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Abstract—We propose a game theoretic approach for joint
power and parent adaptation for wireless sensor networks to
improve the network lifetime. A data collecting sensor network
is assumed that employs asynchronous duty-cycling for energy
conservation. In such networks, overhearing dominates the energy
consumption, which can be controlled by adapting the transmit
power levels as well as the route selections. The goal of this work
is to determine whether there exists an assignment of power
levels and parent selections for all sensors so that each senor’s
route to sink has an acceptable quality (ETX) and also maximizes
the lifetime of the network by controlling the overhearing in
the nodes. Results from computer simulations are presented to
demonstrate the performance of this approach.

I. INTRODUCTION

Energy management is a key requirement for achieving
long term survivability of wireless sensor networks (WSN).
This is due to the difficulties in battery replacment in the
sensornodes, especially when deployed in remote locations.
Consequently, the nodes must optimize the usage of their
onboard energy resources (battery) to maximize their lifetime.
All functions in WSNs, including communication protocols
for multihop wireless networking, sensing/monitoring tasks,
multi-sensor collaboration, localization, time-synchronization,
etc. must be performed with minimum wastage of energy
resources. A viable approach for addressing the energy prob-
lem is to harvest energy from the environment, such as solar,
vibrations, thermal, etc., which potentially provides the possi-
bility of unlimited lifetime. However, WSNs that are powered
by environmental energy also face many design challenges
for energy management. Firstly, the harvested energy must
be stored in onboard rechargeable batteries for continuous
operation, which have a finite cycle life, i.e. number of charge-
discharge events possible. Hence, charging and discharging
must be conserved. Secondly, the energy harvested at the
nodes experience large variations over space and time, due
to natural and uncontrollable differences of ambient environ-
mental energy availability. For instance, solar energy highly
depends on the time of day, solar irradiance patterns, weather,
as well as location-specific shading factors. Consequently, it is
critical for the sensor nodes powered by environmental energy
to adapt the energy consumption depending in its current
energy resources as determined by the state of charge of its
rechargeable batteries.

In this work, we consider application of adapting power

control and routing to control the energy consumption in the
sensor nodes based on their individual energy resources. We
assume WSNs with data collection traffic that is typical of
environmental monitoring applications where all sensor nodes
transmit periodic sensor readings to a centralized sink node.
We further assume that the network applies asynchronous
duty cycling of sleep and wake states of the radio, also
known as low-power listen (LPL), which is a popular tech-
nique for conserving energy without requiring network wide
time-synchronization, which has additional overhead. In such
networks, overhearing is a dominating factor in the energy
consumption at the sensor nodes. Several approaches have been
proposed to reduce this overhearing effect by appropriate mod-
ifications of the LPL format, such as interruption of reception
of unnecessary packets based on information transmitted in
the preamble [1], adaptive duty-cycling [2], [3] and others.
However, these techniques do not completely eliminate the
energy wastage from overhearing in asynchronous networks,
which can be a significant loss in large scale and high density
WSNs.

In our earlier work [4], we demonstrated that joint power
control and routing can effectively control the energy con-
sumption by controlling the overhearing effect. However, this
requires cooperative control under a given set of energy con-
straints, which is difficult to solve in large scale networks. Here
we address the problem using a game theoretic framework.
The main contributions of this work are as follows. First,
we prove that the proposed distributed power control and
routing problem can be posed as a finite exact potential game
when the potential function is defined using a combination
of the network lifetime1 and the end-to-end route quality.
Secondly, we evaluate the lifetime improvement that can be
achieved using our game theoretic formulation, which requires
global information and can be only be achieved using cen-
tralized computations. However, results from such centralized
approaches are important to estimate the ”best case” perfor-
mance that can be achieved with joint power control and
routing that is numerically intensive. Finally, we evaluate a
distributed implementation of the power control and routing
algorithm, and present performance evaluations obtained from
simulations.

1We consider the network lifetime to be the smallest lifetime of the nodes
in the network under their current conditions of battery charge and current
consumptions.
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Fig. 1. Illustration of the principle of power control and routing to control
the overhearing in a critical node (red).

