Performance Optimization on Massively Parallel Platforms with Heterogeneous Memory Architectures

Bo Wu
Colorado School of Mines

Motivation

- Massively parallel platforms require heterogeneous memory architectures for optimal performance
 - Nvidia GPUs have shared memory, device memory, and can directly access host memory
 - Intel Knights Landing processors have on-package high-bandwidth memory
- The different memory modules have their unique performance characteristics
- Programmers have to fine-tune the applications to match the massive parallelism with the memory heterogeneity

Case Study

Processing very large graphs on one single GPU

- The input graph is too large to fit in the device memory
- The graph applications typically need many super steps, resulting in redundant data transfers between the host memory and the device memory
- Existing approaches cannot efficiently use shared memory due to the irregularity

Our idea: vertex renaming

The framework

Goals

- Understand the interplay between program behaviors and different placement strategies
- Understand the trade-off between data migration and data placement
- Design a compiler and/or runtime optimization framework to automatically and transparently optimize performance
- Demonstrate the performance benefits on real-world complex applications in various scenarios