Abstract- We propose a joint channel selection and quality aware routing scheme for multi-channel wireless sensor networks to improve the network lifetime. A data collection traffic pattern is assumed, where all sensor nodes perform periodic sensing and forwarding of data to a centralized base station (sink). The proposed scheme achieves lifetime improvement by reducing the energy consumed by overhearing and also by dynamically balancing the lifetimes of nodes. Performance evaluations are presented from experimental studies as well as from extensive simulation studies to show the effectiveness of the proposed scheme.

Keywords: Wireless sensor networks, multi-channel routing, distributed algorithms.

I. INTRODUCTION

Development of new approaches for optimizing energy usage is a key issue for achieving reliable and long-term operation of wireless sensor networks (WSNs). Since batteries are hard to replenish, energy optimization is a critical design requirement for all protocols and algorithms for WSNs. Much of the work on energy optimization in WSNs are focused on development of methods for minimizing the number of radio transmissions and/or receptions, which is the largest contributor to energy usage in sensor nodes. The complexity of this energy optimization problem in sensor networks arises due to the fact that it has to be addressed by network wide adaptations as opposed to independent adaptations at the nodes.

We consider large-scale WSNs for data collection applications, where implementation of network-wide time synchronization is a significant challenge. Hence, it is difficult to apply synchronized duty cycling and scheduled transmissions in such networks, which are critical for avoiding energy wastage from overhearing. In this work, we propose the use of multiple orthogonal channels to alleviate the overhearing problem and thereby improve the network lifetime. Current WSN platforms such as MICAz and Telos that use CC2420 radio can operate on multiple channels, which are traditionally used to address interference problems. We develop a quality and battery-health aware Distributed Routing and Channel Selection (DRCS) scheme that dynamically chooses channels and routes to optimize network lifetime and performance. The objective is to dynamically equalize the remaining lifetimes of nodes as estimated from their current battery capacity and usage. The performance of DRCS is obtained from experiments using a MICAz testbed as well as from simulations. Performance comparison with an existing multi-channel routing protocol for WSNs is also presented from simulations. This work is an extension of our previous work that was presented in [1], where we discussed a distributed channel selection scheme based on hop-counts and battery healths of the nodes. The current work incorporates a new link quality metric instead of hop-count that makes this scheme suitable for applications in real world channel varying scenarios.

II. RELATED WORK

Multi-channel routing in wireless networks has received a lot of attention in recent times [2], [3], [4], [5]. However, most of the work published in this area either assume a multi-radio transceiver at each node or generate high control overhead for channel negotiation. Much of this work focuses on reducing the complexity of solving the joint channel selection and routing problem. These schemes are not suitable for WSNs where each sensor is typically equipped with single radio transceiver and has limited computational capabilities. In addition, overhead must be minimized since energy resources are at a premium. Some multi-channel MAC protocols for WSNs such as MMSN [6], TMMAC [7], MMAC [8] are designed for single radio interfaces per node. However, they require precise time synchronization, which is hard to obtain in WSNs.

Recently, some strategies for joint channel assignment and routing for WSNs were proposed in [9], [10], [11]. In [9], the authors propose a Tree-based multichannel protocol (TMCP) where the whole network is statically divided into mutually exclusive single-channel subtrees to reduce interference. Authors in [10] propose a control theory approach that selects channel dynamically to achieve load balancing among channels, whereas in [11] authors propose a channel assignment scheme for WSNs based on game theory to reduce interference. All of the above schemes mainly consider reducing network interference. Interference is proportional to packet size as well as packet interval. Generally in WSNs the packet size as well as packet interval are small, thus interference is usually not a primary performance factor. Also, some of the above approaches are either centralized or need the topology information that is not always possible to obtain in WSNs. As opposed to these contributions, the proposed DRCS protocol performs channel selection and routing together for improving the battery lifetime in WSNs, which is the main contribution of this paper. Furthermore, DRCS is distributed, can be applied...
without time synchronization, and requires a single transceiver per node.