II. PRELIMINARIES

We assume that each node Si in the network is able to
estimate its remaining battery capacity Bi as well as its average
current consumption Ii under its current set of activities. For
data collecting networks with constant data rate and duty cycle,
the average current can be represented as [5]:

I = IBtTBt
TB

+M.IDtTDt +N. IBrTBr
TB
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+ F.IDtTDt +
IsTs
TD

+NP .IPTP (1)

where Ix and Tx represent the current drawn and the duration,
respectively, of the event x; and TB represents the beacon inter-
val. Transmission/reception of beacons is denoted by Bt/Br,
data transmit/receive is denoted by Dt/Dr and processing and
sensing are denoted as P and S, respectively. O and F are the
overhearing and forwarding rates, respectively, and N is the
number of neighbors. M is the rate at which a node transmits
its own packets. If there are no retransmissions, then M = 1

TD
,

where TD is the data interval. NP represents the number of
times that a node wakes per second to check whether the
channel is busy, and is set to 8 in our application. We assume
that each node is able to estimate all the dynamic parameters
that are used in equation (1), by periodic assessments of its
overheard and forwarded traffic.

With this, the remaining lifetime of Si can be written as:

Li =
Bi

Ii
(2)

Our objective is to determine mechanisms to control the Ii
terms for a given distribution of battery estimates Bi so
that the network lifetime, i.e. min{Li} is maximized. This
is achieved by methods that reduce the current consumption
of the node with the minimum Li, iteratively. We term the
node with the lowest Li as the critical node (note that the
critical node changes from time to time). The principle for
joint power control and routing for controlling the average
current in the critical node is illustrated in Figure 1. Here, one
of the neighbors of the critical node (marked in red) reduces
its transmit power to reduce the overhearing to the critical
node. Since overhearing is a dominating factor in the current
equation (equation 1), this helps in reducing the average
current consumption in the critical node. Note that this might
require the neighboring node to find a new parent in order to
be able to transmit to the sink using the lower transmit power.
In addition, we also perform overhearing control by controlling

the amount of forwarding traffic carried by neighbors of critical
nodes. This can be achieved by selectively diverting the routes
of children of neighbors of critical nodes to regions that
exclude the neighborhood of the critical node.

The main challenge for implementing this approach is to
determine an optimal policy for selecting power levels and
routes in the network, given a random distribution of battery
levels of the nodes. This task is computationally complex even
with global information. In the next section, we pose this
problem as a multi-player game to obtain the best case results
using global information.

III. GAME THEORETIC FORMULATION OF JOINT POWER
AND PARENT ADAPTATION PROBLEM

Consider a wireless sensor network of n sensors. Since the
lifetime of the WSN is determined by the lowest lifetime of
the nodes, we consider approaches for improving the lifetime
of the critical node only. Our approach for doing this is
by reducing the overhearing at the critical node caused by
its neighbours, which is done by reducing the power level of
neighbors (i.e., shortening the transmission range by selecting
a new parent). Since this potentially changes the network
topology, power control is associated with route selection as
well, i.e. it leads a joint power control and route selection
problem for improving the lifetime of the critical node.

We use game theory to address this problem, which is
justified due to the following reasons:

• First, the sensors make decisions spontaneously and
independently to maximize their own payoffs. They
compete to achieve that. Their objectives may be
conflicting as every node selfishly tries to maximize
its own payoff.

• Secondly, the decision of one sensor node may in-
fluence or have an effect on other nodes. Nodes can
cooperate to maximize the global objective.

A family of potential games were introduced by Monderer
and Shapley [6]. These games received increasing attention
recently in the field of wireless networks [7], [8], [9]. We
formulate the proposed power control and routing in energy
constrained WSN as a strategic game, which is proved to be
an exact potential game. Consequently, it has a pure strategy
Nash equilibrium (NE), which is our desired result for a
centralized solution for the problem. Formally, the game
is denoted by G = ⟨S, {Ai}Si∈S , {ui}Si∈S⟩. The normal
form (or strategic form) representation of the proposed game
consists of following elements:

• A set of players S = {S1, S2, ..., Sn}, which is a
group of nodes in a given wireless sensor network.

• A set of actions Ai = {a1, a2, ..., am} is the set of
available actions for player Si ∈ S. A = A1× ...×An

is the space of all possible joint actions. The strategy
profile is the pair: parent and power level. Hence, ai ∈
Ai represents the parent and power level selection of
node Si, and a−i ∈ A1× ...×Ai−1×Ai+1× ...×An

represents a parent and power selection profile of all



the nodes excluding Si, where × denotes the Cartesian
product.

