Infiniswap

Efficient Memory Disaggregation

Juncheng Gu, Youngmoon Lee, Yiwen Zhang, Mosharaf Chowdhury, Kang G. Shin

Background

- Memory-intensive applications are everywhere
 - Low-latency: VoltDB, Memcached
 - Data-intensive: PowerGraph, GraphX

Underutilization Problem

Google cluster analysis [Charles et al., SoCC 2012]
- 80% memory is allocated, but only 50% is used
- Utilization is imbalanced too

Memory Disaggregation

Expose cluster memory across server boundaries for performance and efficiency
- In a scalable manner
- With fault-tolerance

Infiniswap Overview

Scalable and fault-tolerant memory disaggregation using one-sided RDMA
- Without new hardware
- Without modifications to applications and OS
- Page-level operation, slab-level management
- Decentralized design using power-of-many choices

Slab Placement

Select the least-loaded of the two machines to map slab S

Slab Eviction

Contact up to $E+E'$ machines to evict E slabs

Disproportionate performance drops with insufficient memory

Application Performance

- 4X ~ 15.4X higher throughput
- 5.4X ~ 61x lower latency

Microbenchmarks

- 2-4X higher throughput than Mellanox nbdX
- Zero remote CPU overhead

Cluster Utilization

- 1.47X higher memory utilization

Going Forward

Can we improve performance under large failure scenarios?
How to isolate applications when using remote memory?

https://github.com/Infiniswap/infiniswap