that is, all arcs that contain
another arc.
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Athanasiadis-Linusson diagrams [SKIM]

Definition

The regions of a contiguous, separated and integral deformation of
the braid arrangement
{xi − xj = m : 1 ≤ i < j < n,m ∈ [−β(j , i), β(i , j)]} have
Athanasiadis-Linusson diagrams if {β(i , j) : i ̸= j} contains at
most two consecutive nonnegative integers for each
j ∈ {1, 2, . . . , n}. We set β(j) = mini ̸=j β(i , j) for all j .

The process to build an Athanasiadis-Linusson diagram is the
following:

1 Fix a representative x of the region. This satisfies
xσ(1) > xσ(2) > · · · > xσ(n).

2 For each j satisfying β(j) > 0 we also mark
xj + β(j), xj + β(j)− 1, . . . , xj +1 on the reversed number line
and we draw an arc connecting xj + k + 1 with xj + k for
k = 0, 1, . . . , β(j)− 1. We label all of these points with j .

3 For each {i , j} ⊆ {1, 2, . . . , n} we also draw an arc between xi
and xj + β(j) if β(i , j) = β(j) + 1 xi − xj > β(i , j) holds.

4 We remove all nested arcs, that is, all arcs that contain
another arc.
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Athanasiadis-Linusson diagrams [SKIM]

The process to build an Athanasiadis-Linusson diagram is the
following:

1 Fix a representative x of the region. This satisfies
xσ(1) > xσ(2) > · · · > xσ(n).

2 For each j satisfying β(j) > 0 we also mark
xj + β(j), xj + β(j)− 1, . . . , xj +1 on the reversed number line
and we draw an arc connecting xj + k + 1 with xj + k for
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3 For each {i , j} ⊆ {1, 2, . . . , n} we also draw an arc between xi
and xj + β(j) if β(i , j) = β(j) + 1 xi − xj > β(i , j) holds.
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another arc.
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Athanasiadis-Linusson diagrams [SKIM]

The process to build an Athanasiadis-Linusson diagram is the
following:

12 4 3 5

1 Fix a representative x of the region. This satisfies
xσ(1) > xσ(2) > · · · > xσ(n).

2 For each j satisfying β(j) > 0 we also mark
xj + β(j), xj + β(j)− 1, . . . , xj +1 on the reversed number line
and we draw an arc connecting xj + k + 1 with xj + k for
k = 0, 1, . . . , β(j)− 1. We label all of these points with j .

3 For each {i , j} ⊆ {1, 2, . . . , n} we also draw an arc between xi
and xj + β(j) if β(i , j) = β(j) + 1 xi − xj > β(i , j) holds.

4 We remove all nested arcs, that is, all arcs that contain
another arc.
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Athanasiadis-Linusson diagrams [SKIM]

The process to build an Athanasiadis-Linusson diagram is the
following:

522 1 1 4 3 4 3

1 Fix a representative x of the region. This satisfies
xσ(1) > xσ(2) > · · · > xσ(n).

2 For each j satisfying β(j) > 0 we also mark
xj + β(j), xj + β(j)− 1, . . . , xj +1 on the reversed number line
and we draw an arc connecting xj + k + 1 with xj + k for
k = 0, 1, . . . , β(j)− 1. We label all of these points with j .

3 For each {i , j} ⊆ {1, 2, . . . , n} we also draw an arc between xi
and xj + β(j) if β(i , j) = β(j) + 1 xi − xj > β(i , j) holds.

4 We remove all nested arcs, that is, all arcs that contain
another arc.
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Athanasiadis-Linusson diagrams [SKIM]

The process to build an Athanasiadis-Linusson diagram is the
following:

522 1 1 4 3 4 3

1 Fix a representative x of the region. This satisfies
xσ(1) > xσ(2) > · · · > xσ(n).

2 For each j satisfying β(j) > 0 we also mark
xj + β(j), xj + β(j)− 1, . . . , xj +1 on the reversed number line
and we draw an arc connecting xj + k + 1 with xj + k for
k = 0, 1, . . . , β(j)− 1. We label all of these points with j .

3 For each {i , j} ⊆ {1, 2, . . . , n} we also draw an arc between xi
and xj + β(j) if β(i , j) = β(j) + 1 xi − xj > β(i , j) holds.

