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Numerical Algorithms

Chapter 11
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Numerical Algorithms

In textbook do:

• Matrix multiplication

• Solving a system of linear equations
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Matrix Addition

Involves adding corresponding elements of each matrix to form the
result matrix.

Given the elements of A as ai,j and the elements of B as bi,j, each
element of C is computed as

ci,j = ai,j + bi,j

(0 ≤ i < n, 0 ≤ j < m)
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Matrix Multiplication

Multiplication of two matrices, A and B, produces the matrix C

whose elements, ci,j (0 ≤ i < n, 0 ≤ j < m), are computed as follows:

where A is an n × l matrix and B is an l × m matrix. 

ci j, ai,kbk,j
k 0=

l 1–
∑=
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× =A B C

Matrix multiplication, C = A × B

i
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× =A b c

i ci

Row
sum

Matrix-Vector Multiplication
c = A × b

Matrix-vector multiplication follows directly from the definition of

matrix-matrix multiplication by making B an n × 1 matrix (vector).

Result an n × 1 matrix (vector).
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Relationship of Matrices to Linear Equations

A system of linear equations can be written in matrix form:

Ax = b

Matrix A holds the a constants

x is a vector of the unknowns

b is a vector of the b constants.
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Implementing Matrix Multiplication

Sequential Code

Assume throughout that the matrices are square (n × n matrices).

The sequential code to compute A × B could simply be

for (i = 0; i < n; i++)
for (j = 0; j < n; j++) {
c[i][j] = 0;
for (k = 0; k < n; k++)
c[i][j] = c[i][j] + a[i][k] * b[k][j];

}

This algorithm requires n3 multiplications and n3 additions, leading

to a sequential time complexity of Ο(n3). Very easy to parallelize.
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Parallel Code

With n processors (and n × n matrices), can obtain:

• Time complexity of O(n2) with n processors
Each instance of inner loop independent and can be done by a
separate processor

• Time complexity of O(n) with n2 processors
One element of A and B assigned to each processor.

Cost optimal since O(n3) = n × O(n2) = n2 × O(n)].

• Time complexity of O(log n) with n3 processors
By parallelizing the inner loop. Not cost-optimal since

O(n3)≠n3×O(log n)).

O(log n) lower bound for parallel matrix multiplication.
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Partitioning into Submatrices

Suppose matrix divided into s2 submatrices. Each submatrix has n/
s × n/s elements. Using notation Ap,q as submatrix in submatrix row
p and submatrix column q:

for (p = 0; p < s; p++)
for (q = 0; q < s; q++) {
Cp,q = 0; /* clear elements of submatrix */
for (r = 0; r < m; r++)/* submatrix multiplication &*/
Cp,q = Cp,q + Ap,r * Br,q;/*add to accum. submatrix*/

}

The line
Cp,q = Cp,q + Ap,r * Br,q;

means multiply submatrix Ap,r and Br,q using matrix multiplication
and add to submatrix Cp,q using matrix addition. Known as block

matrix multiplication.



Slides for Parallel Programming Techniques & Applications Using Networked Workstations & Parallel Computers 2nd ed., by B. Wilkinson & M. Allen,  2004 Pearson Education Inc.  All rights reserved.

slides11-12

Block Matrix Multiplication

× =

Sum

A B C

p

qMultiply results
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b[][j]

a[i][]Row i

Column j

c[i][j]

Processor Pi,j

Direct Implementation

One processor to compute each element of C - n2 processors would
be needed. One row of elements of A and one column of elements
of B needed. Some of same elements sent to more than one
processor. Can use submatrices.
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Performance Improvement
Using tree construction n numbers can be added in log n steps
using n processors:

Computational time
complexity of Ο(log n)

using n3 processors.
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Recursive Implementation

Apply same algorithm on each submatrix recursivly.

