Parallel Dataflow Graph Coloring

Ahmet Erdem Sarıyüce1, \textbf{Erik Saule}2, and Ümit V. Çatalyurek1,3

esaule@uncc.edu, \{aerdem,umit\}@bmi.osu.edu

1Department of Biomedical Informatics, The Ohio State University
2Department of Computer Science, University of North Carolina at Charlotte
3Department of Electrical and Computer Engineering, The Ohio State University

Scheduling in AussoisW DagstuhlWWWW
Algorithms and Scheduling Techniques for Exascale Systems
Outline

1. Parallel Graph Coloring
2. Dataflow Graph Coloring
3. What’s the link with scheduling?
4. Conclusion
The Graph Coloring Problem

Definition
Coloring a graph consists in assigning a color (an integer) to each vertex so that no two adjacent vertices have the same color.

Complexity
The problem of finding the coloring with minimum number of colors is NP-Hard.
No approximation within $|V|^{1-\epsilon}$. Greedy algorithm returns a solution with less than $1 + \Delta$ colors.
Graph Coloring Algorithm

First Fit algorithm

Pick a vertex and assign it the first available color. Then pick another one.
There exists a vertex ordering which leads to an optimal coloring.

Algorithm 1: Sequential greedy coloring.

Data: \(G = (V, E) \)

for each \(v \in V \) do
 for each \(w \in \text{adj}(v) \) do
 forbiddenColors[\text{color}[w]] ← \(v \)
 color[\(v \)] ← \(\min \{ i > 0 : \text{forbiddenColors}[i] \neq v \} \)

Many derivative algorithms:
- With Largest First
- With Smallest Last
- Dynamic orderings
- Least Used instead of First Fit.
- Iterated algorithm to do local descent.

Today, let’s talk about the natural one.
Parallel Speculative Graph Coloring (Shared Memory)

Algorithm 2: TentativeColoring

Data: $G = (V, E)$, $\text{Visit} \subset V$, $\text{color}[1 : |V|]$

1. $\text{maxcolor} \leftarrow 1$
2. $\text{localMC} \leftarrow 1$
3. for each $v \in \text{Visit}$ in parallel do
 3.1. for each $w \in \text{adj}(v)$ do
 3.1.1. $\text{localFC}[\text{color}[w]] \leftarrow v$
 3.1.2. $\text{color}[v] \leftarrow \min\{i > 0 : \text{localFC}[i] \neq v\}$
 3.2. if $\text{color}[v] > \text{localMC}$ then
 3.2.1. $\text{localMC} \leftarrow \text{color}[v]$
5. $\text{maxcolor} \leftarrow \text{Reduce}(\text{max}) \text{localMC}$
6. return maxcolor

Algorithm 3: DetectConflict

Data: $G = (V, E)$, $\text{Visit} \subset V$, $\text{color}[1 : |V|]$

1. $\text{Conflict} \leftarrow \emptyset$
2. for each $v \in \text{Visit}$ in parallel do
 2.1. for each $w \in \text{adj}(v)$ do
 2.1.1. if $\text{color}[v] = \text{color}[w]$ then
 2.1.2. if $v < w$ then
 2.1.3. atomic $\text{Conflict} \leftarrow \text{Conflict} \cup \{v\}$
3. return Conflict

At least two passes. More if unlucky (in practice $2 + \epsilon$)
Outline

1. Parallel Graph Coloring
2. Dataflow Graph Coloring
3. What’s the link with scheduling?
4. Conclusion
Parallel Dataflow Algorithm

Principle
The principle of Dataflow algorithm is that the generation of a result triggers the computation of the next tasks.

Dataflow coloring
The idea is to pick an absolute order of the vertices and each vertex only consider the color of the vertices with ID lesser than theirs.

- 0 and 1 can be executed concurrently
- 2 and 3 can be executed concurrently
- 4 and 5 can be executed concurrently

Not speculative, so only one pass.
Two approaches

Pick the vertices in some order. What happens when you pick a vertex with neighbors with high priority which haven’t been allocated a color.