4 We remove all nested arcs, that is, all arcs that contain
another arc.
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Athanasiadis-Linusson diagrams [SKIM]

The process to build an Athanasiadis-Linusson diagram is the
following:

1 Fix a representative x of the region. This satisfies
xσ(1) > xσ(2) > · · · > xσ(n).

2 For each j satisfying β(j) > 0 we also mark
xj + β(j), xj + β(j)− 1, . . . , xj +1 on the reversed number line
and we draw an arc connecting xj + k + 1 with xj + k for
k = 0, 1, . . . , β(j)− 1. We label all of these points with j .

3 For each {i , j} ⊆ {1, 2, . . . , n} we also draw an arc between xi
and xj + β(j) if β(i , j) = β(j) + 1 xi − xj > β(i , j) holds.

4 We remove all nested arcs, that is, all arcs that contain
another arc.
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Athanasiadis-Linusson diagrams [SKIM]

522 1 1 4 3 4 3

For each i ∈ {1, 2, . . . , n} we define f (i) as the position of the
leftmost element of the continuous component of i . We call the
resulting (f (1), f (2), . . . , f (n)) the β-parking function of the
region. Here we have f (1) = 2, f (2) = f (4) = 1 and
f (3) = f (5) = 6. As before, we may reconstruct the diagram from
its β-parking function.
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Athanasiadis-Linusson diagrams [SKIM]

522 1 1 4 3 4 3

For each i ∈ {1, 2, . . . , n} we define f (i) as the position of the
leftmost element of the continuous component of i . We call the
resulting (f (1), f (2), . . . , f (n)) the β-parking function of the
region. Here we have f (1) = 2, f (2) = f (4) = 1 and
f (3) = f (5) = 6. As before, we may reconstruct the diagram from
its β-parking function.
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Athanasiadis-Linusson diagrams [SKIM]

522 1 1 4 3 4 3

Without 5 this is an example of Athanasiadis and Linusson in A1,2
3 .

For all {i , j} ⊂ {1, 2, 3, 4} we have β(i , j) = 2 if i < j and
β(i , j) = 1 if i > j . We add β(i , 5) = β(5, i) = 0 for i = 1, 2, 4,
and we add β(3, 5) = 1 and β(3, 5) = 0.

For each
i ∈ {1, 2, . . . , n} we define f (i) as the position of the leftmost
element of the continuous component of i . We call the resulting
(f (1), f (2), . . . , f (n)) the β-parking function of the region. Here
we have f (1) = 2, f (2) = f (4) = 1 and f (3) = f (5) = 6. As
before, we may reconstruct the diagram from its β-parking
function.
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For each i ∈ {1, 2, . . . , n} we define f (i) as the position of the
leftmost element of the continuous component of i . We call the
resulting (f (1), f (2), . . . , f (n)) the β-parking function of the
region.

Here we have f (1) = 2, f (2) = f (4) = 1 and
f (3) = f (5) = 6. As before, we may reconstruct the diagram from
its β-parking function.
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leftmost element of the continuous component of i . We call the
resulting (f (1), f (2), . . . , f (n)) the β-parking function of the
region. Here we have f (1) = 2, f (2) = f (4) = 1 and
f (3) = f (5) = 6.

As before, we may reconstruct the diagram from
its β-parking function.
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Athanasiadis-Linusson diagrams [SKIM]

522 1 1 4 3 4 3

For each i ∈ {1, 2, . . . , n} we define f (i) as the position of the
leftmost element of the continuous component of i . We call the
resulting (f (1), f (2), . . . , f (n)) the β-parking function of the
region. Here we have f (1) = 2, f (2) = f (4) = 1 and
f (3) = f (5) = 6. As before, we may reconstruct the diagram from
its β-parking function.
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Athanasiadis-Linusson trees [SKIM]

1 Replace the labels j with j1, j2,. . . , jβ(j)+1, numbered left to
right, so that we can distinguish the copies.

2 The copies of the labels satisfying f (j) = 1 become the
children of the root 0.

3 We number the nodes in the tree level-by-level and in
increasing order of the labels (breadth-first-search order).

4 Once we inserted the copies of all labels j satisfying f (j) < i ,
all copies of the labels j satisfying f (j) = i will be the children
of the node whose number is i .
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1 Replace the labels j with j1, j2,. . . , jβ(j)+1, numbered left to
right, so that we can distinguish the copies.

2 The copies of the labels satisfying f (j) = 1 become the
children of the root 0.

3 We number the nodes in the tree level-by-level and in
increasing order of the labels (breadth-first-search order).
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all copies of the labels j satisfying f (j) = i will be the children
of the node whose number is i .
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Definition

For a sequence β ∈ Nn we define the β-extended Shi arrangement
as the hyperplane arrangement

xi − xj = −β(j),−β(j) + 1, . . . , β(j) + 1 1 ≤ i < j ≤ n in Vn−1.

