CSR: Small: Effective Sampling-Based Miss Ratio Curves – Theory and Practices

Zhenlin Wang, Michigan Technological University

- Develop a new cache model based on reuse time distribution and a novel concept of average eviction time (AET) to construct miss ratio curves effectively [1]. Focus on in-depth study of the hypotheses behind the model and develop theoretical foundation for sampling.
- Conduct a systematic comparison of recent cache models with respect to their assumptions of access distribution: the reuse distance-based models such as SHARDS and Counter Stacks, and the reuse time-based models: the footprint theory, Statstack, and AET [2].
- Study theory and practice for hardware cache partitioning. Develop effective online miss ratio curve approaches that exploit the recent Intel Cache Allocation Technology (CAT) [3].

Objectives

- Investigate theory and practice for hi-page sets and exploit hi-page pages to reduce TLB pressure. The two classes of pages, regular or hi-page, introduce a new challenge to the AET model with nonuniform miss penalties and block granularities. We propose a study on composability of AET-based MRCs and examine the impact of different page sizes and mis penalties [4].
- Research theory and practice for key-value memory cache management and its interaction with hypervisor-level dynamic memory management [5].

References and Publications

Miss Ratio Curve (MRC) using Average Eviction Time (AET)

AET Process:
1. Find reuse time distribution through sampling
 - For all t, find P(t), the probability for an access with a reuse time greater than t
2. AET Model: Given P(t), find average eviction time of cache size c
3. Miss ratio curve: given cache size c, find miss ratio

AET shows comparative prediction accuracy when compared to SHARDS [6], using the MSR traces by Microsoft Research Cambridge

- SHARDS is a reuse distance-based model
 - Applies spatial sampling to reduce costs
 - Uses approximation w.r.t. sampling rate to estimate reuse distances
- AET is a reuse time-based model
 - Explores a variety of sampling
 - Needs to model the relationship between reuse time and reuse distance

AET model is composable:
- With reuse-time distribution of each individual program or trace, AET can model the co-run MRC.

The graph on the right shows the MRC of four MSR traces and the co-run MRC.

Summary:
AET shows advantages in both time and space complexities

Cache Allocation Through Partial Sharing (CAPS)

AET-Based Working Set Size (WSS) Prediction for Virtual Machines

Apply AET to predict WSS of a virtual machine:
- To track a page access, set a reserved bit to trap into the hypervisor
- Load balance between virtual machines
 - Sampling (random or spatial)
 - Hot set: only trap/model cold pages

Sampling rate control:
- Empirically, one over a million soft page faults yields acceptable overhead
- Need to track a sufficient number of cold pages
- Balance between hot set size (HSS) and sampling rate

Without hot set, the AET model shows high accuracy with low sampling rate. The result on the right shows 1% sampling rate delivers the same MRC as 100% (a micro-benchmark on Pin). In [1], we show 10^6 sampling rate is acceptable

Trapping short reuse times is prohibitive. Hot set filters short reuse times as shown on the right. The RTH of mp in SPEC 2006 beyond the 512-page hot set is accurate with the counts reduced to 1% (sampling rate) of the actual.

The two figures compare the predicted WSSs along the execution of mp in SPEC 2006 beyond the 512-page hot set is accurate with the counts reduced to 1% (sampling rate) of the actual.

Challenges and ongoing work:
- Disjoint partitioning (non-overlap) performs better than full sharing by avoiding cache contention
- Partial sharing explores the potential of CAT better by allowing partition overlapping
- The improvement space is significant, such as 11% in average throughput across 75 workloads
- Diverse performance target yields different partitioning schemes
- Partial sharing explores the potential of CAT better by allowing partition overlapping
- The improvement space is significant, such as 11% in average throughput across 75 workloads

Case study on one workload mix:
- Different performance target yields different partitioning schemes
- Disjoint partitioning performs better than full sharing by avoiding cache contention

Simulated annealing algorithm:
- Probabilistic algorithm to search a large space
- Applies random walk and a probability, AT, to accept a worse state to avoid getting stuck in a local optimum
- Uses MRCs and an iterative cache occupancy model to predict target performance
- Controls search using temperature

Average performance across 75 workloads:
- Disjoint partitioning (non-overlap) performs better than full sharing by avoiding cache contention
- Partial sharing explores the potential of CAT better by allowing partition overlapping
- The improvement space is significant, such as 11% in average throughput

Collaborators
- Peking University: Yingwei Luo, Xiaolin Wang, Xiumeng Hu, Lan Zhou, Zhigang Wang, Fan Hou, Taowei Luo, Zihui Huang, Yascheng Xiang
- Michigan Tech: Nilifar Onder, Daniel Byrne, Wei Kuang
- University of Rochester: Chen Ding