III. MOTIVATION BEHIND THIS WORK

Radio transmissions as well as receptions are the critical energy-consuming tasks in typical low-powered wireless sensor nodes. For instance, the MICAZ nodes draw about 20 mA of current while transmitting and receiving, whereas it draws about 20 \(\mu A \) in idle mode and 1 \(\mu A \) in sleep mode. Hence, a key aspect of designing energy-efficient wireless sensor nodes is to minimize the radio active periods, allowing the node to sleep as long as possible. Popular energy efficient wireless sensor networking protocols such as \(XMesh \) [12] employs low-power (LP) operation by letting nodes duty cycle in their sleep modes for brief periods of time to detect possible radio activity and wake up when needed. While this principle extends the battery life (lifetime) of the nodes considerably, a key factor that leads to energy wastage is overhearing, i.e. receiving packets that are intended for other nodes in the neighborhood. The traditional mechanism used for avoiding overhearing is transmission scheduling, which requires time synchronization that we assume is absent in the WSNs.

The effect of overhearing is illustrated in Figure 1, which depicts an experiment using six MICAZ motes and a sink. The network is programmed with the collection tree protocol (CTP) [13] application where each node transmits periodic data packets comprising of sensor observations with an interval of 10 seconds and routing packets (beacons) with an interval that varies between 128 and 512000 milliseconds. The network uses the beacons to build link quality based least-cost routes from all nodes to the sink. All nodes use an extremely low transmit power of \(-28.5\) dBm and apply the LowPowerListening scheme [14] with a wake-up interval of 125 milliseconds. We run this experiment for 10 minutes and record the total number of beacons and data packets sent/received throughout the network as well as the network wide overhearing. The results, shown in Figure 1(b), indicate that even with sleep cycles, overhearing is a dominating factor in the energy consumption in the nodes. Consequently, a mechanism to optimally distribute the network traffic over multiple channels would lead to reduction in overhearing and significant improvement in the lifetime of the network.

In addition to reducing overhearing, a second consideration for improving the network lifetime is to address the effect of differential battery drainage among the nodes. This is motivated by experimental observations from a WSN testbed that was developed by the authors for health monitoring of high-power equipment in a power substation. Figure 2(a) and Figure 2(b) depicts the average battery usage of nodes in different geographical zones over a period of five months (b). ParadiseNet uses a single-channel link quality based routing protocol. The goal of this work is to develop a multi-channel tree for such WSNs to extend its lifetime (c).

IV. MULTI-CHANNEL ROUTING IN WSNs

In data collecting wireless sensor networks the forwarding scheme follows a tree structure connecting the nodes to the sink. With a single channel, a node overhears all nodes that are in the receiving range of that node. Our first objective is to use a multi-channel tree so that the overhearing problem is reduced. In our scheme, the available channels are distributed among the nodes so that each node listens on its selected channel by default. For data transmissions and forwarding, each node temporarily switches to the channel of its parent and

![Fig. 1. Experimental setup (a) to assess the activities of the radio (b) of a wireless sensor node performing data collection.](image)

![Fig. 2. Illustration of the layout (a) of ParadiseNet [12], a 122-node WSN deployed for equipment health monitoring from a power substation, and the average battery usage of nodes in different geographical zones over a period of five months (b). ParadiseNet uses a single-channel link quality based routing protocol. The goal of this work is to develop a multi-channel tree for such WSNs to extend its lifetime (c).](image)
switches back to its designated channel when the transmission is completed. Selection of designated channels as well as parents are performed based on a battery health parameter H and a link quality parameter (ETX), as explained below. While channel selection builds a multi-channel tree that is the primary mechanism for overhearing reduction (see illustration in Figure 2(a), where different channels are shown in different colors), it also builds the framework for dynamic route and channel selection to achieve load balancing, which is designed to meet our second objective of lifetime equalization.