Excellent algorithm for a shared memory systems because of
locality of operations.
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Recursive Algorithm
mat_mult(App, Bpp, s)
{
if (s == 1) /* if submatrix has one element */

C = A * B; /* multiply elements */
else { /* continue to make recursive calls */

s = s/2; /* no of elements in each row/column */
P0 = mat_mult(App, Bpp, s);
P1 = mat_mult(Apq, Bqp, s);
P2 = mat_mult(App, Bpq, s);
P3 = mat_mult(Apq, Bqq, s);
P4 = mat_mult(Aqp, Bpp, s);
P5 = mat_mult(Aqq, Bqp, s);
P6 = mat_mult(Aqp, Bpq, s);
P7 = mat_mult(Aqq, Bqq, s);
Cpp = P0 + P1; /* add submatrix products to */
Cpq = P2 + P3; /* form submatrices of final matrix */
Cqp = P4 + P5;
Cqq = P6 + P7;

}
return (C); /* return final matrix */
}
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Mesh Implementations

• Cannon’s algorithm

• Fox’s algorithm (not in textbook but similar complexity)

• Systolic array

All involve using processor arranged a mesh and shifting elements

of the arrays through the mesh. Accumulate the partial sums at

each processor.
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Mesh Implementations
Cannon’s Algorithm

Uses a mesh of processors with wraparound connections (a torus) to shift the A
elements (or submatrices) left and the B elements (or submatrices) up.

1.Initially processor Pi,j has elements ai,j and bi,j (0 ≤ i < n, 0 ≤ k < n).
2. Elements are moved from their initial position to an “aligned” position. The

complete ith row of A is shifted i places left and the complete jth column of
B is shifted j places upward. This has the effect of placing the element ai,j+i
and the element bi+j,j in processor Pi,j,. These elements are a pair of those
required in the accumulation of ci,j.

3.Each processor, Pi,j, multiplies its elements.
4. The ith row of A is shifted one place right, and the jth column of B is shifted

one place upward. This has the effect of bringing together the adjacent
elements of A and B, which will also be required in the accumulation.

5. Each processor, Pi,j, multiplies the elements brought to it and adds the
result to the accumulating sum.

6. Step 4 and 5 are repeated until the final result is obtained (n - 1 shifts with
n rows and n columns of elements).
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Solving a System of Linear Equations

an−1,0x0 + an−1,1x1 + an−1,2x2 … + an−1,n−1xn−1 = bn−1

.

.

.
a2,0x0 + a2,1x1 + a2,2x2 … + a2,n−1xn−1 = b2
a1,0x0 + a1,1x1 + a1,2x2 … + a1,n−1xn−1 = b1
a0,0x0 + a0,1x1 + a0,2x2 … + a0,n−1xn−1 = b0

which, in matrix form, is

Ax = b

Objective is to find values for the unknowns, x0, x1, …, xn−1, given
values for a0,0, a0,1, …, an−1,n−1, and b0, …, bn . 
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Solving a System of Linear Equations

Dense matrices

Gaussian Elimination - parallel time complexity O(n2)

Sparse matrices

By iteration - depends upon iteration method and number of
iterations but typically O(log n)

• Jacobi iteration
• Gauss-Seidel relaxation (not good for parallelization)
• Red-Black ordering
• Multigrid
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Gaussian Elimination

Convert general system of linear equations into triangular system of
equations. Then be solved by Back Substitution.

Uses characteristic of linear equations that any row can be replaced
by that row added to another row multiplied by a constant.

Starts at the first row and works toward the bottom row. At the ith
row, each row j below the ith row is replaced by row j + (row i) (−aj,i/
ai,i). The constant used for row j is −aj,i/ai,i. Has the effect of making
all the elements in the ith column below the ith row zero because

a j i, a j i, ai i,
a j i,–

ai i,
------------ 

 
 

+ 0= =
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Partial Pivoting

If ai,i is zero or close to zero, we will not be able to compute the

quantity −aj,i/ai,i.

Procedure must be modified into so-called partial pivoting by

swapping the ith row with the row below it that has the largest

absolute element in the ith column of any of the rows below the ith

row if there is one. (Reordering equations will not affect the system.)

