
Newton sums
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1 Formal power series

For any function f : N −→ R consider the generating function

F (t) =
∑
n≥0

f(n) · tn.

We consider these generating functions as formal power series, i.e., we add, subtract, multiply an

divide them formally, without expecting convergence. Whenever we write

1

1− t
=
∑
n≥0

tn

we mean that the formal power series 1 divided by the formal power series 1−t yields the formal power

series on the right hand side. There is no limitation on the use of addition, subtraction, multiplication

of formal power series, there is some on division. For instance 1
t is not a formal power series any more.

We may divide the formal power series F (t) by the formal power series G(t) if the lowest degree of t

occurring in F (t) is higher than the lowest degree of t occurring in G(t).

Finally let us note that we may take also the formal derivative of a formal power series. The rule

is
d

dt

∑
n≥0

f(n) · tn =
∑
n≥0

n · f(n) · tn−1

It can be shown that the usual rules on the derivatives of sums, differences, product, quotients, and

even the chain rule apply to formal derivatives of formal power series. (For this last operation we need

to define F (G(t)) which is only possible when G(t) =
∑

n≥0 g(n) · tn satisfies g(0) = 0.)
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2 Finite differences

Definition 1 Given a function f : N −→ R, we define the backward difference ∆f by

∆f(n) =

{
f(n)− f(n− 1) if n ≥ 1,
f(0) if n = 0.

In other words, we assume f(−1) = 0.

The generating function F (t) is of f : N −→ R and the generating function G(t) of ∆f are connected

by the formula

G(t) = (1− t) · F (t) (1)

In fact,

G(t) =
∑
n≥0

(f(n)− f(n− 1)) · tn =
∑
n≥0

f(n) · tn −
∑
n≥0

f(n) · tn+1 = (1− t)F (t).

3 Newton sums

Definition 2 The Newton sums S0, S1, . . . : N −→ R are defined by

Sk(n) = 1k + 2k + . . .+ nk.

In particular S0(n) = n.

The finite difference of Sk is the function nk. This justifies the formula

∆Sk+1(n) = n ·∆Sk(n) (2)

since nk+1 = n · nk. Let us denote the generating function of Sk by Fk, i.e., let us set

Fk(t) =
∑
n≥0

Sk(n) · tn.

Proposition 1 The formal power series F0(t), F1(t), . . . satisfy the recursion formula

Fk+1(t) =
t

1− t
· d
dt

((1− t) · Fk(t)) .
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Proof: Using equations (1) and (2) we may write

(1− t)Fk+1(t) =
∑
n≥0

∆Sk+1(n) · tn =
∑
n≥0

n ·∆Sk(n) · tn = t ·
∑
n≥1

n ·∆Sk(n) · tn−1

= t · d
dt

∑
n≥1

∆Sk(n) · tn = t · d
dt

((1− t) · Fk(t))

Dividing both sides by (1− t) yields the stated formula. 3

Proposition 1 allows us to recursively compute the formal power series Fk(t). To begin,

F0(t) =
∑
n≥0

n · tn = t ·
∑
n≥0

n · tn−1 = t · d
dt

∑
n≥0

tn = t · d
dt

(
1

1− t

)
=

t

(1− t)2

Next we obtain

F1(t) =
t

1− t
· d
dt

((1− t) · F0(t)) =
t

1− t
· d
dt

(
t

1− t

)
=

t

1− t
· 1− t+ t

(1− t)2
=

t

(1− t)3

and

F2(t) =
t

1− t
· d
dt

((1− t) · F1(t)) =
t

1− t
· d
dt

(
t

(1− t)2

)
=

t

1− t
· (1− t)

2 + 2 · t · (1− t)
(1− t)4

= t · 1 + t

(1− t)4

We may observe that all formal power series are the quotients of some polynomial and of some power

of (1− t). Observe also that the polynomial in the numerator is divisible by t. Let us prove this.

Proposition 2 For all k,

Fk(t) =
t · pk(t)

(1− t)k+2

holds, where the polynomials pk(t) are given by p0(t) = 1 and the recursion formula

pk+1(t) = (pk(t) + t · p′k(t)) · (1− t) + (k + 1) · t · pk(t).

Proof: We proceed by induction on t. For k = 0 the statement holds, as seen above. Using Proposi-

tion 1 and the induction hypothesis we may write

Fk+1(t) =
t

1− t
· d
dt

((1− t) · Fk(t)) =
t

1− t
· d
dt

(
t · pk(t)

(1− t)k+1

)
=

t

1− t
·

(pk(t) + t · p′k(t)) · (1− t)k+1 + t · pk(t) · (k + 1) · (1− t)k

(1− t)2k+2

= t ·
(pk(t) + t · p′k(t)) · (1− t) + (k + 1) · t · pk(t)

(1− t)k+3
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We conclude this section with a table for the polynomials pk(t)

k pk(t)

0 1
1 1
2 1 + t
3 1 + 4t+ t2

4 1 + 11t+ 11t2 + t3

5 1 + 26t+ 66t2 + 26t3 + t4

4 Binomial series

In order to obtain a formula for the Newton sums Sk(n) from the formulas for their generating

functions, we need to look at binomial series (1 + t)α for negative integer α’s. Actually, such a

series may be defined for every real alpha, by using the following extended definition of the binomial

coefficients.