A. Preliminaries

We define the battery health-metric H of a node to represent its remaining battery lifetime, i.e. the estimated time until its battery is depleted under its currently estimated energy usage. We assume $H \propto \frac{1}{x}$, where B is the remaining capacity of the battery and T represents the estimated current drawn at the node. Based on the experimentally validated model in Equation (1), the current drawn in each node is calculated as follows:

$$T = \frac{I_m T_{rec}}{T_B} + M.I_D T_{D_t} + N.I_m T_{rec} + O.I_D T_{D_r} + F.I_D T_{D_t} + I_s T_{D_r} + N_P.I_P T_{F}$$

where I_s and T_s represent the current drawn and the duration, respectively, of the event x; and T_B represents the beacon interval. Transmission/reception of beacons is denoted by B_I/B_R, data transmit/receive is denoted by D_I/D_R and processing and sensing are denoted as P and S, respectively. O and F are the overhearing and forwarding rates, respectively, and N is the number of neighbors. M is the rate at which a node transmits its own packets. If there are no retransmissions, then $M = \frac{1}{T_D}$, where T_D is the data interval. N_P represents the number of times that a node wakens per second to check whether the channel is busy, and is set to 8 in our application. We assume that each node is able to estimate all the dynamic parameters that are used in equation (1), by periodic assessment of its overheard and forwarded traffic.

In this work, we assume that the battery capacity B is estimated from the battery voltage. We consider MICAz nodes, which operate in a voltage range of 2.7V to 3.3V. Experimental data from ParadiseNet indicates that the discharge curve for alkaline cells under typical usage (i.e. $< 1mA$ average current) is approximately linear within this range. This is illustrated in Figure 3. The actual battery voltage is related to the ADC reading as follows: $V_{bat} = \frac{1.223 \times \text{ADC reading}}{5024}$. Thus, assuming that the capacity is 100% when the battery voltage is greater than or equal to 3V (ADC reading = 417 from MICAz voltage sensor), and 0% when it drops below 2.6V (ADC reading = 482), the battery capacity can be estimated as $B = \min(100, \frac{482-\text{ADC reading}}{0.65})$. Although this is not an accurate estimate, it provides a computationally simple assessment of the battery health.

To estimate the quality of a route, we use the expected number of transmissions (ETX) that is used in CTP. An ETX is the expected number of transmission attempts required to deliver a packet successfully to the receiver. Hence, a low ETX value indicates a good end to end quality of a route, and vice versa. In our scheme, ETX is calculated similar to [13].

B. The Proposed DRCS Scheme

We now present the proposed distributed channel selection and routing scheme DRCS for single-radio WSNs that distributes transmission over multiple channels and tries to balance the remaining lifetimes of all nodes for extending the overall lifetime of the network. We define the receiver channel of a node to be its designated channel for receiving all incoming packets. On the other hand, a transmit channel is the channel to which a node switches temporarily to transmit, which is the receiver channel of its intended destination. According to DRCS, nodes select their receiver channels to enable distribution of traffic over multiple orthogonal channels. Since nodes listen to their receiver channels by default, overhearing is limited to neighboring transmissions on a node’s receiver channel only. Transmit channels are chosen dynamically to prolong the lifetime of the neighboring node with the worst battery health-metric. Note that channel selection is tied to parent selection, which leads to route determination. Hence the proposed approach leads to a joint channel selection and routing in the WSNs.

As shown in Figure 4, the channel selection scheme in DRCS runs in two stages, which is described below. We assume that all nodes broadcast periodic beacon messages, which include their node ID, their receiver channel, ETX value and their battery health-metrics.

First stage: In this stage, all nodes use a common default channel. Each node chooses a random backoff (this ensures that nodes choose channels one after another) and selects the least used channel in its neighborhood when the backoff timer expires. This channel becomes the node’s receiver channel, which it announces to its neighbors via beacon packets. If there are multiple channels that are least used, the tie is broken by choosing a random channel among the channels that make the tie. All nodes store their neighbors as well as the neighbors’
receiver channel information. After a certain time interval τ, the second stage begins.