• The payoffs {u1, u2, ..., un} resulted from the strategy
profile. For each player Si ∈ S a payoff function ui :
A → R, where A = ×Si∈SAi.

A node can choose different actions to maximize the
outcome. The optimal outcome of a game is one where no
player has an incentive to deviate from it’s chosen strategy
after considering other’s choice. An NE exists when there
is no unilateral profitable deviation from any of the players
involved. To reach Nash Equilibrium, it is truly necessary to
maximize the utility function. If the incentives of all players
in the game can be expressed in one global function, then
the game is called a potential game. In potential games, the
incentives of all players are mapped into one function called
the potential function. The pure NE can be found by locating
the local optima of the potential function [10].

Definition 1. (Potential game). A game ζ is a potential game
(ordinal and exact) if there exist a function ϕ : A → R such
that ϕ(ai, a−i) gives the information about Ui(ai, a−i) for
each Si ∈ S.

The potential function is a real valued function on the
strategy space that matches a deviation to a change of the
potential value. Depending on the matching, a game can be an
ordinal potential game or an exact potential game. In exact
potential game, the difference in payoffs of a node when
changing unilaterally its strategy has the same value as the
difference in values of the potential function. Whereas, in an
ordinal potential game, only signs of differences have to be
the same.

Ordinal potential game: A function ϕ : A → R is an ordinal
potential for game ζ if for every Si ∈ S and for every a−i ∈
A−i:

ui(x, a−i)− ui(z, a−i) > 0 iff ϕ(x, a−i)− ϕ(z, a−i) > 0 (3)

∀x, z ∈ Ai In other words, if player Si acquires a better
(worse) payoff by unilaterally deviating from one strategy to
another, the potential function will also increases (decreases)
with this deviation.

Exact potential game: A function ϕ : A → R is an exact
potential for game ζ if for every Si ∈ S and for every a−i ∈
A−i:

ui(x, a−i)− ui(z, a−i) = ϕ(x, a−i)− ϕ(z, a−i) (4)

∀x, z ∈ Ai

In other words, a normal form game is called an exact potential
game if there exists a potential function which reflects the exact
change in the utility received by every unilaterally deviating
player.

A new class of potential games, namely best response
potential games, were studied in [11]. The distinctive feature is
that it allows improvement paths, by imposing restrictions only
on paths in which players that can improve actually deviate to
a best response.

Definition 2. (Best response potential game). A game ζ is a
best response potential game if there exist a function ϕ : A →

R such that for every Si ∈ S and for every a−i ∈ A−i:
arg max

∀ai∈Ai

ui(ai, a−i) = arg max
∀ai∈Ai

ϕ(ai, a−i)

We define the utility function of node Si corresponding to
action ai in the proposed game as:

ui(ai) = Wl ∗ f(Lc) +WETX ∗ f(pathETXi) (5)

where, ui(ai) is the utility of sensor Si ∈ S for action ai, Lc

is the lifetime of critical node, pathETXi is the path ETX as
used in the collection tree protocol (CTP) [?] of sensor Si for
selecting a new parent, and Wl and WETX are weigth factors
for the network lifetime and path ETX, respectively.

Similarly, the potential function of the proposed game is
defined as

ϕ(a) = Wl ∗ f(Lc) +WETX ∗
∑

∀Si∈S

f(pathETXi) (6)

Then the system-centric objective is to find the optimal
parent selection profile aopt such that the system throughput
is maximized. Formally,

aopt = argmaxϕ(a) (7)

Theorem 1. The joint power route adaptation game is a finite
exact potential game with potential function ϕ and it has at
least one pure strategy Nash equilibrium.

Proof: We need to prove that ϕ is an exact potential
function in parent assignment game which satisfies equation 4.
Assuming that a player Si ∈ S changes its parent to k

′
from

k, it makes the action changes to a
′

i from ai, while others are
using the strategy prole a−i. The difference of utility function
is:

ui(a
′

i, a−i)− ui(ai, a−i) = Wl ∗ (f(L
′

c)− f(Lc)) +

WETX ∗ (f(pathETX
′

i)− f(pathETXi)) (8)

Now consider the potential function (6), which can be
expressed as:

ϕ(a
′

i, a−i) = Wl ∗ f(L
′

c) +WETX ∗ f(pathETXi) +

WETX ∗
∑

∀Sl∈S,Sl ̸=Si

f(pathETX
′

l)

The difference in potential function is:

ϕ(a
′

i, a−i)− ϕ(ai, a−i) = Wl ∗ (f(L
′

c)− f(Lc))+

WETX ∗ (f(pathETX
′

i)− f(pathETXi)) +

WETX ∗
∑

∀Sl∈S,Sl ̸=Si

(f(pathETX
′

l)− f(pathETX l))

Let,

dETX = WETX∗
∑

∀Sl∈S,Sl ̸=Si

(f(pathETX
′

l)−f(pathETX l))

Now if we limit only one node can change its parent at a
time, say Si, then the difference in potential function becomes:

ϕ(a
′

i, a−i)− ϕ(ai, a−i) = Wl ∗ (f(L
′

c)− f(Lc))+

WETX ∗ (f(pathETX
′

i)− f(pathETXi)) + dETX(9)



Now, substituting equation 8 into equation 9, we get:

ϕ(a
′

i, a−i)− ϕ(ai, a−i) = ui(a
′

i, a−i)− ui(ai, a−i) + dETX

(10)

If we restrict only one node can change its parent at a
time then dETX = 0 in equation 10. Thus, ϕ becomes an
exact potential function.

Clearly, any exact potential game is an ordinal potential
game (if dETX ̸= 0) but not the other way around. Here each
node selects its best response and it is defined as:

Bi(a−i) = arg max
∀ai∈Ai

ui(ai, a−i) (11)

Best response dynamics is an update rule where at each time
instant a player chooses its best response to other players’
current strategy profile.

In any finite potential game, best response dynamics al-
ways converge to a Nash equilibrium [10], [11]. The global
maximum of a ordinal potential function is a pure strategy
Nash equilibrium. To understand this, let a∗ corresponds to
the global maximum. Then, for any Si ∈ S, we have, by
definition,

ϕ(a∗, a∗−i)− ϕ(ai, a
∗
−i) ≥ 0, ∀ai ∈ Ai

But as ϕ is a potential function, for all Si ∈ S,

ui(a
∗, a∗−i)− ui(ai, a

∗
−i) ≥ 0iff

ϕ(a∗, a∗−i)− ϕ(ai, a
∗
−i) ≥ 0,∀ai ∈ Ai

Therefore, in best response dynamics:

ui(a
∗, a∗−i)− ui(ai, a

∗
−i) ≥ 0, ∀Si ∈ S and ∀ai ∈ Ai (12)

Hence a∗ is a pure strategy Nash equilibrium. However,
there may also be other pure strategy Nash equilibria corre-
sponding to local maxima. Note that implementing this scheme
would require all nodes to have global knowledge of node
parameters, which will lead to heavy communication cost and
is unrealistic in practice. Our objective of the game theoretic
formulation is two fold. Firstly, it provides the best case results
using an iterative computation framework, which otherwise re-
quires heavy computations. We call this a centralized approach,
if such is implemented. Secondly, it provides framework for
designing a decentralized, albeit suboptimal scheme, whichis
described in the following section.

The best response dynamics based approach for joint power
control and parent selection is presented in algorithm 1. At the
beginning, the routing tree established by CTP is considered
(CTP (G)). CTP uses expected transmissions (ETX) as its
routing gradient. A root has an ETX of 0. The ETX of a node
is the path ETX of its parent plus the ETX of its link to its
parent. CTP chooses the neighbor with the lowest ETX value
as its parent. Once the initial routes are determined, according
to our algorithm, every node in the network calculates its utility
(getUtility(Si)) as defined in equation 5. Utility of a node is a
function of critical node lifetime and path ETX. The incentive
of all nodes to change their strategy (i.e., power control or route
adaptation) is expressed by the potential function as defined
in equation 6. Potential function is calculated (Potential(G))
to get the global effect. Each node calculates the utility vector

