Overview

Motivation & Objectives
- Increasingly networked cyber-physical systems
 - Internet of Things (IoT), Wireless Sensor Networks (WSNs)
 - Distributed data collection, aggregation and processing
- Tight computation and communication coupling
 - Non-obvious interactions and tradeoffs
 - Traditionally networks and systems are designed in isolation
 - Ignores joint optimization challenges and opportunities
- Systematic computation/communication co-design
 - Comprehensive design space exploration
 - Joint consideration of design parameters from applications to network configurations and system platform definitions
- Unified models of computation and communication (MoCC) for NoS specification
- Extension of existing (synchronous) dataflow models
- Empty tokens and actor variants: expose network losses to the application level
- Reactive island: firing idle variant of source actor triggers all subsequent connected actors to fire their idle variants

Design Flow
- From network-level specification
 - Formal models of computation and communication for high-level network-of-systems (NoS) specification
 - Exposing network uncertainties
 - Dynamic aspects of adaptivity and reactivity
- To networked system implementation
 - Network and system co-design
 - Architecture definition and application mapping
 - Fast yet accurate network-of-systems (NoS) simulation for validation, prototyping and exploration
- Specification & implementation models for NoS design automation

Network-of-Systems (NoS) Specification

Motivation
- Traditional models
 - Models of computation require lossless communication and can not simultaneously capture streaming and reactive behavior
 - Models of communication support richer network semantics but do not account for expressing system computation & concurrency
- Unified models of computation and communication (MoCC) for NoS specification
- Extension of existing (synchronous) dataflow models
- Empty tokens (e)
 - Lost data and absence of sporadic events in input patterns
 - Maintain guaranteed determinism
- Actor variants
 - Different variants per token patterns
 - Idle version executed when input patterns are all empty-tokens

Adaptivity
- Empty tokens and actor variants: expose network losses to the application level
- Reactive island: firing idle variant of source actor triggers all subsequent connected actors to fire their idle variants

Performance Analysis
- Worst-case throughput and latency
- Conversion to scenario-based/modal model leads to exponential complexity
 - Account for all possible actor variant combinations
- Calculate throughput & latency of the graph formed by taking the WCET of each actor
 - Lossy channels isolate actor variants
 - Might under-estimate the worst-case

Future Work
- Implementation of RADF semantics
 - Multiple distributed implementation choices
- Analysis techniques for probabilistic performance metrics
 - Tradeoff between latency, throughput and QoS versus token loss probability

Network-of-Systems (NoS) Simulation

Motivation
- Traditional system models
 - Over-simplified system models
 - Flexible to instantiate a wide range of configurations
- Traditional network models
 - Over-simplified network models
 - Combined with instruction-set models
 - Abstract operating system (OS) model
 - SystemC transaction-level modeling (TLM) base
- Network system co-simulation
 - Capture and emulate complicated system/network interactions
 - Fast and accurate to support large scale and complexity of NoS
 - Flexible to instantiate a wide range of configurations

Host-compiled NoS Simulator
- Host-compiled (HC) system simulator
 - Source-level back-annotated application model
 - Abstract operating system (OS) model
 - Network stack model (nW)
 - SystemC transaction-level modeling (TLM) base
- Network simulation backplane
 - OMNeT++ network simulator
 - OMNeT++ network topology
 - INET package for media access (MAC) and physical (PHY) layer simulation
 - Host-compiled SystemC device instances in an overall OMNeT++/INET network topology

NoS Design Space Exploration
- IoT application case study
 - ECG diagnosis application
 - 4 offloading stages (O-n)
 - Wireless client-server topology
- System/network parameters
 - Client/server core types and counts (S_xY_Y)
 - Communication protocols

References

Simulation Speed
- Simulation speed
 - 0.18 simulated sec./real sec on average

Supported by National Science Foundation (NSF) Grant CSR-1421642