1. Motivation and Broader Impacts

Vision
Self-aware substrates with embedded sensors that can self-power, sense, compute and self-organize their communications.

Analysis and Maintenance
Continuous monitoring of structural health with minimal maintenance and configuration costs.

Impact
Substrate – as continuous source of energy and communication medium.

Rationale
Concept of Smart Substrate Plate (SSP) – a modular platform with integrated sensing nodes.

Outcome
Smart Substrate

2. Intellectual Merits

Uniqueness
Modular architecture where SSP can be assembled without need for additional instrumentation or wiring.

Robustness
Communication through substrate makes the architecture robust to RF jamming or denial or service attacks. More energy efficient in specific cases.

3. Results and Milestones

Results 1: Pulse based Ultrasound Networking – Using Pulse-interval encoding (PIE) for transmitting and routing information through the substrate [1].

Results 2: Custom substrate computing and communications processor [3].
- Each sensor node harvests its operational energy from ambient vibrations in the substrate.
- When sufficient energy is harvested, the measurement module wakes up determine the failure state in its local environment.
- If a salient event is detected, the transmitter module is activated, which continuously transmits the local ID.
- When a node receives a PIE packet from its neighboring node, it retransmits the packet. The process is repeated till the sink receives the event.
- The sink then examines the source of the event, filters out false-alarms and localizes the substrate area to be examined.
- The proposed approach is scalable and can be applied to different types of substrates including biological substrates.
- Demonstrated different multi-access PIE ultrasound telemetry that is compatible with standard B-scan and M-scan ultrasound imaging protocols.

Results 3: In-vivo substrate communications [2].

Acknowledgement: National Science Foundation, CSR 1405273