ALGORITHM 1: Pure strategy - best response dynamics based
algorithm of parent assignments
/*Input: Topology G = (S,E); Initial parent and power
assignment;*/
/*Output: optimal parent (power) assignment i.e., feasible and better
or no worse than any other feasible solution.*/
step← 0;
CTP (G);
/* Collection tree protocol in G */
for ∀Si ∈ S do

ucur
i ← getUtility(Si);

end
/* calculating potential function to get the social effect*/
Φcur ← Potential(G);
while (True) do

step++;
for ∀Si ∈ S do

/* build the utility vector of Si for parent vector P⃗i */
u⃗i ← utilityV ector(Si, P⃗i);

end
S‘ ← selectActiveNodes(l, k);
/*Sink select l nodes out of k nodes to take action to improve
the critical node lifetime */
for ∀Si ∈ S‘ do

uprv
i ← ucur

i ;
/* select best response */
a∗
i ← bestResponse(u⃗i);

selectParent(Si, u⃗i, a
∗
i );

ucur
i ← getUtility(Si);

end
Φprv ← Φcur;
Φcur ← Potential(G);
/* feasible and optimal power level assignments */
count=0;
for ∀Si ∈ S do

if (ucur
i == uprv

i ) and (Φcur ≥ Φprv) then
count++;
uprv
i ← ucur

i ;
end

end
if (count == |S|) then

exit;
/*It is an NE point as no sensor can improve its payoff by
deviating unilaterally */

end
end

for a set of probable parents (utilityV ector(Si, P⃗i)), which is
later used to select best response. A profile of power adaptation
and new parent selection (selectParent(Si, u⃗i, a

∗
i )) strategies

results in a profile of expected utility or payoffs. Nodes which
have non zero utility vector participate in the game in that
round. Let at any given round there are k such nodes. We
consider that a subset l out of these k nodes take action to
improve the critical node lifetime, so as to avoid instability.
This is achieved by using a probability p for each node to
take action, where p = (La − Lc)/(α × k × ×La); La is
the average lifetime of the network ; Lc is the lifetime of the
critical node in the network; and α is and adjustment factor.

In the next round each node’s strategy is determined by
its best response (bestResponse(u⃗i)) to this selected subset
(i.e., l nodes) of the population. This approach maximizes
each nodes payoff with respect to its strategy. The potential



value is also calculated by the sink to see the improvement
in the network. After taking action, each node calculates its
new payoff and explores if there is any chance of improving
the utility. To ensure system stability, it is important to know
whether the game converges to an equilibrium. In the proposed
scheme, a sensor node selects a parent (and adjusts the trans-
mission power level) so as to maximize its own utility. Thus
every sensor is playing its best strategy. The game reaches an
equilibrium state if there is no such node which can improve
its utility. If the game reaches NE, then change of any nodes
profile disturbs the equilibrium state (NE). Thus there is no
further advantage of changing the strategy. However, the selfish
behavior by sensors may lead to an inefficient result. This
could be improved upon given dictatorial control over every
nodes actions. On the other hand, imposing such control can
be costly or infeasible (due to the oscillation in the states)
with large networks. Therefore, it is significant to find the
conditions under which decentralized optimization by sensors
is guaranteed to produce a near-optimal outcome.

IV. DISTRIBUTED POWER CONTROL AND ROUTING
SCHEME FOR IMPROVING NETWORK LIFETIME (DPCR)

We now present the proposed DPCR algorithm that requires
a minimum amount of global information from the network,
and hence can be implemened without incurring heavy com-
munication cost.

Initially routes are setup using CTP. All nodes transmit
their health metric (lifetime) to sink. The sink then selects
k nodes with the lowest lifetimes (critical node set) CN =
{CN1, CN2, , CNk}, and broadcasts that to the network. Let
N c be the set of nodes that causes overhearing to any critical
node. Then all Sj ∈ N c and its child nodes are active nodes
in this game. Every active node in the network calculates its
utility value, which is a function of the overhearing caused to
any member of CN en-route to the sink (OH), the path ETX
and a cost associated with every link. The utility of node Si

is ui = Wohf(OH) +WETXf(ETX)− Cost

This is similar to the utility function used in the centralized
algorithm with two important differences. First, it uses OH ,
which is the overhearing caused by any node on the current
route to a member of CN . This can be easily propagated by
the route update packets. Secondly, it adds a Cost parameter
that is used to provide addiitional control for parent selection
under certain circumstances that is explained below. The Cost
value is assigned to all Sj ∈ N c and their children nodes down
the tree. The initial value of Cost is zero.