Definition 3 Given α ∈ R and n ∈ N we define the binomial coefficient
(
α
n

)
by(

α

n

)
=
α · (α− 1) · · · (α− n+ 1)

n!

Using this definition we may write

(1 + t)α =
∑
n≥0

(
α

n

)
tn

It may be shown that this definition is consistent with the operations on formal power series. For

example for α = −1 we get (
−1

n

)
=

(−1) · (−2) · · · (−n)

n!
= (−1)n

and
1

1 + t
=
∑
n≥0

(−1)n · tn.

Considering the special form of the generating functions Fk(t) we are interested in the formula for

(1− t)−k−2.
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Lemma 1 For any positive integer k,

(1− t)−k =
∑
n≥0

(
n+ k − 1

k − 1

)
· tn

holds.

Proof: By definition we have(
−k
n

)
=

(−k) · (−k − 1) · · · (−k − n+ 1)

n!
= (−1)n · k · (k + 1) · · · (n+ k − 1)

n!
= (−1)n

(
n+ k − 1

n

)
and by the formula

(
m
n

)
=
(
m

m−n
)

we obtain(
−k
n

)
= (−1)n

(
n+ k − 1

k − 1

)
Hence we have

(1− t)−k =
∑
n≥0

(
−k
n

)
(−1)n · tn =

∑
n≥0

(
n+ k − 1

k − 1

)
· tn

3

To summarize, using Proposition 1 and Lemma 1 we may write

Fk(t) = t · pk(t) ·
∑
n≥0

(
n+ k + 1

k + 1

)
· tn = pk(t) ·

∑
n≥0

(
n+ k + 1

k + 1

)
· tn+1

and so we have

Fk(t) = pk(t) ·
∑
n≥1

(
n+ k

k + 1

)
· tn. (3)

For k = 0 we get

F0(t) = 1 ·
∑
n≥0

(
n

1

)
· tn =

∑
n≥0

(
n

1

)
· tn,

and

S0(n) = n.

For k = 1 we get

F1(t) = 1 ·
∑
n≥1

(
n+ 1

2

)
· tn,

and

S1(n) =

(
n+ 1

2

)
=
n · (n− 1)

2
.

For k = 2 we get

F2(t) = (1 + t) ·
∑
n≥1

(
n+ 2

3

)
· tn,
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and

S2(n) =

(
n+ 2

3

)
+

(
n+ 1

3

)
=

(n+ 2)(n+ 1)n+ (n+ 1)n(n− 1)

6
=
n(n+ 1)(2n+ 1)

6
.

For k = 3 we get

F3(t) = (1 + 4t+ t2) ·
∑
n≥1

(
n+ 3

4

)
· tn,

and

S3(n) =

(
n+ 3

4

)
+ 4 ·

(
n+ 2

4

)
+

(
n+ 1

4

)
=

(n+ 3)(n+ 2)(n+ 1)n+ 4(n+ 2)(n+ 1)n(n− 1) + (n+ 1)n(n− 1)(n− 2)

24

=
n(n+ 1)(6n2 + 6n)

24
=
n2(n+ 1)2

4
.

For k = 4 we get

F4(t) = (1 + 11t+ 11t2 + t3) ·
∑
n≥1

(
n+ 4

5

)
· tn,

and

S4(n) =

(
n+ 4

5

)
+ 11 ·

(
n+ 3

5

)
+ 11 ·

(
n+ 2

5

)
+

(
n+ 1

5

)
=

(n+ 4)(n+ 3)(n+ 2)(n+ 1)n+ 11(n+ 3)(n+ 2)(n+ 1)n(n− 1)

120

+
11(n+ 2)(n+ 1)n(n− 1)(n− 2) + (n+ 1)n(n− 1)(n− 2)(n− 3)

120

=
24n5 + 60n4 + 40n3 − 4n

120
=

4n(2n+ 1)(n+ 1)(3n2 + 3n− 1)

120
.

Finally, for k = 5 we get

F5(t) = (1 + 26t+ 66t2 + 26t3 + t4) ·
∑
n≥1

(
n+ 5

6

)
· tn,

and

S5(n) =

(
n+ 5

6

)
+ 26 ·

(
n+ 4

6

)
+ 66 ·

(
n+ 3

6

)
+ 26 ·

(
n+ 2

6

)
+

(
n+ 1

6

)
=

(n+ 5)(n+ 4)(n+ 3)(n+ 2)(n+ 1)n+ 26(n+ 4)(n+ 3)(n+ 2)(n+ 1)n(n− 1)

720

+
66(n+ 3)(n+ 2)(n+ 1)n(n− 1)(n− 2) + 26(n+ 2)(n+ 1)n(n− 1)(n− 2)(n− 3)

720

+
(n+ 1)n(n− 1)(n− 2)(n− 3)(n− 4)

720

=
−60n2 + 300n4 + 360n5 + 120n6

720
=
n2(2n2 + 2n− 1)(n+ 1)2

12
.
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