Second stage: In the second stage, all nodes switch to their receiver channels. In this stage, nodes dynamically perform parent selection, and consequently, their transmit channels, based on periodic assessments of the battery health and ETX parameters. This is done as follows. For any channel c, each node calculates $H_c = \min\{H_i\} \forall i \in S_c$ where S_c is the set of neighbors that are in receiver channel c and H_i is the health metric of node i. In order to transmit to the sink, nodes that are immediate neighbors of the sink switch to the common default channel for transmitting DATA packets. All other nodes choose a transmit channel c with a probability of $\frac{H_i}{H_c} \cdot \frac{1}{e_c}$, where $H = \sum H_i \forall$ channel i in the node’s neighborhood such that there is at least one neighbor that is in channel i and whose ETX is less than the node’s ETX. e_c is the ETX of the link between a node and the neighbor in c that has the lowest path metric to the sink. The term $\frac{H_i}{H}$ ensures that the receiver channel of the node with the worst health-metric is chosen with the lowest probability. This mechanism minimizes the overhearing for the neighboring node that has the worst channel. Thus, that channel is avoided in the next RUIs.

If a channel is overused, its ETX will increase, resulting in other nodes to avoid selecting that node. Moreover, the corresponding channel will be chosen with lower probability in the next RUIs.

The proposed scheme does not incur any additional control overhead other than periodic beacon updates. Also, to avoid **idle listening**, nodes use low-power listening where they sleep most of the time and wake up in periodic intervals. If they sense some channel activity, they remain on. Otherwise, they go back to sleep to conserve energy. Problems such as routing loop detection and repairing are tackled similar to CTP. One possible drawback of the DRCS is channel switching when the receive and transmit channels of a node are different. However, we show that data collection application with low data rates, this does not pose any problems. For high data rate applications, frequent channel switching may result in some data loss.

V. PERFORMANCE EVALUATION

This section presents evaluation results of DRCS from experiments on a real testbed as well as from simulations. We first demonstrate that our proposed multi-channel scheme effectively reduces overhearing using an experimental testbed comprising of 18 MICAz motes. We also show the effectiveness of the dynamic channel selection scheme based on individual node’s battery health metrics. To show the performance of our scheme in a larger network, we implement this scheme in the Castalia simulator [17] on a 150-node network. Finally, we compare the performance of DRCS with a well-known channel assignment scheme TMCP. Parameters used for experiments and simulations are listed in Table I.

<table>
<thead>
<tr>
<th>Var</th>
<th>Values</th>
<th>Var</th>
<th>Values</th>
<th>Var</th>
<th>Values</th>
<th>Var</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_{Bt}</td>
<td>20 mA</td>
<td>I_{Dt}</td>
<td>140 ms</td>
<td>I_{Br}</td>
<td>20 mA</td>
<td>I_{Dr}</td>
<td>140 ms</td>
</tr>
<tr>
<td>I_{Dt}</td>
<td>20 mA</td>
<td>I_{Dr}</td>
<td>140 ms</td>
<td>I_{Br}</td>
<td>20 mA</td>
<td>I_{Dr}</td>
<td>140 ms</td>
</tr>
<tr>
<td>I_F</td>
<td>8 mA</td>
<td>I_P</td>
<td>3 ms</td>
<td>I_D</td>
<td>7.5 mA</td>
<td>I_S</td>
<td>112 ms</td>
</tr>
</tbody>
</table>

A. Evaluation in a real testbed

We implement our proposed scheme DRCS in TinyOS using MICAz motes that use LowPowerListening with wake-up intervals of 125 milliseconds. The beacon interval, DATA interval and τ are chosen to be 30, 60 and 180 seconds respectively. The transmit power is chosen to be -28.5 dBm to enable experimentation in a small place. We place 18 motes that periodically sense and forward sensor data to the sink using our proposed multi-channel routing scheme DRCS. The position of the sink is varied to form three different network
topologies as shown in Figure 5(a)-(c). For ease of obtaining packet counts, we disable retransmissions. The results obtained over a duration of 15 minutes are shown in Figure 5(d)-(e). It is observed that in all three topologies, the number of packets received at the sink drops only marginally with increasing number of channels, even with no retransmissions. This implies that the packet delivery performance is not affected by channel switching in these data-rates. However, there is a significant reduction in the total number of overhearing packets by using 2 and 4 channels. This experiment demonstrates that DRCS can significantly reduce energy wastage due to overhearing without sacrificing the delivery performance.