Each neighbor of the critical nodes checks with their prob-
able parents if they can improve their utility value by avoiding
any overhearing caused to the neighboring critical node using
power control and route adaptation. If a neighbors cannot
improve its own utility, i.e. cannot reduce the OH caused to its
neighboring critical node, then it sets its Cost to value geater
than zero. All nodes, including children of the neighbors of
the critical nodes, perform the same tasks for parent selection.
Woh is different for all k critical nodes, depending on their
lifetime. So, W i

oh = Lmin

Li
, where, Lmin is the minimum

critical node lifetime and Li is the lifetime of node ith critical
node. This will ensure that node with the lowest lifetime
experiences highest overhearing as compared to any other
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Fig. 2. Illustration of the step-by-step improvement of the lowest node
lifetime in the network with the joint power control and routing schemes:
(a) centralized, (b) DPCR.

node, given same number of packets are forwarded by their
neighbor. Only a few child node participate in the game, based
on a probability (p), which is defined as: pi =

Lavg−Li

Lavg
, where

Lavg is the average critical lifetime.

Each node selfishly tries to maximize their own payoff and
its effect over the network is reflected by the potential function.
This process is repeated in rounds and in every round sink
broadcasts a new set of critical nodes and the utility calculation
is based on these new critical nodes. NE is reached when
no individual deviates from the profile while everyone else
adheres to it.

V. RESULTS

The perforance of the proposed DPCR scheme is obtained
using computer simulations. We evaluate the network lifetime,
which is given by the smallest lifetime among all nodes in
the network, and the average end-to-end ETX of all routes, as
obtained in every step of the process. For comparison, we also
evaluate the same performance measures for the centralized
schemes as well as those otained using CTP. In our simulations,
we consider a network of 40 sensor nodes that are uniformly
distributed over a 50× 50m area. All nodes transmit periodic
data packets to the sink that are generated at a rate of 2 pacets
every 5 minutes. We evaluate the performance of the joint
power control and routing schemes at an instant where the
state of charge (SOC) of the batteries are randomly distributed
following an uniform distribution in (3750,5000) mAH. The
maximum power level and transmit power levels are chosen
based on parameters of a MICAz sensor node. The receiver
threshold forsuccessful packet reception in the absence of
interference is assumed to be −90dBm. A log-normal channel
model is assumed with a reference path loss of −55dBm at
1m, a path loss exponenst of 3, and a shadowing standard
deviation of 3dB. All results are obtained by taking the average
of the results otained from 10 independent simulations with the



Fig. 3. Average network lifetime obtained in different steps of the power
control and route selections schemes.

same set of parameters.

Figure 2 depicts the lowest node lifetime at each step and
the corresponding improvement due to the proposed scheme
(centralized or DPCR) from one of the simulations runs. As
expected, the centralized scheme imrpoves the lifetime of the
critical node in each step by a significant amount, which is
less pronounced in the decentralized scheme (DPCR). Both
schemes stabilize within 10 steps, approximately.

The average network lifetime from all simulations after
each step of the algorithms are plotted in Figure 3 for all three
schemes: centralized, DPCR, and CTP. It is observed that while
a 30% improvement over the lifetime with CTP is acheivable
using the centralized approach, the improvement using the
proposed DPCR is about 20%. This improvement is achieved
at the cost of some reduction of nework performance. This is
because CTP always chooses routes that have the best end-to-
end performance based on ETX values, whereas the proposed
power control and routing schemes apply a combination of
ETX and network lifetime criteria for power control as well
as route selections. To illustrate the effect on the end to end
delivery performance using the proposed schemes, we also plot
the average oath ETX values in Figure 4. The results indicate
a slightly higher increase in the average ETX using DPCR in
comparison to the centralized scheme. However, the difference
is not significant.

VI. CONCLUSION

A game theoretic approach to joint power control and
routing is proposed. The objective is to control the current
consumption to balance the nodes remaining lifetimes, which
results in improvement of the lifetime of the network. Gener-
ally, such adaptations involve a high amount of computational
complexity, which is a key consideration for this work. Our
approach lends an iterative solution that converges within finite
time and greatly reduces the computational complexity. The
problem is shown to be a finite exact potential game, which has
a Nash Equilibrium. The corresponding framework is used to
develop a centralized solution that is expected to give the best

Fig. 4. Average path ETX values obtained in different steps of the power
control and route selections schemes.

case results on lifetime improvement. Finally, a decentralized
(albeit suboptimal) scheme DPCR is proposed, which only
requires the knowledge of the list of critical nodes in the
network. In DPCR, this is achieved by a single broadcast from
the sink, which is required only once for running the algorithm.
The lifetime improvement achieved by using DPCR as well as
the average route quality in the network in comparison to the
centralized approach and CTP are presented from computer
simulations.
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