Permutations, combinations, and variations

1 Permutations

Permutations are arrangements of objects (with or without repetition), order does matter.
The number of permutations of n objects, without repetition, is

$$
P_{n}=P_{n}^{n}=n!.
$$

The counting problem is the same as putting n distinct balls into n distinct boxes, or to count bijections from a set of n distinct elements to a set of n distinct elements.

A permutation with repetition is an arrangement of objects, where some objects are repeated a prescribed number of times. The number of permutations with repetitions of k_{1} copies of $1, k_{2}$ copies of $2, \ldots, k_{r}$ copies of r is

$$
P_{k_{1}, \ldots, k_{r}}=\frac{\left(k_{1}+\cdots+k_{r}\right)!}{\prod_{i=1}^{r} k_{i}!}
$$

The counting problem is the same as putting $k_{1}+\cdots+k_{r}$ distinct balls into r distinct boxes such that box number i receives k_{i} balls. In other words we count onto functions from a set of $k_{1}+\cdots+k_{r}$ distinct elements onto the set $\{1,2, \ldots, r\}$, such that the preimage of the element i has size k_{i}.

2 Combinations

Combinations are selections of objects, with or without repetition, order does not matter.
The number of k-element combinations of n objects, without repetition is

$$
C_{n, k}=\binom{n}{k}=\frac{n!}{k!(n-k)!} .
$$

The counting problem is the same as the number of ways of putting k identical balls into n distinct boxes, such that each box receives at most one ball. It is also the number of one-to-one functions from a set of k identical elements into a set of n distinct elements. It is also the number of k-element subsets of an n-element set.

The number of k-element combinations of n objects, with repetition is

$$
\bar{C}_{n, k}=C_{n+k-1, k}=\binom{n+k-1}{k}=\left(\binom{n}{k}\right) .
$$

It is also the number of all ways to put k identical balls into n distinct boxes, or the number of all functions from a set of k identical elements to a set of n distinct elements.

3 Variations

Variations are arrangements of selections of objects, where the order of the selected objects matters. To count k-element variations of n objects, we first need to choose a k-element combination and then a permutation of the selected objects.

Thus the number of k-element variations of n elements with repetition not allowed is

$$
V_{n, k}=P_{n, k}=\binom{n}{k} \cdot k!=(n)_{k} .
$$

It is also the number of ways of putting k distinct balls into n distinct boxes such that each box receives at most one element. It is also the number of one-to-one functions from a set of k distinct elements into a set of n distinct elements.

The number of k-element variations of n-elements with repetition allowed, is

$$
V_{n, k}=n^{k} .
$$

It is the number of all ways of putting k distinct balls into n distinct boxes. It is also the number of all functions from a set of k distinct elements into a set of n distinct elements.