To show the effectiveness of the dynamic channel selection scheme, we set up a small network as shown in Figure 6(a), and monitor the variations of the number of packets overhead in a specific node when its battery voltage (and hence, its capacity) is changed manually. In this experiment, we use only 2 channels and a data interval of 15 seconds. Initially, the battery capacities of all nodes are made to be 100%. After 30 minutes, the battery voltage of node D is reduced to represent a capacity of 50%, keeping all others unchanged. Figure 6(b) shows the variation of the number of packets overhead by D over time. Each bar on the x-axis shows the number of overhead packets by D over a duration 5 minutes. It can be observed that after 30 minutes the overhearing on node D starts reducing as all other nodes switch their transmit channels to avoid the receiver channel of D. This experiment demonstrates that our proposed scheme helps in reducing energy consumption at a node with bad health-metric, which can occur due to deteriorating battery health.

B. Simulation Results

We conduct simulations to evaluate the performance of our proposed scheme in a larger network and to also evaluate the lifetime improvement achieved by DRCS. We consider a network of 150 nodes that are uniformly placed in an area of 200 × 200 meters. The transmission power is assumed to be 0 dBm. The initial battery capacities of the nodes are assumed to be uniformly (randomly) distributed between 75% to 100%. The capacity of a fresh battery (100% capacity) is assumed to be 5000mAH. The beacon interval is set to 30 seconds and the maximum retransmission count is set to 30. Each simulation is run for 500 seconds and all the results are averaged over five independent simulations.

Comparison with different datarates: Fig 7 shows the variation of the packet delivery ratios, overhearing counts and the worst case network lifetime with different number of channels and transmission rates. The worst case network lifetime is defined as the time when the first node of the network dies. It is observed that the packet delivery ratio is above 90% for all cases. This is consistent with the findings from the experimental testbed, indicating that at these data rates, the packet delivery ratio is not significantly affected by the channel switching scheme employed in DRCS. However, overhearing is reduced by nearly 60% with 2 channels and by almost 50% with 4 channels. This significantly reduces the average current consumption in the nodes and improves the network lifetime.

Comparison with TMCP [9]: Fig 8 shows the comparison of DRCS with another well-known channel assignment scheme TMCP with different number of channels. We assume a communication range of 40 meters and an interference range that is 1.5 times of the communication range. Here, we set the data interval to 3 seconds. Fig 8 shows that DRCS generates a higher packet delivery ratio in comparison to TMCP. This is due to several reasons. Firstly, TMCP uses a distance-based communication and interference model that does not effectively capture the link qualities, especially with a high channel variance σ². Secondly, DRCS uses channels more efficiently than TMCP. In TMCP nodes select the same channels as that of their parents. Hence, if the sink has n immediate neighbors and there are k channels where k > n, then at least k − n channels will be unused, since there will be at most n sub-trees in the network. On the other hand, nodes on the same sub-tree in DRCS may use multiple channels, thereby improving channel utilization. Also in case of TMCP, the parent and
channel assignments are static. These do not change even with variations of congestion and link quality. These result in poor route quality that leads to higher packet loss, retransmissions, and overhearing. Moreover, the channel quality may vary over time, which requires a dynamic protocol. It should be noted that the performance of DRCS and TMCP are similar in terms of the total reduction of overhearing with multiple channels. However, DRCS provides a much higher network lifetime that is achieved by dynamically balancing the lifetimes of individual nodes.

VI. CONCLUSIONS

In this paper, we propose a scheme for building a multi-channel tree in data gathering wireless sensor networks for maximizing the network lifetime. The proposed scheme DRCS involves distributed channel selection to enable nodes to reduce overhearing, and dynamic parent selection for minimizing the load of nodes that have the worst expected lifetime. Through simulations and experiments, we demonstrate that DRCS significantly improves the network lifetime without sacrificing the packet delivery ratio. The proposed scheme has no additional overhead other than periodic beacon updates, which makes it suitable for implementations in real-life applications to prolong the network lifetime.

ACKNOWLEDGEMENT

This work was supported in part by NSF grant CNS-1117790.

REFERENCES