The twelvefold way

Putting k balls into n boxes.

Domain $($ size $k)$	Target $($ size $n)$	All	$1-1$ (injective) Each receives ≤ 1	Onto (surjective) Each receives ≥ 1
dist.	dist.	n^{k}	$(n)_{k}$	$n!S(k, n)$
id.	dist.	$\left(\binom{n}{k}\right)$	$\binom{n}{k}$	$\left(\binom{n}{k-n}\right)$
dist.	id.	$S(k, 1)+\cdots+S(k, n)$	$\delta_{k \leq n}$	$S(k, n)$
id.	id.	$P(k, 1)+\cdots+P(k, n)$	$\delta_{k \leq n}$	$P(k, n)$

Explanation:

$(n)_{k}=n \cdot(n-1) \cdots(n-k+1)$ is a falling factorial.
$\binom{n}{k}$ is a binomial coefficient (the number of k-element subsets of an n-element set).
$\left(\binom{n}{k}\right)=\binom{n+k-1}{k}$ is the number of k-element multisets chosen from an n-element set.
$S(k, n)$ is the number of ways to partition a k-element set into n classes or parts. (A Stirling number of the second kind).
$P(k, n)$ is the number of partitions of the integer k into n parts.
$\delta_{k \leq n}$ is 1 if $k \leq n$ and zero otherwise.

Note: When $k \leq n$, the sum $S(k, 1)+\cdots+S(k, n)$ is known as the Bell number B_{k}. (Obviously $S(k, k+1)=S(k, k+2)=\cdots=S(k, n)=0)$.