Recursive Dataflow
You recursively process the neighbor.
- No waiting time
- Some form of “workstealing” algorithm
- Complex synchronisation
- Higher memory allocation (or potentially redundant work)

(Direct) Dataflow
You wait.
- No redundant work
- Simpler worksharing constraint.
- But maybe you waste time waiting.
Which is best?

with lots of (yet) unexplained optimizations.

Erik Saule (UNCC) Parallel Dataflow Coloring Dagstuhl 2013 9 / 21
Outline

1. Parallel Graph Coloring
2. Dataflow Graph Coloring
3. What’s the link with scheduling?
4. Conclusion
In practice, parallel speedup is 1

The graph is executed one vertex after another. So there are actually dependencies.

Graham List Scheduling

When scheduling a dag, a greedy algorithm gets:

\[C_{max} \leq \frac{W}{p} + (1 - \frac{1}{p}) CP \]
In practice, parallel speedup is 1

The graph is executed one vertex after another. So there are actually dependencies.

Graham List Scheduling

When scheduling a dag, a greedy algorithm gets:

$$C_{\text{max}} \leq \frac{W}{p} + (1 - \frac{1}{p})CP$$
It gets worse...

If you use a static OpenMP schedule, you add \textit{de facto} dependencies in your graph. And the critical path increases significantly.

That’s easy! Let’s use dynamic instead!
It gets worse...

If you use a static OpenMP schedule, you add *de facto* dependencies in your graph. And the critical path increases significantly.

That’s easy! Let’s use dynamic instead!
Even if you use a dynamic OpenMP schedule, similar effect still happen. With two threads 4 and 5 need to be executed before 6 can start. So 1, 2 and 3 are implicit predecessor of 6. Because that is what the scheduler will do.

An easy solution
Compute a level by level order. Well... That requires a graph traversal. The whole point was to traverse the graph only once.
Even if you use a dynamic OpenMP schedule, similar effect still happen.

With two threads 4 and 5 need to be executed before 6 can start. So 1, 2 and 3 are implicit predecessor of 6. Because that is what the scheduler will do.

An easy solution
Compute a level by level order. Well... That requires a graph traversal. The whole point was to traverse the graph only once.
It gets EVEN worse

Nobody should use “dynamic,1”

Since vertices are grouped together, by openmp’s granularity, you have implicit edges between the vertices of each group. There is an implicit edge between 1 and 2, and between 5 and 6.

In this type of kernel, you should at least use groups of 32 vertices.
It gets EVEN worse

Nobody should use “dynamic,1”

Since vertices are grouped together, by openmp’s granularity, you have implicit edges between the vertices of each group. There is an implicit edge between 1 and 2, and between 5 and 6.

In this type of kernel, you should at least use groups of 32 vertices.
First Results

(a) auto

(b) ldoor

Ouch!
Reordering of vertex IDs

Just a chain

1 2 3 4 5 6 7 8

The critical path can be quite long in a natural ordering.

At best

1 2 3 4
5 6 7 8

Need to traverse the graphs...
Reordering of vertex IDs

Just a chain

1 2 3 4 5 6 7 8

The critical path can be quite long in a natural ordering.

At best

1 2 3 4
5 6 7 8

Need to traverse the graphs...

At random

6 2 1 4 3 7 5
8

Not best but probably not the worst you can get.
For cache purposes, you need to keep some locality, so you shuffle blocks of vertices.
Any guarantee on that?
Results

Erik Saule (UNCC)

Parallel Dataflow Coloring

Dagstuhl 2013

17 / 21

Graph showing the speedup of different shuffle block sizes with varying numbers of threads.
Outline

1. Parallel Graph Coloring
2. Dataflow Graph Coloring
3. What’s the link with scheduling?
4. Conclusion
Faster than speculative coloring?

Owens (8 cores)

Oakley (16 cores)

Works on small machines.
Impact seem to decrease with core count.

- There is an other limiting factor

Mirasol (40 cores)
Wrap up

Conclusions

- designed and tested dataflow coloring algorithms on multicore architectures.
- analyzed their performance.

Classical scheduling helps understanding performance issues in not-so-related problems. Similar analysis performed on BFS.

Future works

- how to pick a better order?
- can we get rid of the computation and lookup of permutation?
Thank you

More information
Contact: esaule@uncc.edu
Visit: http://webpages.uncc.edu/~esaule