In the following, we will not consider partial pivoting.
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Sequential Code

Without partial pivoting:

for (i = 0; i < n-1; i++) /* for each row, except last */
for (j = i+1; j < n; j++) {/*step thro subsequent rows */
m = a[j][i]/a[i][i]; /* Compute multiplier */
for (k = i; k < n; k++)/*last n-i-1 elements of row j*/
a[j][k] = a[j][k] - a[i][k] * m;

b[j] = b[j] - b[i] * m;/* modify right side */
}

The time complexity is O(n3).
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Analysis
Communication

n − 1 broadcasts performed sequentially. ith broadcast contains n −
i + 1 elements.

Time complexity of Ο(n2) (see textbook)

Computation

After row broadcast, each processor Pj beyond broadcast processor
Pi will compute its multiplier, and operate upon n − j + 2 elements of
its row. Ignoring the computation of the multiplier, there are n − j + 2
multiplications and n − j + 2 subtractions.

Time complexity of Ο(n2) (see textbook).
Efficiency will be relatively low because all the processors before
the processor holding row i do not participate in the computation
again.
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Broadcast

P0 P1 P2 Pn-1

rows

Row

Pipeline implementation of Gaussian elimination
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Row
Strip Partitioning

Poor processor allocation! Processors do not participate in
computation after their last row is processed. 
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Cyclic-Striped Partitioning

An alternative which equalizes the processor workload:
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Iterative Methods

Time complexity of direct method at Ο(N2) with N processors, is

significant.

Time complexity of iteration method depends upon:

• the type of iteration,
• number of iterations
• number of unknowns, and 
• required accuracy

but can be less than the direct method especially for a few

unknowns i.e a sparse system of linear equations.
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Jacobi Iteration

Iteration formula - ith equation rearranged to have ith unknown on

left side:

Superscript indicates iteration:

 is kth iteration of xi , is (k−1)th iteration of xj.

x
k
i

1

ai i,
--------- bi ai j, x j

k 1–

j i≠
∑–=

x
k
i x j

k 1–
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Example of a Sparse System of Linear Equations

Laplace’s Equation

Solve for f over the two-dimensional x-y space.

For a computer solution, finite difference methods are appropriate

Two-dimensional solution space is “discretized” into a large number

of solution points.

f
2∂

x
2∂

---------
f

2∂

y
2∂

---------+ 0=
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∆ ∆

f(x, y)

Solution space

y

x

Finite Difference Method
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If distance between points, ∆, made small enough:

Substituting into Laplace’s equation, we  get

Rearranging, we get

Rewritten as an iterative formula:

f k(x, y) - kth iteration, f k−1(x, y) - (k − 1)th iteration.

f
2∂

x
2∂

---------
1

∆2
------ f x ∆ y,+( ) 2 f x y,( )– f x ∆– y,( )+[ ]≈

f
2∂

y
2∂

---------
1

∆2
------ f x y ∆+,( ) 2 f x y,( )– f x y ∆–,( )+[ ]≈

1

∆2
------ f x ∆ y,+( ) f x ∆– y,( ) f x y ∆+,( ) f x y ∆–,( ) 4 f x y,( )–+ + +[ ] 0=

f x y,( ) f x ∆ y,–( ) f x y ∆–,( ) f x ∆+ y,( ) f x y ∆+,( )+ + +[ ]

4
------------------------------------------------------------------------------------------------------------------------------------=

f
k

x y,( )
f

k 1–
x ∆– y,( ) f

k 1–
x y ∆–,( ) f

k 1–
+ x ∆ y,+( ) f

k 1–
+ x y ∆+,( )+[ ]

4
--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------=
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Boundary points (see text)

Natural Order
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Relationship with a General System of Linear 
Equations

Using natural ordering, ith point computed from ith equation:

or

xi−n + xi−1 − 4xi + xi+1+ xi+n = 0

which is a linear equation with five unknowns (except those with
boundary points). 