Theorem

The number of regions in a β-extended Shi arrangement A is

r(A) =

 n∑
j=1

(β(j) + 1) + 1

n−1

.

The proof uses a colored variant of the Prüfer code algorithm.
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The Athanasiadis-Linusson diagrams are very simple: they connect
points with the same label only. For a fixed
xσ(1) > xσ(2) > · · · > xσ(n), the parking trees are in bijection with
the rooted incomplete a-ary trees on (a− 1)n + 1 vertices. Their
number is the a-Catalan number 1

(a−1)n+1

(an
n

)
. Multiplying it with

n! we get

r(Aa,a
n−1) = an(an − 1) · · · ((a− 1)n + 2)

first found by Postnikov and Stanley.
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A mysterious labeling

Fix a permutation π and an a-Catalan path Λ.

62

1
4

53

Here we get σ = 142635.

Proposition

A region of Aa,a
n−1 is bounded if and only if the total order of gains

σ satisfies w(σ(i), σ(i + 1)) < a− 1 for 1 ≤ i ≤ n − 1.
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w(π(i), π(j)) =


ℓ(π(j))− ℓ(π(i)) if ℓ(π(j))− ℓ(π(i)) ∈ [1− a, a− 1]

−∞ if ℓ(π(j))− ℓ(π(i)) < 1− a

a− 1 if ℓ(π(j))− ℓ(π(i)) > a− 1

Here we get σ = 142635.

Proposition

A region of Aa,a
n−1 is bounded if and only if the total order of gains

σ satisfies w(σ(i), σ(i + 1)) < a− 1 for 1 ≤ i ≤ n − 1.
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Lemma

The total order of gains σ = γ ◦ π is the order of the labels
π(1), . . . , π(n) in increasing order of their levels, where π(i) is
listed before π(j) if ℓ(π(i)) = ℓ(π(j)) and i < j hold.

Here we get σ = 142635.

Proposition

A region of Aa,a
n−1 is bounded if and only if the total order of gains

σ satisfies w(σ(i), σ(i + 1)) < a− 1 for 1 ≤ i ≤ n − 1.
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Here we get σ = 142635.

Proposition

For the weighted digraph encoded by (π,Λ) the gain function is
the level function: we have g(σ(i)) = ℓ(σ(i)).

Proposition

A region of Aa,a
n−1 is bounded if and only if the total order of gains
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Here we get σ = 142635.

Theorem

The correspondence between the pairs (π,Λ) and the valid
weighted m-acyclic digraphs encoded by them is a bijection.

Proposition

A region of Aa,a
n−1 is bounded if and only if the total order of gains

σ satisfies w(σ(i), σ(i + 1)) < a− 1 for 1 ≤ i ≤ n − 1.
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Here we get σ = 142635.

Theorem

The correspondence between the pairs (π,Λ) and the valid
weighted m-acyclic digraphs encoded by them is a bijection.

We only prove injectivity and then we use the Postnikov-Stanley
formula.
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A concluding conjecture

The number of possible types of the trees of the gain function is a
Catalan number.

Conjecture

For a fixed n and a fixed tree of gain functions, the number of
regions of Aa,a

n−1 associated to it is a polynomial of a.

This conjecture implies that the n-th a-Catalan number,
considered as a polynomial of a, could be written as a sum of Cn

polynomials, where Cn is the n-th Catalan number.
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Thank you!

Labeling regions in deformations of graphical arrangements
arXiv:2312.06513 [math.CO]

G. Hetyei Graphical arrangements



Outline
Preliminaries

Inequalities for deformed graphical arrangements

The general setup
Sparse deformations
Separated deformations

Thank you!

Labeling regions in deformations of graphical arrangements

arXiv:2312.06513 [math.CO]

G. Hetyei Graphical arrangements



Outline
Preliminaries

Inequalities for deformed graphical arrangements

The general setup
Sparse deformations
Separated deformations

Thank you!

Labeling regions in deformations of graphical arrangements
arXiv:2312.06513 [math.CO]

G. Hetyei Graphical arrangements



Outline
Preliminaries

Inequalities for deformed graphical arrangements

The general setup
Sparse deformations
Separated deformations

Thank you!

Labeling regions in deformations of graphical arrangements
arXiv:2312.06513 [math.CO]

G. Hetyei Graphical arrangements


	Outline
	Preliminaries
	Hyperplane arrangements
	Zaslavsky's formulas
	Inequality based approaches

	Inequalities for deformed graphical arrangements
	The general setup
	Sparse deformations
	Separated deformations