In general form, the ith equation becomes:

ai,i−nxi−n + ai,i−1xi−1 + ai,ixi + ai,i+1xi+1+ ai,i+nxi+n = 0

where ai,i = −4, and ai,i−n = ai,i−1 = ai,i+1 = ai,i+n = 1.

xi
xi n– xi 1– xi 1+ xi n++ + +

4
--------------------------------------------------------------------------=
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Point 

Point to be 
computed

computed

Sequential order of computation

Gauss-Seidel Relaxation
Uses some newly computed values to compute other values in that
iteration. 

Basic form
not suitable
for parallelization
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Gauss-Seidel Iteration Formula

where the superscript indicates the iteration.

With natural ordering of unknowns, formula reduces to

xk
i = (−1/ai,i )[ai,i−n x

k
i−n  + a i,i−1 x

k
i−1 + a i,i+1 x

k−1
i+1+ a i,i+n  x

k−1
i+n  ]

At the kth iteration, two of the four values (before the ith element)
taken from the kth iteration and two values (after the ith element)
taken from the (k−1)th iteration. We have:

x
k
i

1
ai i,
--------- bi ai j, x

k
j ai j, x

k 1–
j

j i 1+=

N

∑–
j 1=

i 1–

∑–=

f
k

x y,( )
f

k
x ∆– y,( ) f

k
x y ∆–,( ) f

k 1–
+ x ∆ y,+( ) f

k 1–
+ x y ∆+,( )+[ ]

4
--------------------------------------------------------------------------------------------------------------------------------------------------------------------=
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Red-Black Ordering
First, black points computed. Next, red points computed. Black
points computed simultaneously, and red points computed
simultaneously. 

Red

Black
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Red-Black Parallel Code

forall (i = 1; i < n; i++)
forall (j = 1; j < n; j++)
if ((i + j) % 2 == 0) /* compute red points */
f[i][j] = 0.25*(f[i-1][j] + f[i][j-1] + f[i+1][j] + f[i][j+1]);

forall (i = 1; i < n; i++)
forall (j = 1; j < n; j++)
if ((i + j) % 2 != 0) /* compute black points */
f[i][j] = 0.25*(f[i-1][j] + f[i][j-1] + f[i+1][j] + f[i][j+1]);
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Higher-Order Difference Methods

More distant points could be used in the computation. The following
update formula:

f
k

x y,( ) =

1

60
------ 16 f

k 1–
x ∆– y,( ) 16 f

k 1–
x y ∆–,( ) 16 f

k 1–
+ x ∆ y,+( ) 16 f

k 1–
+ x y ∆+,( )1

1-
+

f–
k 1–

x 2∆– y,( ) f
k 1–

x y 2∆–,( )– f
k 1–

x 2∆+ y,( )– f
k 1–

x y 2∆+,( )–
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Nine-point stencil
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Overrelaxation

Improved convergence obtained by adding factor (1 − ω)xi to Jacobi
or Gauss-Seidel formulae. Factor ω is the overrelaxation parameter.

Jacobi overrelaxation formula

where 0 < ω < 1.

Gauss-Seidel successive overrelaxation

where 0 < ω ≤ 2. If ω = 1, we obtain the Gauss-Seidel method.

xi
k ω

aii
------ bi aij xi

k 1–

j i≠
∑– 1 ω–( )xi

k 1–
+=

xi
k ω

aii
------ bi aij xi

k
aij xi

k 1–

j i 1+=

N

∑–
j 1=

i 1–

∑– 1 ω–( )xi
k 1–

+=
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Multigrid Method

First, a coarse grid of points used. With these points, iteration
process will start to converge quickly.

At some stage, number of points increased to include points of the
coarse grid and extra points between the points of the coarse grid.
Initial values of extra points found by interpolation. Computation
continues with this finer grid.

Grid can be made finer and finer as computation proceeds, or
computation can alternate between fine and coarse grids.

Coarser grids take into account distant effects more quickly and
provide a good starting point for the next finer grid.
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Coarsest grid points Finer grid points
Processor

Multigrid processor allocation
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(Semi) Asynchronous Iteration

As noted early, synchronizing on every iteration will cause

significant overhead - best if one can is to synchronize after a

number of iterations.


